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AbStraCt Training Data

The limitations of current state-of-the-art methods for
single-view depth estimation and semantic segmentations
are closely tied to the property of perspective geometat, th
the perceived size of the objects scales inversely with the
distance.

In this paper, we show that we can use this property
to reduce the learning of a pixel-wise depth classifier to
a much simpler classifier predicting only the likelihood of
a pixel being at an arbitrarily fixed canonical depth. The
likelihoods for any other depths can be obtained by apply-
ing the same classifier after appropriate image manipula-
tions. Such transformation of the problem to the canoni-
cal depth removes the training data bias towards certain
depths and the effect of perspective. The approach can be
straight-forwardly generalized to multiple semantic das, Figure 1. Schematic description of the training of our setitan
improving both depth estimation and semantic segmentationdepth classifier. Positive training samples for each seimaless,
performance by directly targeting the weaknesses of inde-projected to the canonical depth using the ground truth depth,
pendent approaches. Conditioning the semantic label on@'® trained against _other semantic classes and againsl%nﬂp
the depth provides a way to align the data to their physi- the same clgss projected tp other than_the canonical deptth S
cal scale, allowing to learn a more discriminative classifie 2 Cllas_s'f'er is able to predict a Sfemam'.c class anyl depth by
Conditioning depth on the semantic class helps the clas-2PPYNg appropriate image transformations.
sifier to distinguish between ambiguities of the otherwise
ill-posed problem.

We tested our algorithm on the KITTI road scene dataset o )
and NYU2 indoor dataset and obtained obtained results cOnsisting of the calculation of dense or sparse features,
that significantly outperform current state-of-the-arbiath ~ Puilding rich feature representations, such as bag-otisior

single-view depth and semantic segmentation domain. and application of a trameq_classmer Or regressor on the_m.
The responses of a classifier or a regressor are combined

in a probabilistic framework, and under very strong geo-
1. Introduction metric priors the most probable scene layout is estimated.
This process is completely data-driven and does not exploit
Depth estimation from a single RGB image has not beenknown properties of the perspective geometry, most impor-
an exhaustively studied problem in computer vision, mainly tantly, that the perceived size of the objects scales with an
due to its difficulty, lack of data and apparent ill-posednes inverse distance (depth) from the centre of projectionsThi
of the problem in general. However, humans can still per- leads to severe biases towards the distributions of depths i
form this task with ease, suggesting, that the pixel-wise the training set; it is impossible to estimate the depth of an
depth is encoded in the observed features and can be learrdbject if a similar object has not been seen at the same depth
directly from the data0, 1, 10, 16]. Such approaches typ- during the training stage. These short-comings of the algo-
ically predict the depth, the orientation, or fit the plane fo rithm can be partially resolved by jittering or very careful
cognition pieeli  weighting of the data samples, howeve slassi-
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fier would still not be intrinsically unbiased. ing depth on the semantic segmentation in a two-stage al-

A typical argument against the data-driven depth esti- gorithm leads to a significant performance improvement.
mation is, that to successful perform this task, we needFor stereo and multi-view images]4, 9] have demon-
to be able to recognize and understand the scene. Thustrated that joint semantic segmentation and 3D reconstruc
one should Wait’ until Sufﬁcienﬂy good recognition ap- tion leads to a better result than performing each task in
proaches are developed. For some recognition tasks thigsolation. In these approaches, the rather weak source of
is a|ready the case. Recent progress in Computer Visionmutual information utilized is the distribution of helglﬁ14]
and machine learning led to the development of algo- OF surface normalsd] of different semantic classes.
rithms [15, 27, 29, 2€], that are able to successfully catego-  In this paper we show, that using the properties of the
rize images into hundreds][or even thousands] of dif- perspective geometry we can reduce the learning of a pixel-
ferent object classes. Further investigation revealstiiea ~ Wise depth classifier to a much simpler classifier predicting
success of these methods lies in how the problem is con-only the likelihood of a pixel being at an arbitrarily fixed
strained; the objects of interest are typically scaled ® th canonicaldepth. The likelihoods for any other depths can
size of an image and under this setting carefully designedb€ obtained by applying the same classifier after appropri-
feature representations become much more discriminativeate image manipulations. Such transformation of the prob-
Based on this observation it is apparent, that the devil thatlem to the canonical depth removes the training data bias
limits the performance of algorithms for computer vision towards certain depths and the effect of perspective. The
tasks, lies in the scale misalignment of the data due to theapproach can be straight-forwardly generalized to meltipl
perspective geometry. semantic classes, improving both depth estimation and se-

Standard semantic classifiers are trained to be discrim-Mantic segmentation performance by directly targeting the
inative between semantic classes, but robust to the chang¥/6aknesses of independent approaches. Conditioning the

of scale. Such dissonance between the desired propertieS€Mantic label on the depth provides the way to align the

makes learning unnecessarily hard. For an object detec-data to their physical size, and conditioning depth on the

tion problem P, 5, 27] the varying 2D scale of an object is semgntiq class helps the_ clgssifier to distinguish between
typically handled by scaling the content of bounding boxes @mbiguities of the otherwise ill-posed problem.

tightly surrounding the objects to the same size, and build- W& Perform experiments on the very constrained street-
ing a feature vector for each individual bounding box after Scéne KITTI data set] and the very challenging NYU2
this transformation. Without this crucial step, the perfor indoor dataset{3], where no assumptions about the layout
mance of the detection methods decreases dramatically. I1Pf (€ scene can be made. Our algorithm significantly out-
case geometry of the scene is known, or it could be reli- performs independent depth estlmatlon and semantic seg-
ably estimated, the location of bounding boxes can be con-Tentation approaches, and obtains comparable results in
strained to be on the specific location, such as on the groundn® Sémantic segmentation domain with methods, that use
plane [L1]. However, these approaches can be used only forfull RGB-D data. Our p!er—W|se cl.qssmer can be d_lrectlly
foreground objects with specific spatial extent, shape angplaced into any Comp_etmg recognition or d.epth estimation
size, 'things'. For semantic segmentation task with back- framev_vorks to further improve the results; either as a unary
ground classesstuff, such as a road, a building, grass or Potential for CRF recognition approaches]or as predic-

a tree, such an approach is not suitable. Scaling boundions forfitting the planes to the super-pixels]

ing boxes surrounding lawns of grass to the same size does . o

not make the feature representations more discriminative.2- AN unbiased depth classifier

However, there still exists a concept of scaledtuffclasses
tied to their real-world physical size. The physical size of
a blade of grass, a window of a building or a leaf of a tree
varies much less than the size of a lawn, of a building or

of a tree. Consequently, the most suitable alignment, ap-¢|aqgifierr, (), predicting the likelihood of pixet: being
plicable to boththingsandstuff is the normalization to the at the depthi € D has to be a function of the arbitrarily

same physical size. This has been recognized in the Sce[arge fixed sizav x h sub-window centered at the poirit
narios with the Kinect camera, where the depth is known.

The classifier using features normalized with respect to the Hy(z) == Hy(Wh(I, ). 1)
measured depthi’ ] typically perform significantly better. ’

The mutual dependencies of visual appearance of a seThe perspective geometry is characterized by the feature
mantic class and its geometrical depth suggest that the probthat objects are scaled with their inverse distance from the
lems of semantic segmentation and depth estimation shouldbserver’s centre of projection. Thus, for any unbiased
be solved jointly. It has been shown ihd] that condition- depth classifiel;(x) the likelihood of the deptld of any

First, we define the notation. L&t be an image and
a x I an imagel geometrically scaled by a facter. Let
Wwh(I,z) be the (sub-)window of an imageof the size
w X h, centered at given point Any translation-invariant



pixelz € I should be the same as the likelihood of the depth ~ Training a classifier, which should be on one hand dis-
d/a of the corresponding pixel of the scaled image I: criminative between semantic classes, but on the other ro-
w w bust to the change of scale, is unnecessarily hard. The
Hy(W*M(I,2)) = Hyjo(W"" (@ x I, az)). (2) problem would be much easier if the training samples were
This property is crucial to keep the classifier robust to the scale-aligned. The most suitable alignment, applicable to
fluctuations in the training data, which are always presentboththingsandstuff is the normalization according to the
for small and average-sized data sets. It seems straightPhysical size, and that is exactly, what the projection & th
forward, but it has not been used in any previous data-drivencanonical depth4) does.
depth estimation approach(, 1, 16]. The generalization of the depth classifier to multiple se-
This property implies, that the depth classification can be mantic classes can be done straight-forwardly by learning
reduced to a much simpler prediction of whether the pixel @ joint classifierf; 4., (W*""(I, z)), predicting whether a
r e Iis at any arbitrar”y fixecbanonicakjepthdc_ The piXG' x takes a semantic labék £ and is at the canonical
response for any other depfftan be obtained by applying depthd.. By applying @), the response of the classifier for
the same classifigif;_ to the appropriately scaled image by any other depti is:

afactord/d. as: d d
p p Haay (W1, 2)) = H(de)(wwvh(d— w1, ). (4)
Hd(Wuhh(Ia:C)) - Hdc(Wuhh(_ *Ia —l‘)) (3) ¢ ¢
de de The advantage of our classifier being unbiased towards cer-

Thus, the problem of depth estimation is converted into the tain depths is now more apparent. An alternative approach
estimation of which transformation (scaling) would prajec of learning a|D||L|-class classifier or &C| depth regres-
the pixel into the canonical depth. The special form of the sors would require a very large amount of training data,
classifier directly implies how it should be learnt. In the sufficientto represent a distribution for each label in &sro
training stage, a classifier should learn to distinguish the product of semantic and depth labels. In the training stage,
training samples transformed to the canonical depth fromour classifier should learn to distinguish the training sam-
the training samples transformed to the depths other thanples of each class transformed to the canonical depth from
the canonical depth. The details largely depend on thethe training samples of other classes and samples trans-
framework chosen; e.g. in the classification framework the formed to the depths other than the canonical depth. The
problem is treated as a standard 2-label positives vs negatransformation to the canonical depth is not applied for the
tives problem, in the ranking framework the response for a skyclass (for outdoor scenes) and the depth during test time
training sample transformed to the canonical depth shouldis automatically assigned te.
be larger (by a sufficient margin if appropriate) than the ) )
response for a sample transformed to any other than the4. Implementation details
canonical depth.

Our classifier has several advantages over the directt o
learning of the depth from the feature representationsef pi

els. First, to predict a certain object (for example a cas at tice. Thus, we discretize the problem of depth estimation

certain depthl! does not require a similar object to be seen during test stage into a discrete set of labéls D. The er-

at th? same depth during the trammg stage. Seconq, OUorofa prediction based on the scale of objects is expected
classifier does not have a problem with unbalanced training

data. which is alw resent for a multi-cl lassifier rto grow linearly with the distance, suggesting that the heig
ara, WhICh 1S aways present for & MUti-class Classier of ., ing depthsl; andd;,; should have a fixed ratis,
regressor. Intuitively, closer objects consist of morenmi

: : * . chosen nding on th ir racy. This allow:
and some object may have appeared at certain depth in thC osen depending on the desired accuracy sallows us to

ansform the problem into a classification over a pyramid
training data more often just by chance. These problems b d; Py

- . : of imageswy; * I = % % I for each training or test ima
of a multi-class classifier or regressor could partially &e r 9 - dc * 9 ge
solved by jittering the data, using suitable sampling or re-

For pixels at the cdepthidc, the scaling of an image by
S . . : ; corresponds to the transformation to the canonical depth.
weighting of the training points; however, a direct enferce i P P
ment of the property2) is bound to be a better and more

Thus in the training stage, a point of the image pyramid
principled solution.

Transforming the window around each training sample
the canonical distance independently with a consequent
calculation of features is computationally infeasibleliag

xj € (a; * I) is used as a positive or negative sample based
on how close is the ground truth depth of the corresponding
pixel in the original non-scaled imagg;_ = d(s,/a;) O the
deptha;d.. If their ratio is close td, e.g.

Single-view depth estimation is in general an ill-posed p
problem. Severa_l _amb|gumes _cc_)uld be potentially rgsxd)lve max(—2-, & ) < 6pos, (5)
if the depth classifier was conditioned on the semantic label oide’ d, i

3. Semantic depth classifier

x



the pixelz; is used as a positive for a corresponding se- the late fusion.
mantic class and negative for all other classes. If they are

sufficiently different, e.qg. 5. Experiments
dyi od, 5 5 We tested our algorithm on KITTIE] and NYU2 [25]
max(aidc’ d: ) > onEe, (6) " datasets. The KITTI dataset was chosen to demonstrate the

ability of our classifier to learn depth for semantic classes

the scaling bya; does not transform the sample to the with a relatively small number of training samples. The
canonical depthi. and thus is used as a negative for all NYU2 dataset was used to show that depth can be predicted
semantic classes. for an unconstraint problem with no assumptions about the

In the training stage each object of the same real-world Jayout of the scene. Furthermore, we show that for both
size and shape should have the same influence on the learnfatasets learning of the problem jointly leads to an improve
classifier, no matter how far they are. Thus, the samples arement of the performance.
sampled fronw; x I with the same subsampling for ail,
and are used as positives or negatives if they satisfy corre-5.1. KITTI data set

sponding con_stramtﬂ or (6) respectwely. . The KITTI data setf] consists of a large number of out-
_Transformmg the problem .|nto the canonlcgl dePth door street scene images of the resolutid®2 x 512, out of
allgns the data _ba;gd on the'r reaI-wo_rId phy3|ca_l SIZ€, \which 194 images contain sparse disparity maps obtained
which could be significantly different for different semiant by Velodyne laser scanner. We labelled the semantic seg-
classes. Thus, the most suitable classifiers are contselba 1o ation ground truth for then images with ground truth

with an automatically learnt context size, such s P53, yonh ang split them intd0 training and30 test images.

19. Following the methodology of the multi-feature] The label set consists df2 semantic class labels (see Ta-
extension of TextonBoosP[], the dense features, namely ble 3). Three semantic classes (bicycle, person and sign)

texton [L€], SIFT [17], local quantized ternary patters]] with high variations were ignored in the evaluation due to
and self-similarity feature<’[l], are extracted for each pixel the insufficient training data (onkinstances in the training

In each image in a pyramid « I. Each feature is clus- — gony \ne aimed to recognize depth in the rang 50 me-
tered into512 visual words using k-means clustering and Aot dyos

. L : . ters with a maximum relative error= max (2, “res) <
for each pixel a soft weighting fa nearest neighbours is . . dres ” dgi

calculated using distance-based weightiripith an ex- 1.25, whered,, is the estimated depth ardgt_ the ground
ponential kernel. The feature representation for a window ruth depth. Thus, we setpos = 1.25. Visual recog-
Wwh(ay * I, x;'.) consists of a concatenation of the soft-

nition of depth with higher precision is very hard for hu-
weighted bag-of-words representations over its fixed ran-"Man also. The canonical depth was se2oneters. Train-
dom set 0f200 sub-windows as in44]. The multi-class

ing samples were taken as negatives if their error exceeded
boosted classifie[]] is learnt as a sum of decision stumps,

oNEc = 2.5. Training samples with error betweépos
comparing one dimension of the feature representation to aand OnEBG Were ignored. Quantltatlve.gompangon to the
threshold? € T. Unlike in [24], the set of threshold® is state-of-the-art cla}ss.-only unary classifief][is given in
found independently for each particular dimension by uni- thg tagles.hQ;]Jantltatlv%compa}rrl]son O:j thehMaII<e3DC3,. .
formly splitting its range in the training set. Long feature trained with the same data, with our depth-only and joint

vectors (12 x 200 for each feature) for each pixel can not depth_ _semgnt_ic_ classifier is given in the taﬁ!eOur j°".“
be kept in memory, but have to be calculatedflyusing in- classifier significantly outperformed competing algorithm

tegral images44] for each image in the pyramid and each in bOFh d_omains. Ql_JaIitative results are 9“".”? inthe fi@re_
visual word of a feature. We implement several heuristics Qualitative comparison of depth-only and joint classifeer i

to decrease the resulting memory requirements. The softgiven in figurt_a4. _The Qist_ribution of relative errors of esti-
weights from (0, 1) are approximated using 1-byte. The Mateddepthis givenin figue

integral images are built only for a ;ub-wi_ndow of an im- 52 NYU? data set

age, that covers all the features of given visual word, using

an integer typel( — 8 bytes) based on the required range ~ The NYU2 data set{5] consist ofl449 indoor images of
for each individual visual word for each image. The mul- the resolutior§40 x 480, containing ground truth for seman-
tiple features are, unlike inlf], fused using late fusion, tic segmentation witl894 semantic classes and pixel-wise
e.g. the classifiers for each feature are trained indepeiyden depth obtained by a Kinect sensor. For the experiments we
and eventually averaged. Thanks to these heuristics, the reused the subset df) semantic classes as in9, 25, 8]. The
guirements for memory dropped approximatéhy for the images were split inta25 training and724 test images.
NYU2 dataset?5] to below32GB. An approximatelyl 0 x We aimed to recognize depth in the range — 8.5 me-

drop was due to the integral image updates arddue to ters with a maximum relative errér= max(jj; , ‘fﬁ) <




1.25. The canonical depth was set & meters. Train- RGB methods RGB-D methods
ing samples were taken as positives if their error was be- | Class-only [ | Joint classifier] [19] | [25 | [€]
low 6pos = 1.25, as negatives if their error exceeded 34.85 37.11 38.23 | 37.64 | 45.29
onpc = 2.5. Quantitative comparison to the class-only

unary classifier {3 and _State'Of'Fhe"’_"rt glgor_ithms using tersection vs union measure on the-class NYU2 dataset. Our
both RGB and depth during test time is given in the table ;6| yise method outperformed the baseline non-scadpiie

Our classifier performance was comparable to these methethod using the same features and obtained comparablésresu
ods even in these unfair conditions. Quantitative resalts i to the methods that use full RGB-D data during test time.
the depth domain can be found in the tabl& here was no

other classifier we could have compared to; all other meth- — DKIThTI S — N\IKUZ o
ods are constrained only to very specific scenes with strong——5 L T o B
layout constraints, such as road scenes. The performances < 1.252 48.24% | 68.01% | 72.09% | 70.82% | 82.90%
was higher than for the KITTI dataset mainly due to the L2 <1.25" | 64.20% | 8219% | 85.35% | 8590% | 94.09%

significantly more narrow range of depths.

Table 1.Quantitative comparison in the frequency-weighted in-

Table 2.Quantitative comparison of Make3D (], our depth-only
classifier and joint classifier on the KITTI and NYU2 dataset i

6. Discussion and conclusions the ratio of pixels correctly labelled, depending on the maxm
In this paper we proposed a new pixel-wise classifier, 210Wed relative errord = max(55%, G52 ), wheredy. is the

that can jointly predict a semantic class and a depth label€Stimated depth and,, the ground truth depth.

from a single image. In general, the obtained results look

very promising. In the depth domain the reduction of the 0s

problem into classification of one depth only turned up to ol buiding
be very powerful due to its intrinsic dealing with the datase 0a tree
biases. In the semantic segmentation domain we showec .| ol
the importance of proper alignment, leading to quantita- aal 'g‘:::s
tively better results. The main weaknesses of the method are wasl —— column
the inability to deal with low resolution images, very large ol average

requirements in terms of hardware and apparent inability
to locate the objects more precisely for semantic classes
with high variance. Obtained results suggest future work
in three directions: further alignment of orientation sin
estimated normals, estimation of depth as a latent variable R R R R R R R S A A
during training for the datasets with small amount of im-

ages (or none) with ground truth depth, and development of S _ _

different forms of regularizations suitable for the prable ~ Figure 2. The distribution of the relative errors of an esiied

The naive use of standard Potts model pairwise potentials Pt given asemantic label for the KITT dataset in the foacs

did not lead to an improvement, because this form of reg_wnth the basd .25 f_or each semantic class. Average d_lstrlbutlon is
L . ! . . calculated excluding the sky label. Green and red line behav

ularization typlca_lly removed all the. small distant obgct x-axis indicates, in which interval the training samplesevesed

and thus we omitted these results in the paper. However g positives and negatives respectively.

our joint depth/semantic classifier has the potential to en-

able richer pairwise potentials representing expectetisdpa

relations between objects of different classes. [3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Conference on Computer Vision and Pattern Recognition
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visual models from few training examples an incremental
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depends on the depth, and distant objects are recognizidhigtier precision, unlike for a class-only classifier.
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