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Abstract

Identifying subjects with variations caused by poses is
one of the most challenging tasks in face recognition, since
the difference in appearances caused by poses may be even
larger than the difference due to identity. Inspired by
the observation that pose variations change non-linearly
but smoothly, we propose to learn pose-robust features by
modeling the complex non-linear transform from the non-
frontal face images to frontal ones through a deep net-
work in a progressive way, termed as stacked progressive
auto-encoders (SPAE). Specifically, each shallow progres-
sive auto-encoder of the stacked network is designed to map
the face images at large poses to a virtual view at smaller
ones, and meanwhile keep those images already at small-
er poses unchanged. Then, stacking multiple these shal-
low auto-encoders can convert non-frontal face images to
frontal ones progressively, which means the pose variation-
s are narrowed down to zero step by step. As a result, the
outputs of the topmost hidden layers of the stacked network
contain very small pose variations, which can be used as
the pose-robust features for face recognition. An additional
attractiveness of the proposed method is that no pose esti-
mation is needed for the test images. The proposed method
is evaluated on two datasets with pose variations, i.e., Mul-
tiPIE and FERET datasets, and the experimental results
demonstrate the superiority of our method to the existing
works, especially to those 2D ones.

1. Introduction
During the past decades, face recognition has been suc-

cessfully applied in many areas, such as access control, ID
authentication, watch-list surveillance, etc. However, it is
still a far way to go for those uncontrolled scenarios due to
the large variations caused by the expression, pose, light-
ing, aging, and so on. Among them, the pose variation is
one of the largest challenges, since the facial appearance
variations caused by poses are even larger than that caused
by identities. To address the pose problem, many promising

works have been developed, which can be roughly divided
into two categories: 2D techniques and 3D techniques [26].

In most 3D methods, 3D face information, either recov-
ered from the input image or a statistical model learnt in
advance is exploited to render a virtual face image at a giv-
en pose the same as that of the face image to match. With
the virtual view, two face images from different poses can
be matched at the same pose. In [8], each face image is
represented by the model parameters for the 3D shape and
texture, which are estimated by fitting a 3D morphable mod-
el to account for the pose variations. In [18], a 3D model is
also first estimated for each subject by fitting a 3D gener-
ic elastic model to his/her gallery image at frontal pose,
and then a group of virtual images at different poses are
synthesized, among which the one at the same pose as the
probe image is used for the matching. In [3], all face images
are compared under the frontal pose by projecting the non-
frontal face image onto an aligned 3D face model and then
rotating it to render a frontal face image. In [16], a non-
frontal face image is transformed to a frontal view by using
the morphable displacement field from the 3D face models.

These 3D techniques have achieved favorable perfor-
mance in many scenarios, even in fully automatic case.
However, these methods need 3D data or recovery of 3D
face model from 2D images which is still a challenging
problem. Besides, automatically fitting a 3D face model
to a 2D image is also sensitive to many factors, e.g., illumi-
nation, expression, occlusion and so on.

Differently, the 2D methods attempt to handle the pose
variations by learning pose-invariant feature or predict the
face image under novel target pose without using 3D infor-
mation. Given an image, some early researchers [7] propose
to generate its virtual view at a target pose by learning the
transformations between poses. In [11], an eigen-light field
model that contains all available pose variations is estimat-
ed for each image and used as the pose-invariant feature.
In [10], the virtual frontal view of a non-frontal input face
image is obtained by applying the learnt locally linear trans-
formations between the non-frontal face images and frontal
ones on the densely sampled patches. In [19], the non-
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Figure 1. The schema of the proposed Stacked Progressive Auto-Encoders (SPAE) network for pose-robust face recognition. We illustrate an exemplar
architecture of the stacked network with L = 3 hidden layers, which can deal with poses in yaw rotation within [-45◦, +45◦]. In training stage of our SPAE,
each progressive auto-encoder aims at converting the face images at large poses to a virtual view at a smaller pose (i.e., closer to frontal), and meanwhile
keeping the face images with smaller poses unchanged. For instance, for the first progressive AE demonstrated in this figure, only images with yaw rotation
larger than 30◦ are converted to 30◦, while other face images with yaw rotation smaller than 30◦ are mapped to themselves. Such a progressive mode
endows each progressive AE a limited goal matching its capacity. In the testing stage, given an image, it is fed into the SPAE network, and the outputs of
the topmost hidden layers with very small pose variations are used as the pose-robust features for face recognition.

frontal face image is considered to be generated by a pose-
contingent linear transformation of the identity, and the ob-
tained pose-invariant identity subspace is used for recog-
nition. In [2], an alignment strategy referred to as “stack
flow” is proposed to discover pose-induced spatial deformi-
ties undergone by a face at the patch levels. With this model,
a non-frontal face image can be warped to the frontal view
incrementally. In [1], the Markov random fields model is
used to match two images with local patches as nodes and
2D displacement vectors as their labels. In [9], the corre-
spondence between the frontal and non-frontal face images
is obtained by using the dynamic programming based stere-
o matching algorithm. In [15], an elastic matching method
based on Gaussian Mixture Model (GMM) is proposed to
match the images at different poses by aligning the patch-
es through the GMM. In [20], a discriminant coupled latent
subspace framework is proposed to find a set of projections
for different poses such that the projections of the same sub-
ject but at different poses are maximally correlated in the la-
tent space. In [28] and [27], deep networks are employed to
convert a non-frontal face to a fontal one or a random face,
which achieves promising results.

With relative ease of implementation but promising per-
formance, 2D methods are preferred in spite of its slight in-
feriority than 3D methods in terms of recognition accuracy.
However, the pose varies continuously and non-linearly, a
single model usually cannot fully characterize all variation-
s. Therefore, most of the 2D methods, e.g., [2] [20], contain
pose-specific components to decompose the complex pose
variations into piecewise simpler ones. This however mean-
s that they generally need to estimate or manually label the

pose of a given image, which makes these methods heavily
depend on the accuracy of the pose estimation.

In this work, following the basic idea of 2D methods, we
propose to extract pose-robust features by learning the com-
plex non-linear transform from the non-frontal face images
to frontal ones. Inspired by the observations that pose varia-
tions change non-linearly but smoothly, we intend to model
the complex non-linear transform from the non-frontal face
images to frontal ones through an deep network, consider-
ing its impressive ability to handle non-linearity [13] [24].
We specifically resort to deep auto-encoder (DAE) [5] to
achieve this goal. However, a direct application of DAE is
intractable due to the high complexity of pose variation, e-
specially in case of limited number of training samples. To
solve this problem, we propose a progressive deep struc-
ture, named Stacked Progressive Auto-Encoders (SPAE),
with each shallow progressive AE designed to achieve lim-
ited but tractable goal, i.e., part of the global non-linearity.
Specifically, as demonstrated in Fig. 1, each shallow AE of
our SPAE is designed to convert the input face images at
large poses to a virtual view at a smaller pose (i.e., closer
to frontal), and meanwhile keep those already with smaller
poses unchanged. With such a strategy, we actually enforce
the deep network to approximate its eventual goal (frontal
pose) layer by layer along the pose manifold (starting from
non-frontal face images), as shown in Fig. 2. Or, in other
words, our SPAE gradually narrows down the pose varia-
tions layer by layer. As a result, the outputs of the topmost
hidden layers of the stacked network contain very smal-
l pose variations, and thus can be used as the pose-robust
features for face recognition as shown in Fig. 1. Please be
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Figure 2. Illustration of non-linear but smooth pose variations, and how
SPAE smartly sets each layer of shallow AE a limited but tractable goal.

aware that, in our SPAE, no pose estimation is needed for
testing images, which forms a great advantage compared
with many previous ones.

The rest of this paper is organized as follows: section 2
details the stacked progressive auto-encoders network; sec-
tion 3 evaluates it on Multi-PIE and FERET databases, fol-
lowed by the conclusion in the last section.

2. Stacked Progressive Auto-Encoders (SPAE)
In this section, we first introduce the auto-encoder neural

network, and then describe our SPAE deep architecture for
pose-robust face recognition.

2.1. Auto-Encoder (AE)

For a shallow auto-encoder neural network [5] which is
unsupervised, it is usually compromised of two parts, en-
coder and decoder [24], with single hidden layer.

The encoder, denoted as f , attempts to map the input
x ∈ Rd×1 into the hidden layer representations, denoted
as z ∈ Rr×1, in which r is the number of neurons in the
hidden layers. Typically, f consists of a linear transform
and a successive nonlinear transform as follows:

z = f(x) = s(Wx+ b), (1)

where W ∈ Rr×d is the linear transform , b ∈ Rr×1

is the basis and s(·) is the so-called element-wise “activa-
tion function”, which is usually non-linear, such as sigmoid
function s(x) = 1

1+e−x or tanh function s(x) = ex−e−x

ex+e−x .
The decoder, denoted as g, tries to map the hidden rep-

resentation z back to the input x, i.e.,

x = g(z) = s(Ŵz+ b̂), (2)

with the linear transform Ŵ ∈ Rd×r and basis b̂ ∈ Rd×1.
To optimize the parameters W,b,Ŵ and b̂, usually the

least square error is employed as the cost function:[
W∗,b∗,Ŵ∗, b̂∗

]
=arg min

W,b,Ŵ,b̂

∑N

i=1
‖xi−g(f(xi))‖22, (3)

where xi represents the ith one of the N training sample.
Due to the non-linearity of the activation function, Eq. (3)
is difficult to solve, and thus the gradient descent algorithm
is commonly employed.

The typical auto-encoder in Eq. (3) tries to reconstruct
the input, however if a distinct response rather than same as
the input is used as the output of the decoder g, it can be
considered as a kind of non-linear regression technique.

2.2. Motivation and basic idea of SPAE

For face recognition across pose, many works attempt to
model the non-linear transform from the non-frontal face
images to the frontal ones [3] [16]. Most of the successful
works exploit the 3D face models to characterize the non-
linearity, which however may encounter difficulties when
recovering the 3D models. An alternatively preferred strat-
egy is to directly model the non-linear transforms from the
non-frontal pose to frontal pose based on the 2D images.

The deep learning technique provides a big opportuni-
ty for the above goal in virtue of its great ability for non-
linearity, e.g., the auto-encoder can achieve a favorable non-
linear regression model. In order to model the complicat-
ed transforms from the non-frontal pose to frontal pose,
the deep auto-encoders (DAE) network [5] with multiple
hidden layers are preferred attributed to its larger capacity
compared to the shallow network. A straightforward imple-
mentation is to use the non-frontal face images and frontal
face images as the input and output of the DAE respective-
ly. This however might be intractable due to the following
factors. As shown in Fig. 2, when DAE is used to directly
transform the non-frontal face images to the frontal ones,
the objective is highly non-linear leading to a larger search
region, therefore the DAE is prone to trap into local min-
ima that deviates far from the true one, especially given a
relatively small number of training samples.

On the other hand, the pose variations actually change
smoothly along a manifold as shown in Fig. 2, which mean-
s an easier objective with less non-linearity within a small
piece of the manifold. Therefore, in our SPAE, given some
“halfway milestones”, e.g., those denoted as the blue cir-
cles in Fig. 2, the whole challenging objective is decom-
posed to multiple easier (i.e., less nonlinearity) and thus
more tractable phases with smaller search region. It is al-
so in this sense that SPAE has larger probability to avoid
some bad local minima.

Specifically, we employ the stacked deep architecture
network, in which each shallow part is designed to achieve
a limited but tractable goal, i.e., pieces of the global non-
linear transform determined by the “halfway milestones”.
Each shallow AE of this network, called progressive auto-
encoders hereafter, attempts to convert the face images at
large poses to a virtual view at a smaller pose, but mean-
while keep those images already with smaller poses un-
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changed. Then stacking multiple progressive auto-encoders
can eventually convert the non-frontal images to frontal
ones step by step along the pose variation manifold, as
shown in Fig. 2. This stacked deep architecture is termed
as Stacked Progressive Auto-encoders (SPAE). The SPAE
gradually narrows down the pose variations, and thus in-
duce pose-robust features for further face recognition.

2.3. Formulation of SPAE

For the purpose of clarity, we assume that face poses
are divided into 2 × L + 1 bins within [−V, V ] denoted
as V, −V and V are the maximum pose angles face to
left and right respectively, and 0◦ means the frontal pose.
For example, in case of V = 45◦, L = 3, V might be
{−45◦,−30◦,−15◦, 0◦,+15◦,+30◦,+45◦}. To facilitate
the presentation, we define an array P containing the tar-
get poses of each progressive auto-encoder in descending
order, e.g., P = {+30◦,+15◦, 0◦} excluding the extreme
pose which would be not used as the target. xij represents
the ith sample at pose angle of j with i ∈ [1, N ] and j ∈ V.

As mentioned, each progressive AE aims at mapping the
images at large pose to virtual images at smaller pose, while
mapping those already at smaller poses to themselves. For
example, the first progressive AE aims at mapping the im-
ages at pose larger than 30◦ to virtual images at 30◦, but
mapping those at pose smaller than 30◦ to themselves. In
other words, this progressive AE narrows down the pose
variations from [−45◦,+45◦] to [−30◦,+30◦]. Similarly,
the second progressive AE is designed to narrow down the
pose variations from [−30◦,+30◦] to [−15◦,+15◦]. Final-
ly, the third progressive AE narrows down the pose varia-
tions from [−15◦,+15◦] to 0◦. Therefore, stacking three
progressive AEs can convert the non-frontal face images to
frontal ones gradually.

Formally, the kth (k = 1, 2, · · · , L) progressive auto-
encoder attempts to convert the images at poses larger than
P(k) to P(k). The cost function is formulated as bellow:[

W∗
k,b
∗
k,Ŵ

∗
k, b̂
∗
k

]
=

arg min
Wk,bk,Ŵk,b̂k

∑N

i=1

∑
j∈V
‖xil − gk(fk(z

k−1
ij ))‖22,

(4)

where zk−1ij is the representation from the hidden layer (i.e.,
encoder) of the (k − 1)th progressive auto-encoder for the
sample xij , and z0ij = xij . l is short for lkij , which is the
target pose that zk−1ij will be transformed to, calculated as:

lkij =


−P(k) if lk−1ij < −P(k)
+P(k) if lk−1ij > P(k)
lk−1ij if |lk−1ij | ≤ P(k)

, (5)

with l0ij = j. fk and gk are encoder and decoder of the kth

progressive auto-encoder. The hidden-layer representation

of sample xij from the kth progressive auto-encoder is:

zkij = fk(z
k−1
ij ) = s

(
W∗

kz
k−1
ij + b∗k

)
. (6)

Each progressive auto-encoder can be optimized using the
gradient descent algorithm similarly.

As seen from Eq. (4) and Eq. (5), the pose variations are
reduced to [−P(k),P(k)] through the kth progressive auto-
encoder. Therefore, the pose variations are narrowed down
and down gradually by stacking multiple progressive auto-
encoders, until no pose variations, i.e., all input face images
are converted to virtual frontal face images.

Given a training set with face poses ranged within
[−V, V ], L progressive auto-encoders are needed in order
to convert the images from all poses to the frontal view.
After optimizing each progressive auto-encoder, the whole
stacked network is comprised of L encoder from all pro-
gressive auto-encoders and one decoder from the last one,
i.e., ff , f2, · · · , fL,gL , as shown in Fig. 1.

After achieving each shallow progressive auto-encoder,
the whole network is tuned finely by optimizing all layers
jointly as bellow:[

W∗
k|Lk=1,b

∗
k|Lk=1,Ŵ

∗
L, b̂

∗
L

]
= arg min
Wk|Lk=1,bk|Lk=1,ŴL,b̂L∑N

i=1

∑
j∈V
‖xi,0◦ − gL(fL(fL−1(· · · f1(xij))))‖22.

(7)

Eq. (7) can be easily solved by employing the gradient
descent algorithm, with ff , f2, · · · , fL,gL initialized by the
ones learnt from the shallow networks.

2.4. Pose-robust feature and recognition

As the pose variations are reduced layer by layer, the
representation of the topmost layer fL should almost have
no pose variations, and the representations embedded in the
lower layers, e.g., fL−1, fL−2, are not pose-invariant, but
only contain very small pose-variations. As stated in [26],
most of the recognition methods are robust to small pose
variations. Therefore, in this work, we use the outputs of
the few topmost hidden layers as the pose-robust features,
denoted as F(x) and calculated as:

F(x) = [fL(z
L−1); fL−1(z

L−2); · · · ; fL−k(zL−k−1)], (8)

with 0 ≤ k ≤ L − 1. As observed in the experiments
these representations with small pose variations are more
robust than only the pure pose-invariant feature (i.e., outputs
of the topmost layer), when combined with Fisher Linear
discriminant analysis (FLD) [4] for recognition.

The features F(x) learnt from the SPAE deep network
is unsupervised, so it cannot be expected to be discrimina-
tive. Therefore, we further employ the Fisher Linear dis-
criminant (FLD) analysis [4] for supervised dimensionality
reduction and the nearest neighbor classifier for recognition.
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Figure 3. The performance of the learnt feature from each hidden layer of the SPAE network. Here, “1st” means the first hidden layer, and “input” means
the original intensity feature. “raw feature” means the feature from each hidden layer is directly used for the recognition which is unsupervised, “raw
feature+FLD” means the feature from each hidden layer is followed by an supervised dimensionality reduction method FLD [4]. Three and four hidden
layers are included in the stacked network on MultiPIE and FERET datasets respectively.

3. Experiments

In this section, we first evaluate our SPAE w.r.t. differ-
ent parameters, and then compare it with the state-of-the-art
methods on two large scale datasets with pose variations,
i.e., the MultiPIE dataset [12] and FERET dataset [17].

3.1. Experimental settings

MultiPIE dataset [12] contains images of 337 people
under various poses, illumination and expressions. In this
work, the images of all 337 subjects at 7 poses (-45◦, -
30◦, -15◦, 0◦, +15◦, +30◦, +45◦) with neural expression and
frontal illumination are used for the evaluations. This sub-
set is divided into two parts: images from first 200 subjects
(subject ID 001 to 200) are used for training, 4,207 images
in total. The images from the rest 137 subjects are used
for testing, 1,879 images in total. All images are aligned to
40x32 pixels, with five facial landmarks automatically lo-
cated by using the supervised descent method (SDM) [25],
which formulates an automatic setting. Same as [3], the
frontal face images from the earliest session for the 137 sub-
jects are used as gallery image (137 in total), and images
from the other poses as probe images (1,742 in total).

On the FERET dataset [17], the images of all 200 sub-
jects at 9 different poses (bb, bc, bd, be, ba, bf, bg, bh, bi
corresponding to -60◦, -40◦, -25◦, -15◦, 0◦, +15◦, +25◦,
+40◦, +60◦ respectively) are used for the evaluations, one
image per subject at each pose. The images of the first 100
subjects are used for training (900 in total), and the images
of the rest 100 subjects are used for testing (900 in total).
Similarly, the images at the frontal pose are used as the
gallery, and the images at the rest poses as the probe images.
To compare with the existing methods, semi-automatic set-
ting is employed on this dataset, i.e., all images are aligned
to 40x32 by using five manually labeled facial landmarks.

For [14] [21] [22], DAE and SPAE, PCA [23] is applied
to for dimensionality reduction, and the dimension of PCA
is traversed from 100 to 600 to report the best results.

3.2. Effects of parameters

In SPAE, the number of progressive auto-encoders, i.e.,
the number of hidden layers, can be determined according
to the number of poses (i.e., 3 and 4 on the MultiPIE and
FERET datasets respectively), thus leaving two parameters,
the number of neurons in each hidden layer, and the number
of layers selected to formulate the pose-robust feature.

Firstly, we investigate the performance of the features
from each hidden layer in the stacked network. The co-
sine function is used to calculate the similarity, as shown
in Fig. 3(a) and Fig. 3(b). As seen, the original intensi-
ty features perform badly, due to the large pose variations.
Furthermore, the features from the first several hidden lay-
ers perform better than the intensity features on the FERET
dataset, since pose variations are reduced. However, the
features from the first several hidden layers performs only
comparable or even worse on MultiPIE dataset, which may
be caused by the challenge of the automatic recognition.
But, on both datasets, the features from the topmost hidden
layer achieve the best performance with a significant im-
provement, benefited from the fact that all pose variations
are removed in this level. An exemplar output of each pro-
gressive auto-encoder is shown in Fig. 4. Besides, we also
evaluate the decoded face images from each layer and the
performance increases layer by layer as expected: The re-
sults for the 1st to 4th layer are 22%, 23%, 33% and 59%
respectively on FERET, and the results for the 1st to 3rd
layer are 22%, 27%, and 61% respectively on MultiPIE.

Although improvements are achieved from the top hid-
den layers with small pose variations, it is not promising
enough for the recognition due to lack of supervised in-
formation. Therefore, we apply the supervised FLD to
these unsupervised features, as shown in Fig. 3(c) and Fig.
3(d). Benefited from the supervised information, all per-
formances are improved significantly as expected. Another
interesting observation is that, the features from the topmost
hidden layer with no pose variations do not perform the best
any more, while the features from the hidden layers with
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(a) (b)

Figure 4. The output from each decoder in the SPAE network for the
input images in the bottom row. (a) output of exemplar training images
from MultiPIE. (b) output of exemplar testing images from MultiPIE.

small pose variations (e.g., the second hidden layer on Mul-
tiPIE and FERET) perform better. It may seem confusing,
but it is actually reasonable. In FLD, a within-class scatter
matrix is calculated, which characterises the intra-personal
variations including the pose variations. But if all intra-
personal pose variations are eliminated completely, it will
deteriorates the calculation of within-class scatter matrix
leading to a poor performance. Even worse, on the FERET
dataset with single sampler per subject for each pose, the
FLD would fail to work since only single non-duplicated
image is available for each class if the pose variations are
removed completely, i.e., zero cost is achieved in Eq. (7).
On the other hand, the FLD model is robust to small pose
variations as stated in [26], therefore the features from the
second hidden layers with pose variations in [−25◦,+25◦]
perform even better than the features from the topmost hid-
den layer.

We further inspect the performance of cumulated fea-
tures from multiple hidden layers, i.e., from highest hidden
layer to the lower ones, as shown in Fig. 5. The leftmost bar
shows the performance of the features from the topmost hid-
den layer, and the performance improves when the features
from one or two more hidden layers are cumulated, because
the cumulated features contain pose variations smaller than
25◦ and FLD can easily tolerate them. But if the features
with large pose variations, e.g., larger than 25◦, are cumulat-
ed, the performance begins to degrade. This demonstrates
that the pose-robust feature with small pose variations can
achieve a better performance when combined with FLD.
Therefore, in the following experiments, the cumulated fea-
tures with pose variations smaller than 25◦ combined with
FLD are used for recognition.

Another important parameter is the number of neurons in
the network. More neurons imply a more flexible structure,
which can achieve a better mapping from non-frontal face

Table 1. Results with different number of nodes in the network.

Dataset
number of nodes in each hidden layer

1000 2000 3000 4000 5000
MultiPIE 85.7% 88.2% 88.9% 90.9% 91.4%
FERET 89.5% 89.1% 91.5% 92.5% 92.3%
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Figure 5. The performance of cumulated features from multiple hidden
layers of SPAE network. Here, the numbers in the brackets are the indexes
of hidden layers for cumulation, and “input” means the original intensity.

images to the frontal ones. Following the work in [6], we
use the same number of neurons in all hidden layers, and
explore the performance of the stacked network under dif-
ferent number of neurons, as shown in Table 1. As expected,
the more neurons, the better performance. This is easily to
understand, since the pose variations are complex and high-
ly non-linear, so a sophisticated network with larger number
of neurons is more qualified. From these observations, we
use 5000 and 4000 neurons for each hidden layer of SPAE
on the MultiPIE and FERET datasets respectively.

3.3. Comparison with the existing methods

In this section, we compare the SPAE to a few existing
methods, which are briefly described as bellow.

“Blanz03” [8] proposes to use the parameters of the 3D
shape and texture models that are estimated by fitting a sta-
tistical 3D model to an image as the representation of it.

“Asthana11” [3] proposes a fully automatic 3D pose
normalization method, which can synthesize a frontal view
of the input face image by aligning an average 3D model
to it based on the view-based AAM. This work achieved
impressive results under the automatic settings.

MDF [16] proposes to generate a virtual image at the
pose of the gallery image for the probe image through the
Morphable Displacement Field.

StackFlow [2] warps a non-frontal face image to the
fontal one progressively through one or more correspon-
dences between them at the patch level.

CCA [14] aims at projecting images at two different pos-
es to a common space where the cross correlation between
them are maximized meaning minimum pose variations.

PLS [21] attempts to project samples from two poses to
a common latent subspace, with one pose as regressor and
another pose as response.

GMA [22] is a generalized multi-view analysis method
attempting to project the images at all poses to a discrimina-
tive common space, where pose variations are minimized.

DAE [5] is also evaluated, which has the same structure
(i.e., the number of the hidden layers, the number of neurons
in each layer) as that of our SPAE network. But differently,
it directly converts the non-frontal face images to the frontal
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Table 2. Comparison with the existing methods on the MultiPIE dataset under automatic scenario.

Methods
Probe Pose

Pose Estimation
-45◦ -30◦ -15◦ +15◦ +30◦ +45◦ Average

3D
Asthana11 [3] 74.1% 91.0% 95.7% 95.7% 89.5% 74.8% 86.8%

Automatic
MDF [16] 78.7% 94.0% 99.0% 98.7% 92.2% 81.8% 90.7%

2D

PLS [21] 51.1% 76.9% 88.3% 88.3% 78.5% 56.5% 73.3%
ManuallyCCA [14] 53.3% 74.2% 90.0% 90.0% 85.5% 48.2% 73.5%

GMA [22] 75.0% 74.5% 82.7% 92.6% 87.5% 65.2% 79.6%
DAE [5] 69.9% 81.2% 91.0% 91.9% 86.5% 74.3% 82.5%

N/A
SPAE 84.9% 92.6% 96.3% 95.7% 94.3% 84.4% 91.4%

Table 3. Comparison with the existing methods on the FERET dataset under semi-automatic scenario.

Methods
Probe Pose

Pose Estimationbb bc bd be bf bg bh bi
Average

-60◦ -40◦ -25◦ -15◦ +15◦ +25◦ +40◦ +60◦

3D
Blanz03 [8] 95% 95% 97% 100% 97% 96% 95% 91% 95.8%

Automatic
MDF [16] 87% 97% 99% 99% 100% 99% 98% 92% 96.4%

2D

PLS [21] 39% 59% 76% 76% 77% 72% 53% 37% 60.0%
ManuallyCCA [14] 40% 66% 83% 85% 84% 88% 70% 39% 69.4%

StackFlow [2] 48% 70% 89% 96% 94% 82% 62% 42% 72.9%
DAE [5] 62% 91% 93% 96% 96% 94% 83% 61% 84.5%

N/A
SPAE 77% 96% 98% 99% 99% 99% 95% 77% 92.5%

ones, i.e., the input is same as ours, but the output is the
frontal face image which is same as the output of the final
layer in our SPAE network.

Among the above methods, [8] [3] [16] are 3D-based
models which also involve in automatically estimating the
pose of the test image, and the rest are 2D-based methods.
The 2D methods in [2] [14] [21] [22] assume that the poses
of the test images are already known (denoted as “manual-
ly”), which implies that they may degenerate when the pose
is unavailable. On the contrary, the DAE and our SPAE can
work well without any pose estimation (denoted as “N/A”).

Firstly, all approaches are evaluated under the automat-
ic scenario on MultiPIE, i.e., the face region and facial
landmarks are located automatically. The poses of the
test images are unavailable unless specified and the result-
s are shown in Table 2. As seen, CCA and PLS perform
the worst since they are fully unsupervised method which
are unfavourable for the recognition. Furthermore, GMA
performs better benefited from the supervised information.
However, they are all inferior to the 3D methods, Asthana11
and MDF, since 3D models exploit more information than
2D models, which may be however unavailable or hard to
be collected. DAE has the similar network structure as our
SPAE, but it performs worse, since it directly converts the
non-frontal images to frontal ones, which cannot guaran-
tee small pose variations within top hidden layers. SPAE
achieves the best performance, even compared with the 3D
methods. Besides, one great advantage of SPAE is that no
pose estimation is needed, even automatic estimation.

Then, all methods are evaluated under the semi-
automatic scenario on FERET, with the facial landmarks are

manually labeled for face alignment. The result are shown
in Table 3. The task on this dataset is easier due to the semi-
automatic setting. As a result, the 3D methods perform bet-
ter than all the 2D methods, including ours. However, SPAE
can perform better than the 3D methods when the pose vari-
ations are smaller than 45◦. Moreover, our SPAE performs
much better than the other 2D methods including DAE.

Overall, our SPAE network can achieve much better per-
formance than 2D methods, and outperform 3D methods on
MultiPIE dataset under the automatic setting. This improve-
ment mainly comes from two folds. Firstly, the pose varia-
tions from non-frontal poses to the frontal pose are modeled
roughly along the intrinsical pose variation manifold, which
can guarantee that the pose variations are narrowed down
progressively and meanwhile the identities are preserved to
facilitate the recognition. Secondly, SPAE does not need to
estimate the pose of the test image, avoiding the degenera-
tion from the imperfect estimation of pose.

4. Conclusions and future works
For face recognition across pose, we proposed a stacked

progressive auto-encoders network to map non-frontal face
images to its frontal view gradually. The global complicated
non-linearity from the non-frontal pose to frontal pose is di-
vided into pieces of more tractable ones, which are modeled
by multiple shallow progressive auto-encoders respectively.
The features from the few topmost layers of the stacked net-
work contain very small pose variations, and thus are further
combined with FLD for pose-invariant face recognition. As
evaluated, SPAE can effectively reduce the pose variations,
and improve the performance of face recognition.
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In future, we will extend our SPAE network to deal with
illumination, expression, noises and occlusions. Cross-
database learning will be also investigated. Besides, we
will explore to incorporate the discriminative information
into the design of network.
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