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Abstract

We consider the problem of calibrating a small field of
view central perspective non-frontal camera whose lens and
sensor planes may not be parallel to each other. This can be
due to manufacturing defects or intentional tilting. Thus, as
such all cameras can be modeled as being non-frontal with
varying degrees. There are two approaches to model non-
frontal cameras. The first one based on rotation parameter-
ization of sensor non-frontalness/tilt increases the number
of calibration parameters, thus requiring heuristics to ini-
tialize a few calibration parameters for the final non-linear
optimization step. Additionally, for this parameterization,
while it has been shown that pupil-centric imaging model
leads to more accurate rotation estimates than a thin-lens
imaging model, it has only been developed for a single axis
lens-sensor tilt. But, in real cameras we can have arbitrary
tilt. The second approach based on decentering distortion
modeling is approximate as it can only handle small tilts
and cannot explicitly estimate the sensor tilt.

In this paper, we focus on rotation based non-frontal
camera calibration and address the aforementioned prob-
lems of over-parameterization and inadequacy of existing
pupil-centric imaging model. We first derive a generalized
pupil-centric imaging model for arbitrary axis lens-sensor
tilt. We then derive an analytical solution, in this setting, for
a subset of calibration parameters including sensor rotation
angles as a function of center of radial distortion (CoD). A
radial alignment based constraint is then proposed to com-
putationally estimate CoD leveraging on the proposed an-
alytical solution. Our analytical technique also estimates
pupil-centric parameters of entrance pupil location and op-
tical focal length, which have typically been done opti-
cally. Given these analytical and computational calibration
parameter estimates, we initialize the non-linear calibra-
tion optimization for a set of synthetic and real data cap-
tured from a non-frontal camera and show reduced pixel
re-projection and undistortion errors compared to state of
the art techniques in rotation and decentering based ap-
proaches to non-frontal camera calibration.

1. Introduction and Previous Work
Camera calibration estimates intrinsic (physical) and ex-

trinsic (pose) parameters of a camera with respect to a
known world coordinate system. In a camera, occasionally,
due to manufacturing limitations, lens and sensor plane may
be slightly tilted with respect to each other. In other cases, a
significant amount of tilt may be desired for unconventional
imaging, e.g. obtaining perfectly focused image of a plane
not perpendicular to the direction of viewing, controlling
orientation of camera’s depth of field profile (Scheimpflug
principle), computing omnifocus image [10] or estimating
scene depth using depth from focus [9]. Such a camera with
tilted sensor is called as non-frontal [9], as opposed to an
ideal frontal camera whose lens and sensor planes are par-
allel. Typically all lens-sensor configurations can be consid-
ered as non-frontal with frontal being a special case. Con-
ventionally, there are two main approaches to model non-
frontal sensor:

(1) Implicit: The “effect” of sensor tilt on an image is
modeled as decentering distortion [5] about an effective axis
normal to the sensor and passing through the camera’s cen-
ter of projection. As sensor and lens planes are not paral-
lel, this axis is different from the optic axis, about which
only radial distortion exists. It has been analytically shown
that decentering modeling is approximate and only holds
for small amounts of sensor tilt. In fact, for small tilts, a
standalone radial distortion model about optic axis is ap-
proximately equivalent to a combination of decentering and
radial distortion model about the effective axis [13]. Most
conventional calibration methods [8, 14, 15, 17] follow this
model. We denote all calibration parameters except decen-
tering parameters in this model as the set U.

(2) Explicit: It is assumed that the lens optic axis co-
incides with the z-axis of lens coordinate system and the
sensor coordinate system has its origin at the intersection of
optic axis and sensor plane, defined as the center of radial
distortion (CoD) henceforth. The sensor non-frontalness is
explicitly modeled by a 3 × 3 rotation matrix R [7]. Al-
though, this results in increased number of calibration pa-
rameters as (U, R), it is a physically meaningful model of
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lens-sensor configuration and can be used for sensor tilt es-
timation via camera calibration. Such a tilt estimate can be
used for depth estimation [9] and omnifocus imaging [10].
Thus, in this paper, we follow this model for non-frontal
camera calibration.

Next, we discuss various aspects of non-frontal calibra-
tion which are improved upon in this work for achieving
higher accuracy in calibration parameter estimates.

Rotation Model: As the lens is planar and symmetric
about optic axis, only two Euler angles corresponding to
sensor rotation about x and y axis of the lens coordinate
system are sufficient to model R.

Imaging Model: (Prior) If the sensor is physically tilted
only about a single lens axis (e.g. y-axis), [3] showed that
tilt estimates were more accurate in a pupil-centric imag-
ing model compared to a thin-lens imaging model. They
derived equations, in terms of pupil-centric parameter set L
to map calibration results obtained from thin-lens model to
pupil-centric model and vice versa. Thus, one could sim-
ply do thin-lens calibration, apply the equations and obtain
pupil-centric parameters. (Proposed) But for real cameras
with arbitrary sensor tilt, these equations do not generalize
directly. Instead, an affine transformation using L is first
applied to known checkerboard world points which are then
input to a thin-lens calibration framework. The thin-lens
calibration results can then be linearly transformed back to
obtain pupil-centric estimates. Thus, we first derive gener-
alized pupil centric imaging for arbitrary sensor tilt and ob-
tain a mapping from pupil-centric to a geometrically equiv-
alent thin-lens imaging model.

Calibration Technique: Typical camera calibration
consists of 3 steps: (i) Assuming no lens distortion, com-
pute 3 × 4 perspective projection matrix whose elements
encode calibration parameters via a system of non-linear
equations [1]. (ii) Analytically solve these equations to
obtain initial calibration parameter estimates [6, 11, 15].
(iii) Non-linearly refine these estimates taking lens distor-
tion into account. For implicitly modeled non-frontal sen-
sors [15, 17, 8], decentering parameters are estimated in
step (iii), which renders initial estimation of U in steps (i,ii)
an easy task. But, in calibration of explicitly modeled non-
frontal sensors using generalized pupil-centric imaging, the
number of calibration parameters increases to (U, R, L), thus
leading to two effects. First, the system of non-linear equa-
tions in step (i) becomes under-determined. Second, the
non-linearity between elements of (U, R, L) encoded in the
projection matrix of step (i) (Sec. 4) become too complex
causing step (ii) to be difficult and non-trivial. (Proposed)
To handle these, we append a novel pupil-centric constraint
to the system of non-linear calibration equations in step (i)
and assume that two parameters in (U, R, L) corresponding
to CoD are known. This makes step (ii) a well-constrained
problem. Then we propose an new analytical solution for
finding actual calibration parameters in step (ii) (Sec. 5.1).
This solution is then used in a computational framework to
find an optimal estimate of CoD, such that a separate novel

radial alignment based constraint is minimized (Sec. 6).
Given the optimal CoD, the analytical solution is then used
to reliably initialize the non-linear minimization step (iii).
Finally, we also show that calibrated estimates of entrance
pupil location and optical focal length of the camera 6 can
also be achieved in the analytical framework via the pupil-
centric constraint. Conventionally, these have been done
optically [3].

Relationship to Gennery [7] To the best of our knowl-
edge, this is the only work that considers explicit non-
frontal parameterization. Following are some major dif-
ferences of our work with theirs. First, they assume that
angles of incidence and exitance of a light ray at the en-
trance and exit pupil are equal, which is incorrect [3], while
we incorporate a generalized pupil-centric imaging which
models the exact relationship between these rays. Second,
they initialize non-linear refinement of U heuristically and
set R as identity matrix, which can lead to local optima,
while we analytically derive initial estimates leading to in-
creased confidence in attaining a solution hopefully close
to global optima. Third, they include decentering distortion
as a part of non-linear optimization, which is redundant for
explicit non-frontal model [13] and can lead to instable re-
sults. Fourth, we focus on cameras with small field of view
and thus assume that entrance-pupil is fixed (central) while
they assume a general scenario of varying entrance-pupil
(non-central) location (typical to fish-eye lenses).

Another explicit sensor tilt estimation technique was
proposed in [2] using image defocus, but they do not show
how to compute R from their tilt parameterization.

We now list the major contributions this paper makes:
(1) We generalize pupil-centric imaging from single-axis to
to arbitrarily rotated non-frontal sensors (Sec 3.1,3.2). This
leads to a new mapping from pupil-centric to a geometri-
cally equivalent thin-lens imaging (Sec. 3.3). Thus, non-
frontal calibration under pupil-centric imaging can be done
in a thin-lens framework.
(2) We derive the linear projection equations in terms of
(U, R, L) for the equivalent thin-lens imaging and the non-
linear relationship among calibration parameters encoded
by these projection equations (Sec. 4).
(3) We propose an analytical solution to solve (U, R) and two
parameters of L, namely entrance pupil and optical focal
length by incorporating a novel pupil-centric constraint and
assuming that CoD parameters in U are known (Sec. 5.1).
(4) We develop a new radial alignment like constraint (sim-
ilar to [14] based on analytical solution to estimate the cen-
ter of radial distortion (CoD) (Sec. 6). A similar technique
but using a different constraint has earlier been proposed
by [12] for catadioptric cameras.

2. Overview
We first present the thin-lens (Sec. 3.1) and the general-

ized pupil-centric (Sec. 3.2) imaging equations for an arbi-
trarily rotated non-frontal sensor. Based on these equations,



we derive a set of mappings to transform non-frontal pupil-
centric imaging model to a geometrically equivalent non-
frontal thin-lens imaging model (Sec. 3.3). For the equiva-
lent thin-lens model, we derive non-frontal projection equa-
tions relating the corresponding known world (on a checker-
board) and the image points in terms of 14 calibration pa-
rameters (Sec. 4). The solution (3× 4 projection matrix) to
these equations non-linearly encodes 14 camera calibration
parameters in 11 equations (12 − 1 for scale of 3 × 4 pro-
jection matrix) (Tab. 1). In order to solve this under- deter-
mined system, we first propose an additional pupil-centric
constraint and assume that CoD is known. Thus, we have
12 non-linear equations in 12 calibration parameters. We
then derive an analytical solution to solve for these 12 pa-
rameters (Sec. 5). Given this solution and a proposed radial
alignment based cost function, we propose a computational
method to find optimal CoD (Sec. 6). The analytical solu-
tion corresponding to this CoD is then used to initialize the
non-linear minimization of calibration parameters (Sec. 7).
Finally, reduced re-projection and undistortion error for cal-
ibration of a non-frontal camera based on proposed gener-
alized pupil-centric imaging model and analytical initializa-
tion, as compared to traditional techniques, is shown on syn-
thetic (Sec. 8) and real (Sec. 9) images.

3. Pupil-centric and Thin-lens Imaging
We derive the generalized non-frontal thin-lens and

pupil-centric imaging equations and the mapping between
them. The coordinate systems (CS) used in this paper are
defined as:
• World (CW): The known world points lie in this CS.
• Lens (CH1 ,CH2 ): The CS located at primary (H1) and sec-

ondary (H2) principal planes (Fig. 2).
• Entrance Pupil (CEn ): The CS parallel to CH1 but centered

at entrance pupil location (Fig. 3).
• Sensor (CS): The CS located on the sensor with origin at

the intersection of optic axis and sensor plane (Fig. 3).
• Image (CI): The CS of the observed image (Fig. 3).
As pupil-centric model requires location of principal planes
as a parameter, we will model thin-lens as a Gaussian
thick-lens since both are geometrically equivalent. The
notation XY represents point X in coordinate system Y ∈
{CW, CH1 , CH2 , CEn , CS, CI}.

3.1. Gaussian Model of Image Formation

Optical Axis

Sensor

Principal planes

Figure 1. Gaussian (Thin-lens) Model of Image Formation

Consider a world point in CH1 as PCH1 = (xl, yl, zl).
Under the Gaussian thick-lens imaging (Fig. 1), its image

P
g
CS

= (xg, yg) is formed on the non-frontal sensor by the
light ray from PCH1 incident on nodal point O1 and exiting at
O2 at equal angles. If CH2 and CS are related by a rotation RSH2
and translation TgSH2 where,

RSH2 =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 and tgSH2 =

 0
0
λg

 , (1)

then, image point (xg, yg) can be obtained as:

xg =
λg(−r22xl + r21yl)

r31xl + r32yl + r33zl
, (2)

yg =
λg(r12xl − r11yl)

r31xl + r32yl + r33zl
. (3)

Note that because CH1 and CH2 are parallel, RSH1 = RSH2 .
3.2. Pupil-centric Model of Image Formation
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Entrance

Pupil
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Figure 2. Pupil-centric Model of Image Formation

The pupil-centric model for image formation is shown
in Fig. 2, with PCH1 = (xl, yl, zl) imaged on a non-frontal
sensor at location P

p
CS

= (xp, yp) . Here, the light ray in-
cident at entrance pupil En and exiting at exit pupil Ex is
assumed to be the chief ray responsible for image forma-
tion. This model is defined in terms of lens parameters
L = {an, ax, d, F} (Fig. 2), where an and ax are distances
between the front principal plane (H1) and the entrance (En)
and the exit pupil (Ex) respectively, d is the distance be-
tween H1 and the back principal plane H2 and F is the optical
focal length in the thin lens equation relating the conjugate
points En and Ex:

1

an(O1En)
+

1

(d− ax)(O2Ex)
=

1

F
. (4)

Here, an, ax, d are defined such that positive z-axis of CH1 is
towards incoming light. If CS is rotated by RSH2 (same as in
Sec. 3.1) and translated by tpSH2 = (0, 0, λp) with respect to
CH2 , then (xp, yp) can be obtained as:

xp =

(
λp +

an
α

)
(−r22(αxl) + r21(αyl))

r31(αxl) + r32(αyl) + r33(zl − an)
, (5)

yp =

(
λp +

an
α

)
(r12(αxl)− r11(αyl))

r31(αxl) + r32(αyl) + r33(zl − an)
, (6)

where, α is a pupil centric constraint given as

α =
F− an

F
. (7)

3.3. Mapping Pupil-centric to Thin-lens
The thin-lens and pupil-centric model are geometrically

equivalent if PgCS = P
p
CS

(Fig. 1,2). Comparing Eq. (2,5) and



Eq. (3,6), we get the following mapping. If

λg = λp +
an

α
, where

[an
α

= O2Ex(Eq. 7, 4)
]

(8)

and PCH1 =(xl, yl, zl) is transformed by Apg where,

Apg =

 α 0 0
0 α 0
0 0 1

 , (9)

and translated along the optic axis by − an resulting in new
world coordinates of PCEn = (x

g
l, y

g
l, z

g
l) as

x
g
l = αxl, ygl = αyl, zgl = zl − an. (10)

then, the pupil-centric model is geometrically equivalent to
a thin-lens model. This implies that thin-lens calibration
with transformed world point PCEn (Eq. 10) will yield esti-
mates for rotation R and parameters λg, an, α. Given these
parameters and from Eq. 8, λp can be obtained. Next, we
obtain projection equations for equivalent thin-lens model
which will be used for analytical calibration.

4. Non-frontal Projection Equations

optical axis

image coordinate 
system

Projection
Center

world coordinate
systemsensor coordinate 

system

or

pupil-centric
to thin-lens

mapping

Figure 3. Coordinate Systems for non-frontal camera calibration.

In this section, we derive the non-frontal projection
equations for a thin-lens imaging model derived from a
pupil-centric imaging model (Sec. 3.3). These equations
encode the calibration parameters which we want to esti-
mate. See Fig. 3 for the imaging setting. Here, a world
point PCW=(X, Y, Z) is imaged at pixel location PCI=(I, J).
These two points can be related in terms of calibration pa-
rameters U=[sij : 1 ≤ (i, j) ≤ 3, tx, ty, tz, λg, sx, I0, J0],
sensor rotation R = RSH2 (Eq. 1) parameterized by 2 Euler
angles and lens parameters (an, F) as follows.
Transformation between CW to CH1 : Given a 3× 3 rotation
matrix SH1W = (sij : 1 ≤ (i, j) ≤ 3) and 3 × 1 translation
vector TH1W = (tx, ty, tz) between CW and CH1 , PCW can be
represented in CH1 as PCH1 = (xl, yl, zl), xl

yl
zl
1

 =

[
SH1W TH1W
0 1

] [
PCW
1

]
=

 s11X+s12Y+s13Z+tx
s21X+s22Y+s23Z+ty
s31X+s32Y+s33Z+tz

1

 (11)

Pupil-centric to Gaussian (CH1 to CEn ): Applying the
equivalence relationship from Sec. 3.3, PCH1 is transformed
to PCEn = (xgl, y

g
l, z

g
l), thus converting a pupil-centric cali-

bration problem to a thin-lens one as: x
g
l

y
g
l

z
g
l

1

 =

 α 0 0 0
0 α 0 0
0 0 1 −an
0 0 0 1


 xl
yl
zl
1

 =

 αxl
αyl

zl−an
1

 (12)

Transformation between CEn to CS: Given a 3× 3 rotation
matrix RSEn = RSH2 = (rij : 1 ≤ (i, j) ≤ 3) and 3 × 1
translation vector TSEn = (0, 0, λg) between CEn and CS, PCEn
can be represented in CS as PCS = (xs, ys, zs) wherexsyszs

1

 =

[
RSEn 0
0 1

] [
I TSEn
0 1

] [
PCEn
1

]
=

r11x
g
l+r12y

g
l+r13z

g
l+r13λg

r21x
g
l+r22y

g
l+r23z

g
l+r23λg

r31x
g
l+r32y

g
l+r33z

g
l+r33λg

1

 (13)

where, RSEn = RsH2 (Eq. 1) since xy planes of CH1 , CH2 , CEn
are parallel to each other and the optic axis is the common
z-axis (Fig. 2 and Fig. 3), I is a 3 × 3 identity matrix. λg
is the distance between the origin of CEn and CS measured
along the optic axis/z-axis of CEn . The center of projection
is located at En. Let its coordinates in CS can be obtained as
OCS = (r13λg, r23λg, r33λg).
Central Perspective Projection: Given the world point
PCS (Eq. 13) and location OCS , the intersection of the image
ray connecting these two points on the non-frontal sensor
can be computed as Pnf = (xnf, ynf).
Metric to Pixels (CS to CI): Next Pnf can be converted to
image coordinates PCI = (I, J) via pixel sizes (sx, sy) and
CoD (I0, J0) as:

I =
xnf

sx
− I0; J =

ynf

sy
− J0. (14)

where, the skew in CI is assumed to be 0 [8, 4]. Simplifying
Eq. (11-14) results in a linear equation GQ = h similar to
DLT [1], relating ith observed world and image point:[

Xi Yi Zi 0 0 0 IiXi IiYi IiZi 1 0
0 0 0 Xi Yi Zi JiXi JiYi JiZi 0 1

]
︸ ︷︷ ︸

G

 Q1
...

Q11


︸ ︷︷ ︸

Q

=

[
− Ii
− Ji

]
︸ ︷︷ ︸

h

(15)

where Q is the 3 × 4 projection matrix (upto scale
with Q12=1) non-linearly encoding 14 unknown cal-
ibration parameters expressed all together as U
= [sij(3 angles), rij(2 angles):1 ≤ (i, j) ≤ 3,
tx, ty, tz, λg, sx, I0, J0, an, α] via 11 equations shown
in Tab. 1 where λgx =

λg

sx
, λgy =

λg

sy
and D is

D = αr31tx + αr32ty + r33(tz − an). (16)
Next we analytically retrieve U from Q.

5. Analytical Calibration
In this section, we analytically retrieve U from Q. Given

minimal 6 world-image point correspondences Eq. 15 can
be solved for Q in the least squares sense using SVD. Since
Q has 11 entries and U has 14 calibration variables, solving
Eq. (17-27) for U given Q is an under-constrained problem.
Thus, we propose to use a novel pupil-centric constraint and
a technique to separately compute two parameters of CoD,
thus making this a well-constrained problem with 12 equa-
tions in 12 variables.
Pupil-centric constraint: Assuming (ax, d) are known in
L, Eq. 4 and Eq. 7 can be combined in terms of (an, α) to



Table 1. Nonlinear equations relating Q and U

Q1D = I0(αr31s11 + αr32s21 + r33s31) + λgxα(r22s11 − r21s21) (17)
Q2D = I0(αr31s12 + αr32s22 + r33s32) + λgxα(r22s12 − r21s22) (18)
Q3D = I0(αr31s13 + αr32s23 + r33s33) + λgxα(r22s13 − r21s23) (19)
Q4D = J0(αr31s11 + αr32s21 + r33s31) + λgyα(r11s21 − r12s11) (20)
Q5D = J0(αr31s12 + αr32s22 + r33s32) + λgyα(r11s22 − r12s12) (21)
Q6D = J0(αr31s13 + αr32s23 + r33s33) + λgyα(r11s23 − r12s13) (22)
Q7D = αr31s11 + αr32s21 + r33s31 (23)
Q8D = αr31s12 + αr32s22 + r33s32 (24)
Q9D = αr31s13 + αr32s23 + r33s33 (25)
Q10D = I0D+ λgxα(r22tx − r21ty) (26)
Q11D = J0D− λgyα(r12tx − r11ty) (27)

get a new constraint given by Eq. 44.
Computing (I0, J0): The 2 degrees of freedom in solving
U given Q are attributed to the CoD: (I0, J0). First, we as-
sume them as known and solve for remaining 12 parameters
in U (Sec. 5.1). Later, in Sec. 6 we estimate it.
Definitions: We assume SH1W (Eq. 11) and RSEn (Eq. 13) are
composed of Euler angles: (θ, φ, ψ) and (ρ, σ, τ = 0) re-
spectively representing clockwise rotation about x, y, z axis
while looking towards the origin. Also τ = 0 implies
r21 = 0. We also define the 3 × 3 matrix RSSW relating CW
and CS as:

RSSW = α(RSEnA
−1
pg S

H1
W ) (as RSEn = RSH1) (28)

whose (i, j)th element is
rsij = ri1s1j + ri2s2j + αri3s3j. (29)

5.1. Analytical Decomposition of Projection Matrix
In this section, we analytically solve the non-linear equa-

tions in Tab.1 for 12 calibration parameters. We denote
known quantities in bold. Assuming that typical rotation
RSEn between lens and sensor ≤ π

2
along any axis, we de-

duce that r33 = cos(ρ) cos(σ) ≥ 0. Given (I0,J0), we
first reduce Eq. (17-25) a set of 5 equations in 5 unknown
variables: (λgx, λgy, r13, r23, α) as follows. Let D2 from
Eq. (23-25) be:

D2 =
α2 + (1− α2)r233
Q2

7 +Q2
8 +Q2

9

. (30)

Computing λgx, λgy, r13, r23, α:
Equation 1: From Eq. (17-19,23-25,28), we get:

D2(Q3Q8 −Q2Q9) = λgxαr33rs21 (31)
D2(Q1Q9 −Q3Q7) = λgxαr33rs22 (32)
D2(Q2Q7 −Q1Q8) = λgxαr33rs23 (33)

Squaring and adding both sides of Eq. (31,32,33):
D4A = λ2gxα

2r233 (1+ (α2 − 1)r223) where, (34)

A = (Q3Q8 −Q2Q9)
2 + (Q1Q9 −Q3Q7)

2 + (Q2Q7 −Q1Q8)
2

Equation 2: From Eq. (20-22,23-25,28), we get:
D2(Q5Q9 −Q6Q8) = λgyαr33rs11 (35)
D2(Q6Q7 −Q4Q9) = λgyαr33rs12 (36)
D2(Q4Q8 −Q5Q7) = λgyαr33rs13 (37)

Squaring and adding both sides of Eq. (35,36, 37):
D4B = λ2gyα

2r233 (1+ (α2 − 1)r213) where, (38)

B = (Q5Q9 −Q6Q8)
2 + (Q6Q7 −Q4Q9)

2 + (Q4Q8 −Q5Q7)
2

Equation 3: From Eq. (17,23), (18, 24), (19,25), we get:
(I0Q7 −Q1)

2 + (I0Q8 −Q2)
2 + (I0Q9 −Q3)

2

=
λ2gxα

2(1− r223)

D2
(39)

Equation 4: From Eq. (20,23), (21, 24), (22,25), we get:
(J0Q7 −Q4)

2 + (J0Q8 −Q5)
2 + (J0Q9 −Q6)

2

=
λ2gyα

2(1− r213)

D2
(40)

Equation 5: From Eq. (17,20), (18, 21),(19,22):
(I0Q4 − J0Q1)

2 + (I0Q5 − J0Q2)
2 + (I0Q6 − J0Q3)

2

=
α2

D2
[I0

2λ2gy + J0
2λ2gx − [I0λgyr13 + J0λgxr23]

2] (41)

Solving r213, r
2
23, α

2: Eq. (30,34,38,39,40,41) can be solved
in closed form to obtain two sets of solutions to r213, r223
and α2. The optimal set is selected based on two crite-
ria: (a) all positive solutions and (b) 0 ≤ r213, r

2
23 ≤ 1.

A set not satisfying any of the criteria is discarded. Thus,
(r13, r23, α) are known with sign ambiguity which will be
resolved later. But, r33 can be determined uniquely as:
r33=

√
1− r213 − r223 and r33 ≥ 0.

Computing D2: Using Eq. 30 as r233, α
2 are known.

Computing λgx, λgy: Given r213, α
2,D2 and λgx > 0 (sen-

sor is behind the lens), Eq. 39 can be used to compute λgx
uniquely. Similarly, using Eq. 40, λgy can be determined.
Determining sign(α): From α2, the magnitude of α is
determined. The sign(α) can be determined by verifying
the following two conditions derived from known values of
(ax, d) and the constraint that F > 0 for a converging lens.
Let κ = d− ax. Then,
• Condition 1: If κ < 0, then sign(α) = ”+”, as from

Fig. 4(a), F > 0 only when α ∈ [0, 1).
• Condition 2: If κ > 0, then sign(α) = −sign(an),

where sign(an) can be obtained from lens data-sheet.
Proof: Using Eq. 4 and Eq. 7, we get:

1

an
+

1

κ
=

1

F
; F =

an

1− α
(42)

They can be solved for (an, F) in terms of κ and α as:

F = κ

(
−α
1− α

)
(43)

an = −κ ∗ α (pupil-centric constraint) (44)
Eq. 43 is a rectangular hyperbola in (F, α) with asymptotes
F = κ and α = 1 as shown in Fig. 4(a,b) for κ < 0 and
κ > 0 respectively. From Fig. 4(a), if κ < 0, then F > 0
only when α ∈ [0, 1). Hence, Condition 1 follows.
Similarly, from Fig. 4(b) if κ > 0, then F > 0 only when
α 6∈ [1, 0), which implies α can take both ”+” and ”−”
sign. But, from Eq. 44, since κ > 0, we have that sign(α)
is opposite to sign(an). Here, we assume that sign(an) is
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Figure 4. Hyperbolic relationship of (α, F) given (a) κ < 0 (b) κ > 0.

known from the lens data-sheet. Hence, Condition 2 fol-
lows. Note that we only need sign(an) as prior knowledge
which is a much weaker constraint than knowing an, which
in-fact we can now compute from 44. F can also be com-
puted from Eq. 43.
Computing 3rd row of SH1W : From Eq.(17-24) and uniquely
determined λgx, λgy, r33,D2, we get

s31 =
D2((Q2Q6−Q3Q5)+I0(Q5Q9−Q6Q8)+J0(Q3Q8−Q2Q9))

λgxλgyα2r33

s32 =
D2((Q3Q4−Q1Q6)+I0(Q6Q7−Q4Q9)+J0(Q1Q9−Q3Q7))

λgxλgyα2r33

s33 =
D2((Q1Q5−Q2Q4)+I0(Q4Q8−Q5Q7)+J0(Q2Q7−Q1Q8))

λgxλgyα2r33

Computing 1st and 2nd row of RSSW:The 1st row of RSSW :
(rs11, rs12, rs13) can be determined from Eq. (35-37) as
(D2, r33, λgy, α) are known. Similarly, 2nd row of RSSW :
(rs21, rs22, rs23) can be determined from Eq. (31-33).
Computing RSEn , S

H1
W : Since RSEn is parameterized as

(ρ, σ, τ = 0), we have that r21 = cos(σ) sin(τ) = 0. Also,
since r13 = cos(ρ) sin(σ) and r23 = − sin(ρ), RSEn can be
uniquely determined if (r13, r23) are known uniquely. But
up till now, we have determined (r13, r23) with sign ambi-
guity leading to 4 possible solutions of RSEn . To solve this
ambiguity, lets assume that correct signs of (r13, r23) are
known. Then r22 = cos(ρ), r23 = − sin(ρ), r21 = 0 are
known. Given 2nd row of RSSW and known 3rd row of SH1W ,
Eq. 29 can be used to obtain the following constraint,

rs21 = r22s21 + αr23s31 (45)
which can be uniquely solved for s21. Forming similar lin-
ear equations for rs22 and rs23 in Eq. 29, s22 and s23 can
be determined uniquely. Thus, the 2nd row of SH1W is deter-
mined. By taking cross-product of 2nd and 3rd row of SH1W
(computed uniquely earlier), the 1st row and thus SH1W can
be determined. Thus, for all 4 signed solutions of (r13, r23),
we get 4 solutions to RSEn and SH1W leading to 4 solutions to
RSSW in Eq. 46, where α is known uniquely. But as shown be-
fore, the 1st and 2nd row of RSSW have already been uniquely
computed by a different constraint. Thus, by comparing the
first two rows of known unique solution and predicted 4 so-
lutions of RSSW, we find optimal RSEn and SH1W as the one with
minimum Frobenius norm.r11 r12 r130 r22 r23

r31 r32 r33


︸ ︷︷ ︸

RSEn (ρ,σ,0)

1 0 00 1 0
0 0 α


︸ ︷︷ ︸
αApg

−1

s11 s12 s13s21 s22 s23
s31 s32 s33


︸ ︷︷ ︸

S
H1
W (θ,φ,ψ)

=

rs11 rs12 rs13rs21 rs22 rs23
rs31 rs32 rs33


︸ ︷︷ ︸

RSSW

(46)

Computing D: Since RS
En
,SH1

W are known uniquely Eq. 23
can be used to determine D.
Computing TH1

W : Eq. (26,27) can be solved to get (tx, ty)
uniquely. tz can then be determined from Eq. 16.

6. Finding Center of Radial Distortion (CoD)
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Figure 5. (best viewed in color) Left: blue dot (239.3, 330.8) is ana-
lytical estimate mean(P∗p ), green dot (236.3, 329.3) is laser calibrated and
magenta dot (239.3, 330.6) is non-linear result initialized by laser center.
It is close to analytical estimate. Right: real calibration images (Sec. 9).

In this section, we determine the center of radial distor-
tion (CoD) or Pp = (I0, J0). An accurate estimate of Pp is
critical as the origin of CS (Sec. 4) is assumed to lie here. In
order to compute Pp, we leverage the distinguishing prop-
erty of CoD, that the distorted and undistorted points on a
frontal sensor should be radially aligned. Thus, we define a
cost function in Eq. 47, where different points in the image
are hypothesized as valid candidates for Pp and U is ob-
tained via analytical calibration of Sec. 5. Then, U is used
to project each world point PiCW onto a frontal sensor to get
undistorted sensor point PiCS as well as de-warp the distorted
observed image point PiCI onto the frontal sensor as Pi

′

CS
. For

optimal P∗p , the two predicted points PiCS and Pi
′

CS
should be

radially aligned about P∗p . The discrepancy in this expected
behavior can be used to define an error function as:

P∗p = argmin
Pp

N∑
i=1

cos−1
[

(PiCS−Pp)
T(Pi
′

CS
−Pp)

‖(PiCS−Pp)‖‖(P
i′
CS
−Pp)‖

]
(47)

which minimizes the angle between the ray
−−−→
PpP

i
CS

and
−−−→
PpP

i′

CS
.

Pp is iteratively selected from a square window around the
image center (half of image height and width) and the cost
(Eq. 47) is computed at each of these locations. Fig. 5,
shows P∗p obtained using our approach (red dots) on 11 in-
put calibration images from a real dataset (Sec. 9). The
mean of these points (blue dot) is chosen as the final op-
timal Pp. Pp obtained from a laser-centering method [16]
(green dot) and after a nonlinear optimization process (ma-
genta dot) initialized by the laser-centering method is also
shown. From Fig. 5, mean P∗p (blue dot) computed from our
method is quite close to the nonlinearly optimized result.

7. Non-Linear Refinement
The analytical solution in Sec. 5 is used to initialize

the non-linear optimization of U taking radial distortion
into account. This step is optimized over 13 parameters
in U excluding F, as otherwise Eq. 4 will be required to
constrain (an, F). We fix F from our analytical solution.
An undistorted image point Xu=(xu, yu) radially distorts to
Xd=(xd, yd) in CS as Xd = Xu + g(Xu, k1, k2) where (k1, k2)
are radial distortion parameters and
g(Xu, k1, k2) = [xu(k1r

2
u + k2r

4
u) yu(k1r

2
u + k2r

4
u)] (48)



with ru =
√
x2u + y2u. The iterative non-linear refinement

of (U, k1, k2) is initialized using analytical U form Sec. 4
and k1 = k2 = 0. Given initial calibration parameters, ith
world point PiCW is projected onto a frontal sensor to get Xiu
and then distorted to get Xid. This point is then projected
back to a non-frontal sensor using (RSEn)

−1 and pixel coor-
dinates Pi

′

CI
are obtained. The optimal U∗ is obtained for N

observations using Levenberg-Marquardt optimization [8]:

U∗ = argmin
U

N∑
i=1

‖PiCI − Pi
′

CI
(U, k1, k2) ‖22 (49)

8. Experiments with Synthetic Data
The analytical calibration proposed in Sec. 5.1 as-

sumes that no image noise or distortion and exact
projection of world to image points, but both are present
in real images. Therefore, its necessary to evalu-
ate the robustness of our technique to these factors
as follows. Data generation: A non-frontal camera
is simulated with U: (ρ, σ, τ) = (2.0, 4.0, 0.0) deg;
(λpx, λpy) = (8.4, 8.4) mm; (I0, J0) = (240, 320)
pixels; (an, ax, d, F) = (10.3, 28.8, 0.6, 16.2) mm;
(k1, k2)=(0.0022,−0.000013); (θ, φ, ψ)=(0.1, 43.3, 0.0)
deg; (tx, ty, tz)=(−65.0,−41.0, 102.2) mm. The syn-
thetic 3D world points PCW are simulated and image points
PCI are obtained (Sec. 4). Gaussian noise with 0 mean and
std. deviation µ = {.01, .02, .03, .04, .05, .1, .2, · · · , 1}
pixels is added to the synthesized points. Then, at each
of these noise levels, analytical calibration estimates
are obtained (Sec. 5.1) for all calibration parameters
except (I0, J0) which are assumed to be known (equal to
(240, 320) in this case). This experiment is repeated for
100 trials. Fig. 6 shows the results for various calibration
parameters. The x-axis denotes the variation of noise and
y-axis plots the mean of the difference between ground
truth and estimates. The vertical bars represent the std.
deviation of the estimates. As can be observed, for lower
noise levels and the amount of distortion we applied, the
analytical estimates are close to ground truth values with
low std. dev. e.g. for λpx, at 0.01 pixels noise, the std.
deviation of the estimate is 0.08 pixels. But, for 1 pixel
noise, the std. dev. is 16.6 pixels. Our corner detection on
real data (Sec. 9) has std. dev. : ≈ 0.011 pixels.

9. Experiments with Real Images
We calibrate a non-frontal camera using a checkerboard

pattern and four calibration methods, namely: (A) general-
ized pupil-centric model initialized by our analytical solu-
tion and (B) basic initialization (C) Gennery [7], (D) decen-
tering distortion model [8]; and based on re-projection error
(Tab. 2) and undistortion accuracy (Fig. 7) show that method
(A) proposed in this paper outperforms all other techniques.
Camera Setup: We use a AVT Marlin F-033C camera fit-
ted with 1/2 inch Sony CCD sensor and C-mount Schneider
Cinegeon 1.4/8mm Compact lens. The sensor is intention-
ally tilted with respect to the lens by ≈ 5◦ (Fig. 7(b)).
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Figure 6. Absolute error, standard deviation vs. noise level (pixels) for
various calibration parameters in U. (best viewed in color)

The captured images have a resolution of 640× 480 pixels.
Checkerboard(CB): A custom made precise glass checker-
board (Fig. 7(c)) with 20× 20 squares, each having dimen-
sion 5 × 5mm is used to model known world points. The
checkerboard corner location accuracy on the glass surface
is ± .001mm. Data Acquisition: A 2.5D dataset is col-
lected by moving the CB along its surface normal (Fig. 7(d))
by (0, 0.5, · · · , 4.5)mm (10 depths) and at each position an
image is captured. The complete 2.5D dataset is collected
thrice and the images averaged to handle random errors in
CB positioning. The camera is then moved to a different
location and another 2.5D data is collected. Likewise, 11
2.5D data sets are collected (See Fig. 5 (right) sample im-
ages from this dataset). The CB corners are detected using
MATLAB Bouguet’s toolbox [4]. The corner detection ac-
curacy is ≈ 0.011 pixels along both image directions and
is computed using the technique from [11].

Table 2. Calibration results on real data.
Calibration Method A B C [7] D [8]

Initial Final Initial Final Initial Final Final
Scale sy

sx
1.0002 0.9981 1.00 0.9989 1.00 1.0049 1.0049

λp 8.742 8.738 8.198 8.128 8.198 8.154 8.288
Center of radial I0 239.27 238.90 240.0 237.51 239.27 229.48 226.86
distortion (CoD) J0 330.82 330.78 320.0 330.11 330.82 335.47 332.62

Radial k1 - − 0.002 - − 0.002 - − 0.004 − 0.0021
distortion k2 - .00002 - .000005 - .00016 .000012

Decentering p1 - - - - - - − .000022
distortion p2 - - - - - - − .00027

Non-frontal ρ − 0.075 0.113 0.0 0.246 − 0.075− 0.118 -
tilt angles σ 3.874 5.298 0.0 3.805 3.874 1.008 -

Entrance Pupil an 6.691 6.817 6.5 6.437 - - -
Optical Focal Length F 8.503 - 8.2 - - - -
Reprojection Error - 0.0504 - 0.0959 - 0.3807 0.0534

Table 3. Std. deviation of final estimates from methods A,B,C,D.
Calibration Method λpx =

λp

sx
λpy =

λp

sy
I0 J0 ρ σ an

A 0.007 0.004 0.014 0.012 0.002 0.004 0.001
B 0.017 0.013 0.027 0.024 0.005 0.008 0.003
C 0.027 0.008 0.08 0.078 0.006 0.007 −
D 0.031 0.028 0.028 0.03 − − −

Reprojection Error: Tab. 2 shows the calibration results of
intrinsic parameters in U and the re-projection error using
methods A, B, C and D from the camera and the 2.5D data
captured above. Column A (left) shows the results from
analytical method proposed in Sec. 5. Since, there are 11



2.5D datasets captured from different camera orientations,
we have 11 analytical solutions for intrinsic parameters. We
select the one which has closest (an, F) values with those in
lens data-sheet. Also, we select points close to our com-
puted CoD for this step where distortion is expected to be
least. Column A (right) shows final refined parameters. In
Column B, we assume the same imaging model as Column
A, but instead use initial parameters from the lens data-sheet
and assume tilt is 0. This is the default initialization. In
Column C, we present the results from implementation of
Gennery [7]. First, their imaging model assumes angle of
incidence and exit at the entrance pupil is same which is
not accurate [3]. Second, they optimize over decentering
distortion which is redundant [13] and third, their initial-
ization is default. In order to do a basic test of their cali-
bration method, we avoided optimization over decentering
distortion and initialized the sensor tilt and the CoD with
our analytical initialization which is more accurate than us-
ing default initialization (Column C (left)). For other pa-
rameters we used default initialization. Column C (right)
shows the results after non-linear refinement. The obtained
re-projection error is 0.38 pixels which is highest imply-
ing the calibration from method C is inaccurate. Lastly,
Column D shows results of applying decentering [8] cali-
bration. Comparing the re-projection error from last row
of Tab. 2 and std. deviation of estimated parameters from
Tab.3, we observe that proposed method (A) achieves the
lowest re-projection error of 0.0504 with lowest parameter
variance across all methods. The sensor tilt is computed as
≈ 5.3o and used for omnifocus imaging (Fig. 8(a)) and

depth from focus (Fig. 8(b)).
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Figure 7. (a) Straight line fitting error to undistorted images using cali-
bration parameters from technique A,B,C,D. (b,c,d) A non-frontal camera
and the calibration setup. (best viewed in color)

Undistortion Error: Since accurate camera calibration
would lead to accurate image undistortion using the ob-
tained calibration parameters, we use this metric to compare
various imaging model and calibration techniques. Specif-
ically, we take the calibration results of technique A, B, C
and D and undistort 11 CB images. Then, we detect all the
corners in the undistorted image using MATLAB Bouguet’s
toolbox [4] and fit vertical and horizontal lines to detected
corner points using orthogonal line fitting regression and
compute the mean line fitting error as a metric for straight-
ness of undistorted CB lines. Fig. 7 shows the results for
all 11 images (x-axis) with methods A, B, C, D and their
refined estimates from Tab. 2. As we see, the error is least
(red solid line) for majority of the images undistorted by the
method A proposed in this paper. The error (magenta dotted

line) is maximum for the technique (C) [7]. The second best
performance is by decentering based approach (green dot-
ted line). Application: The sensor tilt is used for omnifocus
imaging [10] and scene depth estimation [9] (Fig. 8(a-e)).

(a) (b)

(c) (d) (e)

Figure 8. (a) Omnifocus Image [10]. (b) Depth from focus [9].
(c,d,e) 3D textured renderings of scene. (best viewed in color)

10. Conclusion
We have generalized pupil-centric imaging to arbitrary

lens-sensor tilt and derived a mapping between pupil-
centric and thin-lens imaging. We have proposed an analyt-
ical calibration technique assuming known center of radial
distortion and a radial alignment metric based on analytical
estimates to obtain all non-frontal calibration parameters.
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