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Abstract

We propose a novel discriminative model for semantic
labeling in videos by incorporating a prior to model both
the shape and temporal dependencies of an object in video.
A typical approach for this task is the conditional random
field (CRF), which can model local interactions among ad-
jacent regions in a video frame. Recent work [16, 14]
has shown how to incorporate a shape prior into a CRF
for improving labeling performance, but it may be difficult
to model temporal dependencies present in video by using
this prior. The conditional restricted Boltzmann machine
(CRBM) can model both shape and temporal dependencies,
and has been used to learn walking styles from motion-
capture data. In this work, we incorporate a CRBM prior
into a CRF framework and present a new state-of-the-art
model for the task of semantic labeling in videos. In partic-
ular, we explore the task of labeling parts of complex face
scenes from videos in the YouTube Faces Database (YFDB).
Our combined model outperforms competitive baselines
both qualitatively and quantitatively.

1. Introduction
The task of semantic labeling is an important problem in

computer vision. Labeling semantic regions in an image or
video allows us to better understand the scene itself as well
as properties of the objects in the scene, such as their parts,
location, and context. This knowledge may then be useful
for tasks such as object detection or scene recognition.

Semantic labeling in video is particularly interesting to
study because there is typically more information available
in a video of an object than a static image of an object. For
example, we can track the motion of an object in video and
learn properties such as the way the object moves and in-
teracts with its environment, which is more difficult to in-
fer from a static image. In addition, there are many videos
available online on sites such as YouTube, which make this
analysis increasingly useful.

In this work, we focus on the semantic labeling of face

Figure 1. YFDB Clip. Rows correspond to 1) video frames, 2) su-
perpixel segmentations, and 3) ground truth. Red represents hair,
green represents skin, and blue represents background.

videos into hair, skin, and background regions, as an inter-
mediate step to modeling face structure. We build on recent
work by [16, 14] that incorporated a label prior into a condi-
tional random field (CRF) [15] model and showed improve-
ment in labeling accuracy over a baseline CRF. In particular,
they used a restricted Boltzmann machine (RBM) [23] to
model label shape and combined this with a CRF to model
local regions. This model accounts for both local and global
dependencies within an image, but it may be difficult to ac-
count for temporal dependencies present in a video.

In order to model both shape and temporal dependen-
cies, we use the conditional restricted Boltzmann machine
(CRBM) [24], which is an extension of the RBM. The
CRBM has been used to learn walking styles from motion-
capture data and was able to generate novel, realistic mo-
tions. In our model, we incorporate the CRBM as a tem-
poral shape prior into a CRF framework which already pro-
vides local modeling. We refer to this combined model as
the Shape-Time Random Field (STRF).

Our main contributions are summarized as follows:

• The STRF model, a strong model for face labeling in
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videos. STRF combines CRF and CRBM components
to model local, shape, and temporal dependencies.
• Efficient inference and training algorithms for STRF.
• STRF outperforms competitive baselines, both quali-

tatively and quantitatively.
• The code and labeled data will be publicly available.

2. Related Work

The conditional random field (CRF) [15] has been
widely used for tasks such as image labeling [8, 7, 22, 2]
where nodes correspond to image regions (such as pixels or
superpixels), and edges are added between adjacent regions.
One straightforward way to extend the CRF to labeling in
videos is to define temporal potentials between frames such
as in [28], which is an approach adopted in our work.

There are several related works on using a restricted
Boltzmann machine (RBM) [23] (or their deeper exten-
sions) for shape modeling. He et al. [7] proposed multi-
scale CRFs to model both local and global label features
using RBMs. Specifically, they used multiple RBMs at dif-
ferent scales to model the regional or global label fields sep-
arately, and combined those conditional distributions mul-
tiplicatively. Salakhutdinov et al. [19] trained a DBM to
learn and generate novel digits and images of small toys.
Recently, Eslami et al. [4] introduced the Shape Boltzmann
Machine (SBM) as a strong model of object shape, in the
form of a modified DBM. The SBM was shown to have
good generative performance in modeling simple, binary
object shapes. They later extended the SBM to perform
image labeling within a generative model [5]. There has
also been work in combining hidden unit models such as the
RBM within a discriminative model such as a CRF [16, 14]
for the labeling task.

Because we are interested in modeling object shape over
time, we use the conditional restricted Boltzmann machine
(CRBM) by Taylor et al. [24]. The CRBM is an extension
of the RBM with additional connections to a history of pre-
vious frames. They demonstrated that the CRBM can learn
different motion styles from motion-captured data, and suc-
cessfully generated novel motions. In this work, we incor-
porate the CRBM into a discriminative framework for se-
mantic labeling in face videos.

Regarding the specific problem of hair, skin, background
labeling, there have been several related works [21, 27, 26,
12, 14] in the literature. Scheffler et al. [21] learn separate
color models for each of the hair, skin, background classes
within a Bayesian framework. Wang et al. [27, 26] focus on
hair labeling within a parts-based framework while Huang
et al. [12] learn a CRF using color, texture and location fea-
tures. This CRF model is used as a baseline in our work.
While all of these approaches present new ways to label
face images, none of them incorporate global shape mod-

eling except for the GLOC model [14]. In this work we
extend the GLOC model for semantic labeling in videos.

3. Models
In the following sections we introduce the Shape-Time

Random Field (STRF) and its components. Note that the
notation closely follows the notation used in [14].

Notation. We use the following definitions:

• A video v consists ofF (v) frames, whereF (v) can vary
over different videos. Let each frame in video v be
denoted as v(t) where t ∈ {1 · · ·F (v)}.
• A video frame v(t) is pre-segmented into S(v,t) su-

perpixels, where S(v,t) can vary over different frames.
The superpixels represent the nodes in the graph for
video v at time t.
• Let G(v,t) = {V(v,t), E(v,t)} denote the nodes and

edges for the undirected graph of frame t in video v.
• Let V(v,t) = {1, · · · , S(v,t)} denote the set of super-

pixel nodes for frame t in video v.
• Let E(v,t) = {(i, j) : i, j ∈ V(v,t)

and i, j are adjacent superpixels in frame t in video v}.
• Let X (v,t) = {X (v,t)

V ,X (v,t)
E } be the set of features in

frame t in video v where

– X (v,t)
V is the set of node features {x(t)

s ∈ RDn :
s ∈ V(v,t)} for frame t in video v.

– X (v,t)
E is the set of edge features {x(t)

ij ∈ RDe :

(i, j) ∈ E(v,t)} for frame t in video v.

• Let X (v,t,t−1)
T be the set of temporal features

{x(t,t−1)
ab ∈ RDtemp : a ∈ V(v,t), b ∈ V(v,t−1)} be-

tween adjacent frames t, t− 1 in video v.

• Let Y(v,t) = {y(v,t)
s ∈ {0, 1}L, s ∈ V(v,t) :∑L

l=1 y
(v,t)
sl = 1} be the set of labels for the nodes

in frame t in video v.

Dn, De, Dtemp denote the dimensions of the node, edge,
and temporal features, respectively, and L denotes the num-
ber of labels. In the rest of this paper, the superscripts “v”,
“node”, and “edge” are omitted for clarity, but the meaning
should be clear from context. The superscript t is also omit-
ted except when describing interactions between frames.

The STRF model is shown in Figure 2. The top two lay-
ers correspond to a conditional restricted Boltzmann ma-
chine (CRBM) [24] with the (virtual) visible nodes colored
orange and the hidden nodes colored green. The bottom two
layers correspond to a CRF with temporal potentials. Note
that if we consider the model at time t only and ignore the
previous frames, we revert to the GLOC model from [14].
We now describe the components of the STRF model.
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Figure 2. High level view of the STRF model. The model is
shown for the current frame at time t and two previous frames.
The dashed lines indicate the virtual pooling between the visible
units of the CRBM and the superpixel label nodes. Parts of this
model will be shown in more detail in subsequent figures.

3.1. RBM

The restricted Boltzmann machine (RBM) [23] is a gen-
erative model in which the nodes are arranged in a bipar-
tite graph, consisting of a hidden layer and visible layer, as
shown in Figure 3(a). In our model, superpixels are used
as the base image representation, but superpixels can vary
in shape and number from frame to frame. In order to map
between superpixels and the fixed size grid of the RBM, we
follow a virtual pooling approach from [14]. The pooling is
shown in Figure 2, as the dashed line between the (virtual)
visible layer and label layer. The projection matrix between
the superpixels and the fixed grid of the RBM is defined as

prs =
Area(Region(s) ∩Region(r))

Area(Region(r))
, (1)

where r is the index for the visible units in the RBM and
s is the index for superpixels. Region(r) and Region(s)
refer to the pixels corresponding to the visible unit r and
superpixel s, respectively. The energy between the label
nodes and the hidden nodes for an image is defined as

Erbm (Y,h) = −
R2∑
r=1

L∑
l=1

K∑
k=1

ȳrlWrlkhk

−
K∑

k=1

bkhk −
R2∑
r=1

L∑
l=1

crlȳrl, (2)

where the virtual visible nodes ȳrl =
∑S

s=1 prsysl are de-
terministically mapped from the label layer by multiplying
with the projection matrix {p} from Equation (1). In addi-
tion, there are R2 multinomial visible units, L labels, and
K hidden units. W ∈ RR2×L×K represent the pairwise

weights between the hidden units h and the visible units y,
and b, c represent the biases for the hidden units and multi-
nomial visible units, respectively. The model parameters
W, b, c are trained using contrastive divergence [9].

3.1.1 CRBM

While the RBM can be used to model the label shape within
a particular frame of video, it may be inefficient at model-
ing temporal dependencies in the video. The conditional
restricted Boltzmann machine (CRBM)[24] is an extension
of the RBM that uses previous frames in a video to act as a
dynamic bias for the hidden units in the current frame. The
CRBM energy at time t is defined as:

Ecrbm

(
Y(t,<t),h(t)

)
= Erbm

(
Y(t),h(t)

)
−

W∑
w=1

R2∑
r=1

L∑
l=1

K∑
k=1

ȳ
(t−w)
rl Bwrlkh

(t)
k

−
Q2∑
q=1

W∑
w=1

R2∑
r=1

L∑
l=1

ȳ
(t−w)
qrl Aqwrlȳ

(t)
rl , (3)

which includes the RBM energyErbm
(
Y(t),h

)
defined ear-

lier in Equation (2). TheW frames before the current frame
t act as the “history”, which is always conditioned on at
time t. Following the notation in [24], Y(<t) refers to the
labels of the W previous frames before the current frame.
A ∈ RQ2×W×R2×L represent the weights between visible
units in the history to the current visible units at time t and
B ∈ RW×R2×L×K represent the weights between visible
units in the history to the hidden units. Note that there is a
dense connection between the hidden units h and the visible
layer at each time step. If each time step is considered inde-
pendently, this corresponds to an RBM, as shown in more
detail in Figure 3(a).

The hidden units h are densely connected to visible units
ȳ in both the current frame and in the history because the
hidden units are meant to model changes in object shape
across time. However, connections between visible units in
the history and visible units in the current frame act more
as temporal smoothing and so the interactions are likely to
be more local. Thus, each visible unit ȳ(t)rl at time t is only
connected to a local neighborhood Q of visible units in pre-
vious frames. Figure 3(b) shows this local modeling for a
single visible unit. By modeling only the local interactions
between visible units (instead of using a dense connection),
we also significantly reduce the number of parameters.

The main differences between the usage of the CRBM in
our model compared to its original usage [24] are:

• Our CRBM is used within a discriminative framework
for labeling. It is not meant to generate realistic data,
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(b) Visible layer connections from t to t−1, shown for a single visible unit.
The visible unit at time t in the upper-left corner is connected only to a local
neighborhood of size Q from the previous frame.

Figure 3. Components of the CRBM.

but rather to complement the local modeling provided
by the CRF and help improve labeling performance.
• Our CRBM models the label shape across time, and

does not model the observed features directly (which
is the case in the original usage of the CRBM).
• In our model, the visible units at time t frame are con-

nected to a local neighborhood (of size Q) of the visi-
ble units in the history. In contrast, the original CRBM
has a dense connection between the visible units at
time t and the visible units in the history.

3.2. CRF

The conditional random field (CRF) [15] is a discrimi-
native model which is used as both a baseline and a com-
ponent for our later models. For the task of semantic label-
ing, a variant of the CRF, called the spatial CRF (SCRF)
was found to outperform the CRF empirically, as described
in [14]. The SCRF overlays an N × N grid on top of the
image and learns a different set of node weights for each
grid position. The energy of the SCRF is defined as

Escrf(Y,X ) = Enode (Y,XV) + Eedge (Y,XE) , (4)

Enode (Y,XV) = −
∑
s∈V

L∑
l=1

ysl

N2∑
n=1

psn

Dn∑
d=1

Γndlxsd, (5)

Eedge (Y,XE) = −
∑

(i,j)∈E

L∑
l,l′=1

De∑
e=1

yilyjl′Ψll′exije, (6)

where Γ ∈ RN2×Dn×L represent the node weights and Ψ ∈
RL×L×De represent the edge weights. A projection matrix

label layer
(superpixels)

t - 1 t 
(a) Position Smoothness. Temporal potential incorporating position be-
tween frames t and t− 1, shown for a single label node.

label layer
(superpixels)

t - 1 t 

1 12 23 3

4 4
55

6 6

7 78 8 9

(b) Superpixel Smoothness. Temporal potential incorporating the TSP ID
between frames t and t− 1.

Figure 4. Temporal potentials used in the temporal SCRF.

{p} is used to map between the superpixels and the grid, in
a similar way to the virtual pooling in the RBM1. We use
mean-field approximate inference [20] along with LBFGS
optimization from minFunc [1] for learning the weights.

3.2.1 Temporal SCRF

One way to extend a traditional CRF for labeling in videos
is to incorporate temporal potentials, which has been ap-
plied to the labeling task [28, 6, 29]. In our model, tempo-
ral potentials look only at the previous frame and are used to
encourage smoothing between adjacent frames in a video in
much the same way that edge potentials encourage spatial
smoothing within an image. Two types of temporal poten-
tials are used:
1) Position smoothness: This potential encourages a con-
sistent labeling between superpixels in adjacent frames that
are approximately in the same position and have similar ap-
pearance. The energy is defined as

Etpot1

(
Y(t,t−1),X (t,t−1)

T

)
=

−
∑

a∈V(t)

∑
b∈Int(V (t−1),a)

L∑
l,l′=1

Dtemp∑
e=1

y
(t)
al y

(t−1)
bl′ Φll′ex

(t,t−1)
abe ,

where Φ ∈ RL×L×Dtemp represent the temporal weights,
and Int(V(t−1), a) refers to superpixels in frame t− 1 that
intersect with superpixel a in the current frame. Thus, only

1Note that this projection matrix can be different from the one used by
the RBM in Equation (2).



superpixels that intersect with superpixel a in the previous
frame are included in this potential. Figure 4(a) shows the
connections for this temporal potential for a single super-
pixel node. The figure shows the superpixel in the lower-left
corner at time t and its projection at time t − 1 (shown in
dotted blue lines). At time t− 1, there are three superpixels
that are intersected by the dotted blue lines. Thus, there are
connections from these three superpixels at time t−1 to the
superpixel at time t, shown by the solid blue lines.
2) Superpixel smoothness: Temporal superpixels
(TSP) [3] are used to segment the frames in a video. They
have the desirable property of maintaining their position on
an object through time. For example, a TSP on a person’s
cheek will stay “stuck” to the cheek as long as the person’s
pose does not change significantly (i.e. the person does not
move their head). For our task, these TSPs have been found
empirically to be very pure in the sense that a TSP tends to
remain a single label for most of its lifetime. The following
temporal potential is used to encourage consistent labeling
between the same TSPs in adjacent frames,

Etpot2

(
Y(t,t−1)

)
=

−
∑

a∈V(t)

∑
b∈V(t−1)

L∑
l,l′=1

y
(t)
al y

(t−1)
bl′ Πll′ [a = b] ,

where Π ∈ RL×L represent the temporal weights and
[a = b] denotes indicator notation checking whether super-
pixel a is equal (i.e. has the same TSP ID) to superpixel b.
Figure 4(b) shows the connections of this temporal poten-
tial at time t and t − 1. Note that superpixels 1-8 exist at
both time t and t − 1, and thus there is a connection (indi-
cated by blue lines) between a superpixel at time t − 1 to
its corresponding superpixel at time t. However, superpixel
9 is “created” at time t and therefore there is no connection
from the previous frame.

Incorporating these temporal potentials, the energy for
the temporal SCRF model is defined as

Etscrf(Y(t,t−1),X (t,t−1)) = Escrf

(
Y(t),X (t)

)
+ Etpot1

(
Y(t,t−1),X (t,t−1)

T

)
+ Etpot2

(
Y(t,t−1)

)
, (7)

where the SCRF energy defined in Equation (4) is simply
augmented by the temporal potentials.
Inference. Inference in the temporal SCRF is similar to in-
ference in the SCRF. There is not much additional cost for
inference because the labels for the previous frame are as-
sumed fixed, and thus the temporal potentials only need to
be computed once. For the first frame (time t = 1), the
SCRF is used for inference. Afterward the temporal po-
tentials are computed from the previous frame and then in-
cluded as an additional set of potentials for the label nodes

in the current frame. Additional details about inference can
be found in the supplementary material.
Learning. The temporal SCRF is learned using piece-
wise learning in which scalar parameters κ1, κ2 are used
to weight the contribution of the two temporal potentials,
respectively. In our experiments, we tried a variety of val-
ues between {0..1} and chose κ1, κ2 based on which values
performed best on the validation set.

3.3. Shape-Time Random Field

The STRF model is a combination of the temporal SCRF
and CRBM components defined earlier. The conditional
distribution and energy at time t are defined as

Pstrf(Y(t)|Y(<t),X (t,t−1)) ∝∑
h(t)

exp
(
−Estrf(Y(t,<t),X (t,t−1),h(t))

)
,

Estrf

(
Y(t,<t),X (t,t−1),h(t)

)
=

Etscrf

(
Y(t,t−1),X (t,t−1)

)
+ Ecrbm

(
Y(t,<t),h(t)

)
,

where Y(<t) refers to the labels in the history, which is as-
sumed fixed at time t. The model is shown in Figure 2.
The CRBM (top two layers) provides a dynamic bias for
the hidden units, based on previous history, to help with the
temporal SCRF label classification (bottom two layers).
Inference. We adopt a feed-forward inference procedure in
which inference of the labels Y(t) at time t involves only a
history of the previous W frames. This approach is compu-
tationally efficient since the history is fixed at time t, and so
the only latent variables are the hidden units of the CRBM
and the labels. During inference, the first W frames are
computed using the GLOC [14] model. Afterward, infer-
ence proceeds in a sliding window fashion as the history is
used to compute CRBM potentials that augment the existing
potentials from the temporal SCRF. A mean-field approxi-
mation for inference of the label nodes is used in which we
alternately sample between the hidden units and labels at
time t (more detail in the supplementary material).
Learning. The STRF model is learned using piecewise
learning in which the temporal SCRF and CRBM compo-
nents are each learned separately and then a scalar parame-
ter λ is used to weight the contribution between them. In our
experiments, we tried a variety of λ values between {0..1}
and chose λ based on which value performed best on the
validation set.

4. Data
Our models are evaluated on videos from the YouTube

Faces Database (YFDB) [30], which is a large database of
“real world” videos of faces found on YouTube, and not
taken from a controlled, laboratory environment. Videos



from YFDB contain a wide variety of motions, hair/skin
shapes, lighting conditions and occlusions, making them
challenging to label. An example of a video and its cor-
responding labeling is shown in Figure 1.

Aligning an object in an image into a canonical position
as a pre-processing step has been found to be helpful for
tasks such as face recognition [10]. For the face videos from
YFDB, we tried several alignment approaches: (1) a pre-
learned deep funnel using the method of [11], and (2) a pre-
learned SIFT-congealed funnel using the approach of [10]
and (3) the YFDB-provided alignment. Both funnels were
pre-learned on LFW images2 and alignment was performed
for each video frame independently.

However, these approaches generally result in an unsta-
ble, coarse alignment. In many cases there are significant
scale differences between frames and other transformation
instabilities. Therefore, we resorted to a simpler approach
to avoid using an unstable alignment. We used the output of
the Viola Jones face detector [25], but fixed the height and
width of the detected face box to the mean height and width
of the detected face boxes for all frames in the video. Then,
for each frame, a bounding box for the face is cropped out
from the center of the face detection (provided by YFDB),
using the dimensions of the mean width and height for the
video. Following the process of LFW [13], the bounding
box is expanded by a factor of 2.2 in each direction and then
resized to 250 × 250 pixels. This simple fix tends to pro-
duce a stable, temporally smooth set of frames. Afterward,
we use temporal superpixels (TSP) [3] to segment the video
frames (there are about 300-400 superpixels per frame).

Features. The same set of features is used as in [12, 14].
The node features are:
• Color: Normalized histogram over 64 bins generated

by running K-means over pixels in LAB space. Each
pixel is assigned to its closest centroid and a normal-
ized histogram is computed using all the pixel assign-
ments within a superpixel.
• Texture: Normalized histogram over 64 textons which

are generated according to [17]. Each pixel is assigned
to a texton and a normalized histogram is computed for
all the pixel assignments within a superpixel.

The following edge features are computed between a pair of
adjacent superpixels:
• Probability of Boundary (Pb) [18]: Sum of Pb values

between adjacent superpixels.
• Color: L2-distance between color histograms for ad-

jacent superpixels.
• Texture: Chi-squared distance between texture his-

tograms for adjacent superpixels.
2The SIFT-congealed funnel was used to attain the image alignments

for the previous GLOC [14] experiments.

These edge features are also used for the temporal potentials
between adjacent frames, except for the Pb feature. It is
unclear how to incorporate the Pb feature, which is defined
spatially within a frame, in this temporal manner.

5. Experiments
In our experiments we chose 50 videos randomly from

YFDB and labeled a “chunk” of 11 consecutive frames
per video. We manually labeled all chunks into hair, skin,
or background regions, resulting in a total of 550 labeled
frames. The labeled data is then divided into 5 disjoint sets
for use in cross validation. For each split, 3 of the folds are
used for training, 1 for validation and 1 for testing. There
is only one instance of each person in the 50 videos, so the
same person is never used for training and testing. Below,
we describe the progression of models from the baseline
SCRF to the STRF model, and show results in Table 1.

• SCRF. Since each training split contains only 330 im-
ages, an additional 500 labeled images are added from
the Part Labels Database3. This database contains hair,
skin, background labeled images from LFW [13].
• SCRF + Temporal. Temporal potentials are added

into the SCRF by learning tradeoff parameters κ1, κ2
from the validation fold.
• SCRF + RBM (GLOC) [14]. This model is trained

piecewise in which the SCRF and RBM components
are trained separately and then combined together us-
ing a tradeoff parameter λ found from validation. We
also trained a joint GLOC model4 using default param-
eters (again adding 500 training images to each train-
ing fold) but this did not perform as well as the piece-
wise GLOC model. It is possible that GLOC may be
sensitive to the choice of hyperparameters, which may
have contributed to this drop in performance.
• SCRF + RBM + Temporal. Temporal potentials are

added to GLOC, using the same tradeoff parameters
λ, κ1, κ2, discussed earlier.
• SCRF + CRBM. A tradeoff parameter λ is used to

weight the CRBM and SCRF components.
• STRF. The temporal potentials and CRBM compo-

nents are combined by reusing the same parameters
from previous models.

Specific parameters in our experiments are: K = 400, R =
32, N = 16, Q = 3. Parameters such as W can vary for
each cross validation split depending on which values per-
formed best on the validation fold. For each video frame,
STRF takes about 0.28 (sec) for inference on an Intel i7.
Results. Table 1 shows the results of cross-validation for
the following metrics (with respect to superpixels).

3vis-www.cs.umass.edu/lfw/part_labels/
4Code from vis-www.cs.umass.edu/GLOC/index.html

vis-www.cs.umass.edu/lfw/part_labels/
vis-www.cs.umass.edu/GLOC/index.html


Error Overall Category
Model Reduction Accuracy Hair Skin BG Average
SCRF 0 0.902 ± 0.005 0.629 ± 0.047 0.891 ± 0.025 0.958 ± 0.005 0.826 ± 0.009

SCRF + Temp 0.034 ± 0.034 0.905 ± 0.006 0.698 ± 0.038 0.878 ± 0.028 0.953 ± 0.006 0.843 ± 0.007
SCRF + RBM [14] 0.028 ± 0.025 0.905 ± 0.006 0.608 ± 0.038 0.900 ± 0.023 0.963 ± 0.003 0.824 ± 0.008

SCRF + RBM + Temp 0.096 ± 0.018 0.911 ± 0.006 0.655 ± 0.027 0.901 ± 0.022 0.964 ± 0.004 0.840 ± 0.006
SCRF + CRBM 0.036 ± 0.015 0.905 ± 0.005 0.632 ± 0.046 0.894 ± 0.023 0.961 ± 0.004 0.829 ± 0.010

STRF 0.123 ± 0.025 0.914 ± 0.006 0.720 ± 0.039 0.889 ± 0.025 0.959 ± 0.004 0.856 ± 0.010
Table 1. Labeling performance. All metrics are with respect to superpixels. For each model, the mean and standard error of the mean
(SEM) are given for each metric (from cross-validation). For each metric, the result in blue indicates the best performing model and results
in italics indicate models with performances not statistically significantly different than the best model at the p = 0.05 level as measured
by a two-sided paired t-test. Numbers in regular typeface indicate results that are significantly different from the best model.

• Error reduction: Error reduction in overall superpixel
accuracy with respect to the SCRF.
• Overall accuracy: Number of superpixels classified

correctly divided by total number of superpixels.
• Category-specific accuracy: For each class, the num-

ber of superpixels classified correctly divided by the
total number of superpixels.
• Category average: Average of the category-specific

accuracies.

The mean and standard error of the mean (SEM) for these
metrics are reported for all models. In addition, we com-
puted two-sided paired t-tests for STRF compared with all
other models. With the exception of the SCRF + Tempo-
ral and SCRF + RBM + Temporal models, STRF results
in significant improvements over other models for the fol-
lowing metrics: error reduction, overall accuracy, hair accu-
racy, and category average. We note that for these metrics,
STRF still outperformed the SCRF + Temporal and SCRF +
RBM + Temporal models in terms of the mean scores. For
the skin and background classes, the top performing model,
SCRF + RBM + Temporal, is not significantly different than
the other models.

Qualitative results are shown in Figure 5 for two video
clips (more qualitative results are in the supplementary ma-
terial). In the first case, the SCRF guesses can vary signif-
icantly from frame to frame, possibly due to a lack of tem-
poral smoothing or a global shape prior. SCRF + RBM re-
sults show more consistency but still contain errors. STRF,
which incorporates both temporal and shape dependencies,
results in the best overall label shape and consistency. In
the second case, STRF results in a significantly better over-
all labeling compared to other models as both the hair and
skin shapes are more “filled out” and realistic.

In some cases, STRF may be propagating errors from
previous frames. It is possible that information from future
frames may be helpful in mitigating the effects of this error
propagation. We can revise revise our inference procedure
to incorporate both forward and backward passes through
the frames, which may lead to better labeling performance

but at the cost of complicating the inference.
Voting. A “voting” approach may be used as a post-
processing step after a model such as STRF generates its
label guesses. The majority label guess of a TSP is used
as the label guess in all frames covered by the TSP, which
may help to smooth the labels using information across the
video. This “voting” approach used on the STRF guesses
results in a small 0.07% improvement in overall superpixel
accuracy over STRF. The disadvantage of this approach is
that it may require inference on the entire video depending
on the coverage of the TSPs.
CRBM Filters. Some of the learned weights (or filters)
from the CRBM are shown in Figure 6. Each row in the
figure corresponds to the filters for a particular hidden unit.
The history weights B are shown to the left of the white
line and the corresponding pairwise weights W are shown
to the right. Note that in Figure 2 there are two previous
time steps used as history, but the filters in Figure 6 show
three previous time steps. The history weights seem to learn
some of the pose and overall label shape of the correspond-
ing pairwise weights.

Figure 6. Sample of learned history weights B and pairwise
weights W . History weights B are shown to the left of the white
line and corresponding pairwise weights W are shown to the right.
Each row corresponds to the {B,W} weights of a particular hid-
den unit in the CRBM. The strength of hair weights is shown in
red and the strength of skin weights is shown in green.

Discussion. The task of labeling face regions in videos is
challenging due to the variety of hair and skin appearances



Figure 5. Qualitative results. We show two cases where STRF outperforms baselines. In both cases, every other frame from a labeled
chunk is shown. The rows correspond to 1) original video frames, 2) ground truth, 3) SCRF, 4) SCRF + RBM, and 5) STRF .

and shapes, complex motions of faces, as well as difficult
lighting conditions and occlusions. For this task, we pre-
sented the Shape-Time Random Field (STRF) which incor-
porates both shape and temporal dependencies into a dis-
criminative framework for semantic labeling in video. We
discussed efficient inference and learning techniques using
STRF and demonstrated both quantitative and qualitative
improvements over competitive baseline models.
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