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Abstract

This paper presents a framework for object recognition
using topological persistence. In particular, we show that
the so-called persistence diagrams built from functions de-
fined on the objects can serve as compact and informative
descriptors for images and shapes. Complementary to the
bag-of-features representation, which captures the distribu-
tion of values of a given function, persistence diagrams can
be used to characterize its structural properties, reflecting
spatial information in an invariant way. In practice, the
choice of function is simple: each dimension of the feature
vector can be viewed as a function. The proposed method is
general: it can work on various multimedia data, includ-
ing 2D shapes, textures and triangle meshes. Extensive
experiments on 3D shape retrieval, hand gesture recogni-
tion and texture classification demonstrate the performance
of the proposed method in comparison with state-of-the-art
methods. Additionally, our approach yields higher recog-
nition accuracy when used in conjunction with the bag-of-
features.

1. Introduction

Over the years, thebag-of-features(BoF) model has
been extremely popular for the recognition of text, images
and shapes [2,7,17,27,36]. In the image domain, this ap-
proach corresponds to treating a given image as a collec-
tion of unordered local descriptors, extracted from feature
points, and quantizing them into discrete “visual/geometric
words” [40]. The distribution of visual words in an image
is then summarized by a fixed-sized vector using various
pooling techniques [4]. Due to the compactness and infor-
mativeness of the resulting representation, BoF is widely
used for learning and recognition.

A large number of extensions of the BoF have been pro-
posed with the aim to recover the geometric (spatial) rela-
tions between features, which are discarded by BoF. The
two most common approaches include explicitly encoding
geometric information in the bag of features [3,6,9,45,46]

or decomposing the object into spatial subregions and per-
forming pooling in each subregion separately [25]. These
approaches, however, assume explicit parametrization of
the spatial information that needs to be captured (e.g. dis-
tribution of pairwise offsets as in [6,46] or commute times
in [3]) or a pre-defined spatial decomposition to guarantee
the stability of the representation under deformations. Thus,
devising a compact and informative representation to char-
acterize the structural properties of features while preserv-
ing stability, remains a challenging open problem.

Unlike the majority of the previously proposed methods
that try to augment the bag-of-features representation to in-
clude some notion of spatiality, we propose to use a dif-
ferent approach, which is inherently well-suited to capture
structural properties of functions defined on different do-
mains in a stable way. In particular, we propose to com-
plement to the BoF approach, by computing thepersistence
diagrams(PD) of functions defined on different data modal-
ities, including 2D shapes, textures and triangle meshes.

Intuitively, instead of considering each feature point and
its associated descriptor vector independently, we analyze
all the points together by considering each dimension of the
feature vector as a real-valued function, defined on the en-
tire domain. With the assumption that the descriptors are
stable and informative enough in the object space, we com-
pute the persistent homology of the resulting functions. The
derived PD provides a simple yet powerful description that
captures the structural properties of the object. Importantly,
unlike the BoF representation which captures the distribu-
tion of the values in the function, PD exploits the connec-
tivity between different points in the domain to characterize
therelativeprominence of different feature points.

In order to demonstrate the usefulness of this represen-
tation, we argue both theoretically and experimentally that
it captures information which is complementary to the in-
formation in the bag-of-features representation. In partic-
ular, we perform extensive experiments on 3D shape re-
trieval, hand gesture recognition and texture classification,
where we demonstrate state-of-the-art performance by us-
ing the PDs in conjunction with the bag-of-features. We
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Figure 1. Schematic comparison of BoF with PD.

argue that this is largely due to the fact that persistence di-
agrams allow to distinguish feature configurations that are
structurally different. Schematic comparison between the
BoF with PD is shown in Fig.1.

The rest of the paper is organized as follows. In Sect.2,
we discuss some related works. Sect.3 presents the frame-
work of our proposed algorithm. Experimental results in
three applicable scenarios are provided in Sect.4. Finally,
we conclude in Sect.5.

2. Related Work

The past decade has witnessed a surge in popularity of
BoF and its extensions for solving various computer vision
problems. Among them, one particularly successful method
is to form a global representation by spatially aggregating
the local descriptors pioneered by Lazebniket al. [25]. The
subsequent research on spatial aggregation get compelling
performance because of two seemingly independent advan-
tages: the better design of (1) spatial regions and (2) aggre-
gating operator. The spatial pyramids manually define the
multi-scale grid-structured regions over the image space,
and many excellent visual recognition methods either di-
rectly use them [25, 44], or modify the spatial decomposi-
tion to fit their data [9,26]. Recently, Jiaet al.[23] proposed
to learn more adaptive regions by the receptive fields. Pop-
ular aggregating (pooling) strategies include averaging and
max pooling, which have been used by Lazebniket al. [25]
and Yanget al. [44] respectively. Coateset al. proposed
to aggregate over multiple features in the context of deep
learning [14].

Our work relies on the theory of persistent homology,
which falls under the umbrella of topological data analysis
(TDA).It was first formalized by Edelsbrunneret al. [19]
by building on earlier notions of size functions used by
Frosini et al. for shape analysis [41] and later developed
in [11,19,47]. Persistence diagrams appear prominently in

TDA, and in particular provide an efficient way to encode
topological properties of real-valued functions defined over
spaces. PDs have provable stability properties [11,15], and
allow to infer robust topological information on the stud-
ied data. Persistent homology has been successfully ap-
plied to clustering tasks [13], vision tasks such as shape
segmentation [37], component detection [30] and recogni-
tion [10,12,20]. Our work is inspired by [10,12] but is dif-
ferent in that we exploit a given connectivity on the object
and use feature functions to build the persistence diagrams
rather than using point samples and simplicial complex fil-
trations. We also show that multiple PDs of different func-
tions as well as the BoF representation can be combined to
improve recognition tasks in a variety of scenarios. In this
paper we focus on 0-dimensional persistent homology that
encodes connectivity information in an intuitive and easy-
to-compute way.

3. Topological Object Representation Using
Persistence Diagram

3.1. Feature Encoding: From BoF to PD

We assume that every object (e.g., image, 2D shape
or 3D mesh) is represented as a connectivity graphG =
{V, E}, where the set of nodesV of sizeV are samples on
the object, and the set of edgesE represent neighborhood
relations between samples. For example, considering im-
ages as grids of points, we use the 4-neighborhood to define
the edges inE . Similarly, for 3D objects, we use the vertices
and the edges of the faces in the mesh to defineG.

Similarly to the BoF approach we start by associating a
D-dimensional feature vector to every sample inV resulting
in aV ×D matrix:

P (G) =







p11 · · · p1D
... · · ·

...
pV 1 · · · pV D






∈ R

V×D.

While the BoF approach can be thought of as analyz-
ing P by considering its rows, which correspond to point
descriptors, we propose to considerP column-wise by in-
terpreting each column as a real-valued function defined on
the nodes ofG. The persistence diagrams of these functions
allow us to capture the structural properties of the object
and in particular robustly encode the relative prominence of
the different feature points.

3.2. Persistence Diagram

Given a real-valued functionf defined on the nodes of
G, the (0-dimensional) persistence diagram off encodes
the evolution of the connectivity of the 1-parameter family
of superlevel-setsFα = f−1([α,+∞)) asα goes from+∞
to−∞ in the following way. A nodev ∈ V is called apeak



(a) (b)

Figure 2. Sketch of persistence computing: (a) a smooth function
f maps the nodes ofG to R, f̃ is a noisy version off ; (b) super-
imposition of PDs off (red) andf̃ (blue), showing the one-to-one
correspondence between the prominent peaks off andf̃ .

if it is a local maximum off , i.e., if f(v) ≥ f(u) for anyu
such that(v, u) is an edge ofG. For any peakv we say thatv
is born atf(v). Forα ≤ f(v), let C(v, α) be the connected
subgraph inFα ⊆ G that containsv. The infimum ofα such
thatf(v) is the global maximum off restricted toC(v, α)
is called thedeathof v. See Fig.2 for an example whereG
represents a line-graph (in green) and the nodep of G is a
peak given the functionf shown in red in Fig.2 (a). A new
connected subgraph is born in the superlevel-setF

α when
α = f(p), and it dies whenα = f(s).

The lifespan of peakv is thus determined by its birth
fa = f(v) and deathfb ≤ fa. This allows us to associate a
point (fa, fb) on a 2D plane to each peakv. Collecting all
these points, we obtain thepersistence diagram(PD) of f
(illustrated in Fig.2(b)). The differenceτ = fa − fb ≥ 0 is
called theprominence(or persistence) of the peakv. Note
that the prominence ofv is equal to the vertical distance of
its corresponding point in the PD to the diagonal. Lastly, the
death time of the global maxima off , i.e. the peaksv that
satisfyf(v) = max f , is set tomin f , and associated to the
point (max f,min f) in the PD. Overall, the PD encodes
the relative prominence of the different peaks of a given
function by considering the connectivity information in the
domain.

Computation. In practice the persistence diagram can
be simply computed using the Union-Find algorithm [16]
by sorting the nodes ofG according to their function value
and keeping track of the corresponding connected compo-
nents.

Stability . One important property of the persistence dia-
gram is that it is stable under some perturbations of the fea-
ture function. Intuitively, the stability theorem in [11, 15]
states that if the values of a functionf are perturbed by
no more than someε > 0, then the points on the persis-
tence diagrams will also be perturbed by no more thanε. In
Fig. 2(a), the blue functioñf is a noisy version of the red
function f . The PDs off and f̃ are plotted in Fig.2(b).
These two PDs are similar, in the sense that the distance be-
tween points that are far from the diagonal is small, even if
some extra points with low prominence can appear.

Invariance. Similarly to the BoF representation, PD is
invariant to rotations, translations and scaling of the object
provided that the feature function remains the same. How-
ever, unlike the BoF which is invariant to any permutation
of the nodes, the PD is only invariant under continuous de-
formations. In particular, given two objects represented as
graphsG1 andG2 and a mapT between them, for any func-
tion f onG2 the PDs off andf ◦ T are the same ifT is an
isomorphism. Conversely, ifT is not an isomorphism then
there exists a functionf whose PD will be different from
the one off ◦ T . Intuitively this implies that PDs capture
local spatial information through the connectivity structure.

Relation to spatial pyramid approaches. Note that
PDs can be seen as alternatives to spatial decomposi-
tion methods, and espacially Spatial Pyramid Matching
SPM [25] and ScSPM [44], that apply BoF approach to
each region of a multi-scale decomposition of the object
and often use max pooling to characterize the features in
each region. Unlike these approaches, PDs do not require
an explicit decomposition of the object, and allow to capture
structural properties of functions in a robust and compact
way.

3.3. PDs for object comparison

In this paper we propose to use persistence diagrams of
different feature functions as descriptors for object recogni-
tion and classification. To illustrate this idea, we compute
the PD for several 3D meshes in Fig.3 where we use the
Heat Kernel Signature (HKS) [21,39] for fixed time as the
feature function. The first row displays the HKS value for
the four models: two horses, a dinosaur and pliers. The
second row shows the corresponding PDs.

Figure 3. HKS function and its persistence diagrams.

Note that in this case the PD is invariant to isometric de-
formations because the underlying HKS feature is an isome-
try invariant. The PDs allow us to distinguish these 3 classes
of objects since the diagrams associated to the horses are
more similar to each other to those of the other objects.

Quantitatively, we use the following construction to
compare PDs. For two functionsf andg with respective
PDsD1 andD2, we construct a weighted bipartite graph
B betweenD1 ∪ Π(D2) andD2 ∪ Π(D1) whereΠ is the
projection onto the diagonal, i.e. for a point(a, b) ∈ R

2,
Π(a, b) = (a+b

2 , a+b
2 ). This can guide the points with

smaller persistence corresponding to the points on diago-



nal, and thus remove their interference in prominent point
matching. The weight of an edge(u, v) ∈ B is defined as
‖v − u‖∞ if u or v is in D1 ∪ D2 and is set to0 if both
u andv are inΠ(D1) ∪ Π(D2). The bottleneck distance
dbtnk.(D1,D2) is defined as the minimum valued such there
exists a perfect matching inB with all edges having weights
less thand. Similarly, thedegree-p Wasserstein distance
dwsst. is defined as the minimum valued such there exists a
perfect matching inB whose the sum of the weights raised
to the powerp of all edges is less thandp. As a conse-
quence, computing both distances boils down to computing
maximum matchings in bipartite graphs. This can be done
efficiently using e.g. the Hungarian algorithm for PDs with
few points. However, this might become prohibitive for PDs
with many points.

For this reason we also use an alternative representation
of PDs, the persistent landscape [8], which allows us to
represent a PD as a point in a high dimensional Euclidean
space. Given a PD with points{(ai, bi)}

n
i=1, ai ≥ bi. For

each point(ai, bi), let f(ai,bi) : R → R, f(ai,bi)(t) =
min(ai − t, t − bi)+, wherez+ denotesmax(z, 0). The
persistence landscapeis defined as the set of functions
βk : R → R, k ∈ N given by

βk(t) = kth largest value of
{

f(ai,bi)(t)
}n

i=1
(1)

with βk(t) = 0 if k > n. Givenk we consider the firstk
landscape functions, and discretize them withm sampling
points alongt. The derivatives of the sampling points are
calculated and form amk-size vector. Thelandscape dis-
tancedk,mldsp. is defined as theLp norm between these vectors.

3.4. Metric Learning for Multiple Functions

In a bid to achieve higher performance, multiple features
are usually used. When these features are designed in sim-
ilar ways, the final distance can be simply chosen as the
sum of their persistence based distances. However, when
these features are designed in very different ways, it is more
reliable to give different weights to different features. We
use labeled data from the dataset to learn these parameters.
Suppose we have some set of objects. Each objectxi is
characterized byD functions asF (xi) = {fd(xi)}

D
d=1, and

dd(xi, xj) is the persistence based distance of thedth func-
tion between two objectsxi andxj from the set. Addition-
ally, we are given information that certain pairs of them are
“similar”:

S : (xi, xj) ∈ S if xi andxj are similar (2)

and certain pairs of them are “dissimilar”

D : (xi, xj) ∈ D if xi andxj are dissimilar (3)

Our goal is to learn a distance metric to respect that “sim-
ilar” objects end up with smaller distances to each other, and

“dissimilar” objects with larger distances to each other. We
consider learning a distance metric of the form

Dis(xi, xj) = ‖xi − xj‖A =
√

d(xi, xj)TAd(xi, xj)

(4)
whered(xi, xj) = [d1(xi, xj), . . . , dd(xi, xj), . . . , dD(xi, xj)].
The problem can be formulated as an optimization pro-
gramming

minA
∑

xi,xj∈S ‖xi − xj‖
2
A

s.t.
∑

xi,xj∈D ‖xi − xj‖A ≥ 1, A ≥ 0
(5)

This is a standard formulation of distance metric learn-
ing, and can be solved by the algorithms in [18, 43]. The
learned metricA interprets the contribution of different fea-
tures. It is further embedded as part of the pipeline to pro-
vide a more reliable measure for the rest of testing data in
the dataset.

3.5. Limitations

While PDs allow to capture the relative prominence of
the local extrema of different functions, we note that they do
not provide any information about the distribution of other
(non-critical) values. Thus, the information contained in
PDs is largelycomplementaryto the information captured
in the BoF representations. Thus, as we show in the fol-
lowing section, we can often get superior performance by
combining the two approaches.

4. Experimental Results

We present the results of our PD-based object recogni-
tion scheme on various datasets of three different types: 3D
meshes (Section4.1), 2D gesture contours (Section4.2),
and texture images (Section4.3). The method was imple-
mented in MATLAB, and the experiments were performed
on a computer with an Intel Core processor running at 1.4
GHz with 4 GB RAM. In each experiment we use 3 ran-
domly selected samples from each class to learn the weights
in the metric.

4.1. 3D Shape Retrieval

Our first set of experiments is on triangulated 3D mesh
retrieval. We consider two datasets: SHREC 2010 [28]
and a robustness dataset [5]. The former focuses on near-
isometric shapes, and consists of 200 watertight shapes
equally divided into 10 categories (Figure4 illustrates a
sampling of the shapes from this dataset). The latter has
the same data used in the Shape Google [33] with an extra
transformation, which is the same as SHREC Robustness
benchmark [5] except for a few transformations. It con-
tains 596 shapes classified into 13 classes, and 456 shapes
which do not belong to any class. For both datasets, we
use the spectral descriptors as feature functions, including



the heat kernel signature (HKS) [21, 39], wave kernel sig-
nature (WKS) [1] and scale invariant heat kernel signature
(SIHKS) [24]. All of them are isometry-invariant. HKS and
WKS characterize the macroscopic and microscopic prop-
erties of shapes, respectively. SIHKS is a scale-invariant
version of HKS. We compare our method to BoF-based ap-
proach, spatially-sensitive BoF (SSBoF) [7] and ISPM [26],
which is a spatial pyramid approach on surfaces.

Figure 4. Sample shapes from SHREC 2010.

Results on SHREC 2010
On this dataset, we simplify each mesh into 2000 faces,

and the retrieval results are evaluated using the measures
provided by the organizers, including NN, FT, ST, E-
measure, and DCG (See [28] for details). We first illus-
trate the performance of different methods by considering
the HKS and WKS functions for fixed time and energy pa-
rameters respectively. DCG and the average running time
to compare two PDs are reported in Table1. The aver-
age number of points on PDs ranges around 15 for HKS
and 100 for WKS. It can be observed on this example, that
bottleneck and Wasserstein distances yield a significantly
higher accuracy than the landscape distance, at the price
of a higher computation time. Fig.5 displays an example
where PD provides more discriminative information than
the histogram of values of the function. The extremities of
the objects all correspond to local maxima of the HKS func-
tion. This structural information is well preserved in PDs as
the prominent points, but lost in the histogram representa-
tion that merges function values from different components
into the same bins.

Table 1. Comparison between different distances.

Metrics HKS WKS
DCG time (s) DCG time (s)

Bottleneck 0.8746 0.0020 0.5988 0.0315
Wasserstein (p = 2) 0.8774 0.0060 0.6190 0.5354
Wasserstein (p = 3) 0.8781 0.0061 0.6117 0.6069

Landscape (K = 10, N = 100) 0.8553 0.0046 0.4935 0.0071
Landscape (K = 10, N = 50) 0.8471 0.0026 0.4578 0.0037

Based on these experiments, for comparison of 3D
shapes, we use the bottleneck distance to compare PDs,
as it provides a good trade-off between time and efficiency
whenever the diagrams do not contain too many points.

We first compare our PD-based technique with BoF and
ISPM methods using multi-dimensional descriptors. In
particular, we use 17-dimensional SIHKS, 10-dimensional
HKS and 10-dimensional WKS. In this case we do not use
the metric learning step as the different dimensions are com-
mensurable. Throughout this experiment with use 32 words
to construct the vocabulary for the BoF representation and
use soft vector quantization. We summarize the results of
SIHKS and HKS in Table2. As can be seen in this table,

HKS BoF PD Prominent Points

Figure 5. An example that PD discriminates different shapes, while
BoF fails.

the PD-based method consistently outperforms the BoF rep-
resentation across different feature functions.

We then combine SIHKS, HKS and WKS to form a sin-
gle high-dimension descriptor. The combined performance
of our method again outperforms the BoF approach, in part
because PDs allow to capture structural properties of objects
which are discarded by the BoF representation.

We also show that the advantages of the BoF and PD-
based approaches can be combined by considering the joint
representation wheredBoF+PD = λ ∗ dBoF + dPD, whereλ
is the relative weight to normalize the distances. On this
dataset, we manually pickedλ of SIHKS, HKS, WKS and
the high-dimension spectral descriptor to be 0.033, 0.2, 200,
0.1 for BoF+PD, and 0.2, 1, 2000, 0.2 for ISPM+PD, re-
spectively. The combined metric PD+BoF/ISPM always
yields the the highest results.

We also compare with the state-of-the-art method, in-
cluding ShapeDNA [35] and DM-EVD [38], which show
the best performance in a larger contest [29]. We test the
ShapeDNA method on the the same simplified meshes, and
take the result of DM-EVD and other methods from [28], in
which DM-EVD is performed on the fine meshes. As can
be seen in Table2, our combined result is comparable to
these methods.

Results on TOSCA-based dataset
On the TOSCA-based dataset [33], we use multi-

dimensional descriptors: HKS and SIHKS with 6 and 5 di-
mensions respectively. Table3 summarizes the results ob-
tained using our method compared with the performance
of BoF, SSBoF, ISPM and PD in terms of equal error
rate (EER) [33]. Overall, the PD-based approach alone
shows slightly worse performance than the BoF methods
on this dataset. However, we obtain superior performance
by combining the two methods. On this dataset, we use the
weights:λ = 10, 5, 10 for HKS, SIHKS and HKS+SIHKS
respectively in BoF+PD and50, 10000, 10 for HKS, SIHKS



Table 2. Comparison of PD, BoF, SSBoF and ISPM on SHREC
2010 [28].

Methods NN 1-Tier 2-Tier e-Measure DCG

BoF 0.9100 0.4811 0.6374 0.4492 0.8061
SSBoF 0.9150 0.4737 0.6321 0.4412 0.8040
ISPM 0.9300 0.5745 0.7018 0.5018 0.8597

HKS PD 0.9600 0.5811 0.7034 0.4971 0.8677
BoF + PD 0.9500 0.6095 0.7382 0.5237 0.8781

ISPM + PD 0.9700 0.6321 0.7500 0.5335 0.8869
BoF 0.9700 0.7145 0.8308 0.6020 0.9191

SSBoF 0.9700 0.7097 0.8297 0.5967 0.9164
ISPM 0.9700 0.7750 0.8734 0.6359 0.9315

SIHKS PD 0.9850 0.8532 0.9697 0.7045 0.9740
BoF + PD 0.9850 0.8534 0.9697 0.7051 0.9737

ISPM + PD 0.9900 0.8784 0.9724 0.7114 0.9778
BoF 0.9700 0.7426 0.8758 0.6275 0.9367

SSBoF 0.9750 0.7318 0.8511 0.6102 0.9292
WKS+ ISPM 0.9750 0.8021 0.8979 0.6533 0.9408
HKS+ PD 0.9850 0.8532 0.9697 0.7045 0.9740
SIHKS BoF + PD 0.9850 0.8561 0.9705 0.7061 0.9743

ISPM + PD 0.9900 0.8779 0.9742 0.7118 0.9778
ShapeDNA [35] 0.9850 0.7974 0.9203 0.6653 0.9536

BOF-dSIFT-ERC-Tree 0.9850 0.9092 0.9632 0.7055 0.9763
DM-EVD [38] 1.0000 0.8611 0.9571 0.7012 0.9773

Canonical Forms 0.9200 0.6347 0.7800 0.5527 0.8781

Table 3. Comparison of PD, BoF, SSBoF and ISPM on TOSCA-
based dataset.

Descriptors Transformation BoF SSBoF ISPM PD BoF+PD ISPM+PD

isometry 0.0352 0.0307 0.0284 0.1464 0.0369 0.0274
isometry+topology 0.0394 0.0320 0.0341 0.1654 0.0397 0.0307

HKS+ noise 0.1540 0.1464 0.1036 0.2087 0.1462 0.1019
SIHKS null 0.0412 0.0394 0.0299 0.1561 0.0428 0.0291

partiality 0.0507 0.0466 0.0456 0.2630 0.0521 0.0468
topology 0.0561 0.0572 0.0350 0.2173 0.0563 0.0362

triangulation 0.0520 0.0495 0.0374 0.2049 0.0562 0.0396
All 0.0535 0.0519 0.0417 0.1727 0.0527 0.0380

HKS All 0.0650 0.0712 0.0595 0.2477 0.0638 0.0581
SIHKS All 0.0670 0.0531 0.0507 0.1728 0.0658 0.0507

and HKS+SIHKS respectively in ISPM+PD. The EER of
ShapeDNA for all transformations is 0.0967, which is worse
than state-of-the-art work Shape Google (BoF+spectral de-
scriptors) [33] on this dataset. The proposed method can
help Shape Google and its spatial version (ISPM) achieve
even better results.

4.2. Hand Gesture Recognition

Our second experiment focuses on the recent Kinect
sensor-based hand gesture recognition [34] and is inspired
by the work of [41]. This dataset contains 1000 gestures
equally categorized into 10 classes. Each gesture is com-
pared against a set of20 templates(2 samples for each class)
and nearest neighbor classification is performed.

Each gesture instance is represented as a sequence of
contour vertices, starting from the left side of the wrist (yel-
low point in Fig.6(a)). We construct our graph by consid-
ering the sequence points as nodes, and their adjacent con-
nectivity as edges. Renet al. [34] also provide an informa-
tive function to characterize each gesture by first computing
the center point,fcenter, defined as the point with the maxi-
mal Distance Transform value (red point in Fig.6(a)), and
computing the normalized Euclidean distance from the con-
tour vertices to the center. We show the corresponding PD
in Fig. 6(d). Importantly, due to the stability property, the
PD of fcentercan represent the perturbations of the contour
as points close to diagonal, and thus help to alleviate noise
brought by the Kinect sensor in data acquisition.

In all of the experiments below we use the Wasserstein
distance to compare persistence diagrams of functions in
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Figure 6. Persistence computing on gestures. (a) a gesture with
its center point in red and starting point in yellow; (b)distance-
to-centerfunctionfcenter; (c) gesture colored byfcenter; (d) PD of
fcenter.

(a) BoF (b) PD
Figure 7. The confusion matrix of (a) BoF, and (b) PD. The gesture
classes are displayed on top.

this dataset.
With fcenteralone, BoF achieves its best performance of

72.60% when discretizing the function into 5 bins, while
PD gets much higher result of 87.60% (see Fig.7). This
suggests that the information lost by discarding the connec-
tivity in BoF is critical for the recognition of objects with
different structural properties.

To improve the performance, we include two more func-
tions by computing the eingenfunctions of the PCA per-
formed on vertex coordinates. We denote the two eigen-
functions asf1 andf2 and their absolute values as|f1|, |f2|.
Using fcenter, |f1|, and |f2|, together, the BoF reaches its
best result 83.20% with 15 visual words learned usingk-
means. Our method with metric learning solved by [18,43]
gets accuracy of 92.90% and 91.70%, respectively. Further-
more, BoF+PD combined usingλ = 12 yields recognition
accuracy of 93.50%.

To compare our method to the state-of-the-art, we usef1
andf2 directly and compute the distance by testing two sign
possibilitiesi.e.,

d̂i = min {dwsst.(D(fi),D(gi)) , dwsst.(D(fi),D(−gi))} , i = 1, 2.

wherefi andgi are theith PCA eigenfunctions of the two
gestures. For comparison, we also consider the classifica-
tion with only one labeled sample per class (10 templates).
Recent methods proposed by Renet al. [34] and Wanget
al. [42] are based on shape segmentation and finger earth
mover distance (FEMD) introduced by Renet al. [34]. As
claimed by the authors, this metric is robust to the finger-
touching, which also means that adding more labeled ges-
tures with finger-touching into the training set will not sig-



Table 4. Comparison on hand gesture database [34].
Methods Accuracy (%) Time (s)

Shape Context without bending cost 83.2 12.346
Shape Context with bending cost 79.1 26.777

Skeleton Matching 78.6 2.4449
Near-convex Decomposition+FEMD [34] 93.9 4.0012
Thresholding Decomposition+FEMD [34] 93.2 0.075

PSD+FEMD [42] 94.1 1.967
fcenter(10 templates) 86.4 0.075

Multiple functions (10 templates) 90.1 0.3750
fcenter(20 templates) 87.6 0.1057

Multiple functions (20 templates) 95.4 0.5285

nificantly improve accuracy. We validate it using PSD [42]
for the settings that 1, 2 or 3 labeled samples are respec-
tively chosen per class. For each setting, 3 trials with dif-
ferent labeled samples (with finger touching) are tested, the
mean accuracy of PSD is 94.1%, 93.2%, and 93.1%. We
show the comparison with the state-of-the-art in Table4, the
results of other methods are from [34]. PD can reach higher
accuracy with more training samples, without sacrificing ef-
ficiency, because it avoids the time-consuming shape de-
composition stage. With the same training set20 templates,
persistence based method is 95.40%, while PSD is 93.80%.

4.3. Texture Image Classification

Our last experiment is on texture classification. For this
we use the standard Outex database [31]. This database
consists of 4320 texture images equally categorized into 24
classes. To evaluate our method, we first randomly select 20
images from each class, with one of them acting as a label,
and rest are testing samples. We use the CLBP descrip-
tor function [22], which is based on the well-known LBP
descriptor [32]. CLBP describes each local region on an
image as three discretized components named center (C),
sign (S) and magnitude (M). We use CLBP-S, CLBP-MC
and CLBP-SMC proposed by Guoet al. [22] as the fea-
ture functions since these three functions convey different
information. CLBP functions are (1) discrete and severely
bounded, (2) have strong local self-repetition. Therefore,
the associated PDs contain many points. To efficiently dis-
criminate these PDs, we use persistence landscape method.
The dissimilarity is defined as a combination of multiple
normalized landscape distances,d =

∑5
i=1(ki/k1) ∗ d

ki,n
ldsp.,

whereki = [100, 200, 500, 800, 1000] andn = 21.
The results are summarized in Table5. Given these mul-

tiple functions, BoF reaches its best result 84.6491% us-
ing 100 words. PD with metric learning gives 75.8772%,
while the manually chosen relative weights for PD with
different functions result in the accuracy 77.4123%. Al-
though higher overall accuracy is always provided by BoF,
PD shows its advantage by yielding much higher accuracy
in some classes. We show one such example with CLBP-
SMC function in Fig.8. The top two images have larger
histogram distance, but their PDs are more similar: fewer

Table 5. Comparison between PD and BoF on texture database.
Methods Accuracy (%)

BoF 76.0965
CLBP-S PD 54.8246

BoF + PD 79.1667
BoF 74.1228

CLBP-MC PD 55.2632
BoF + PD 77.1930

BoF 83.9912
CLBP-SMC PD 57.8947

BoF + PD 85.9649
CLBP-S+ BoF 84.6491

CLBP-MC+ PD 75.8772
CLBP-SMC BoF + PD 87.5000
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Figure 8. The example of PD and BoF for texture classification.

points appear on the top-right area, and points in the mid-
dle are with higher density. When combining BoF and PD,
λ for CLBP-S, CLBP-MC, CLBP-SMC and multiple func-
tions is set as 800,100,165,100, BoF+PD always gives the
best performance. Furthermore, we test PD with CLBP-
SMC on the whole database, and get accuracy 84.1406%.
Its accuracy by BoF is 96.5625%, which is also the reported
best in the same settings [22]. By settingλ = 225, we find
that BoF+PD gives an even better result 97.0313%.

5. Conclusion and Future Work

In this paper, we present a method for object recognition
using topological persistence. Our experiments on a variety
of applicable scenarios demonstrate the effectiveness of this
approach. PD and BoF capture different information of a
function: PD describes it structural properties, while BoF
describes the quantity statistic of the function values.

One interesting future direction is to create a principled
theoretical framework to combine the PD and BoF for better
recognition, and to extend the persistence-based approach
to other applications, such as range scans or RGB-D data.
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