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Abstract

In this paper, we propose a novel rigid motion segmen-
tation algorithm called randomized voting (RV). This algo-
rithm is based on epipolar geometry, and computes a score
using the distance between the feature point and the cor-
responding epipolar line. This score is accumulated and
utilized for final grouping. Our algorithm basically deals
with two frames, so it is also applicable to the two-view
motion segmentation problem. For evaluation of our algo-
rithm, Hopkins 155 dataset, which is a representative test
set for rigid motion segmentation, is adopted; it consists of
two and three rigid motions. Our algorithm has provided
the most accurate motion segmentation results among all of
the state-of-the-art algorithms. The average error rate is
0.77%. In addition, when there is measurement noise, our
algorithm is comparable with other state-of-the-art algo-
rithms.

1. Introduction
In the video processing, recognizing different motions

among rigid objects is an essential process such as video
compression, moving object segmentation and motion anal-
ysis. Many researchers have tried to resolve this problem.
The motion segmentation algorithms can be classified into
two categories, according to the number of views. Two-
view-based motion segmentation is a traditional computer
vision problem, which has been typically approached from
a geometrical perspective [16, 20, 10, 7, 13]. Since the Hop-
kins 155 motion segmentation dataset [17] was released,
various multiview-based approaches have been widely de-
veloped and applied to the dataset. The principal angles
configuration (PAC) [21] and sparse subspace clustering
(SSC) [4] methods have shown particularly successful re-
sults. These algorithms are robust to noises, but they are
extremely slow, so they are difficult to apply to real appli-
cations. To compensate for this weakness, incrementally-
complex local models-(ICLM) based motion segmentation
algorithm was proposed [5]. This algorithm is fast as well

(a) Original Video (b) Point Sampling

(c) F for Red Points (G1) (d) F for Green Points (G2)

(e) Voted Score (f) Segmentation Result

Figure 1. Concept of the proposed method. (a) The video is
obtained from [15]. (b) The red circle indicates the supporting
points for extracting fundamental matrix for G1 and the green cir-
cle points estimate the fundamental matrix for G2. (c),(d) Epipo-
lar lines corresponding to the fundamental matrices and circled
points. (e) Voting score for each point using the distance between
the epipolar line and the point. (f) Final segmentation result.

as robust to data noise, comparable to state-of-the-art algo-
rithms. However, it has lower accuracy than other state-of-
the-art algorithms for noise-free data.

In this paper, we focus on three issues, as follows:

• We develop a motion segmentation algorithm that
works within a reasonable time and has high accu-
racy with noise-free data.

• Robustness to noise is also satisfied.
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• Even though there are only a few frames (only two
frames in worst cases), the performance should not be
degraded.

We propose a randomized voting(RV) method as shown
in Figure 1, which votes high scores for correctly esti-
mated motion, and low scores for invalid motion. This
scheme helps in that correctly estimated motion from ar-
bitrary points survive, and wrong one disappear. This phe-
nomenon is our algorithm’s fundamental principle, and it
is useful for solving motion segmentation problems. Com-
pared to the traditional two-view-based approach, the pro-
posed randomized voting scheme is also based on the epipo-
lar geometry but the key difference is that randomized vot-
ing does not throw away the information provided by epipo-
lar geometry even when the points selected to estimate the
fundamental matrix do not belong to the same motion.

As a result, our algorithm is the most accurate among
state-of-the-art algorithms, performing in a reasonable time.
The algorithm is also robust to the noise comparable with
other state-of-the-art algorithms. In particular, our algo-
rithm is applicable to both two-view and multiview motion
segmentation problem, in contrast to other state-of-the-art
algorithms.

1.1. Related Work

Various approaches for solving the motion segmentation
have been proposed such as multibody factorization [2],
subspace clustering [4, 8], subspace fitting [19], epipolar
geometry method [16, 20, 10, 7, 13], agglomerative lossy
compression [14] and other approaches [23]. Those
algorithms can be classified into two groups; two and multi
view-based approaches.

Two-view-based approaches are usually based on epipolar
geometry. One of recently proposed approaches tried to
deal with outliers by using RANSAC and enhanced Dirich-
let process mixture models [7]. Another approach [13]
defined global dimension minimization in order to reveal
the clusters corresponding to the underlying subspace.
These two approaches use only two frames for motion
segmentation. In other words, even though multiple frames
are available, these approaches do not have an ability to
utilize motion information in multiple frames.

Multiview-based approaches utilize the trajectory of fea-
ture points unlike two-view-based approaches. PAC [21]
and SSC [18] methods have quite accurate results in both
two and three motion cases. Furthermore, those algorithms
are also robust to noise. However, those algorithms are ex-
tremely slow as mentioned in Section 1. Latent low-rank
representation-based method (LatLRR) [11] is faster and
more accurate, but this method is degraded in extremely
noisy environments (Figure 6). ICLM-based approach [5],

which has been recently proposed, is very fast, but has lower
accuracy than other state-of-the-art approaches.

Such multiview-based approaches are more accurate
than two-view-based approaches, but they do not have a
good performance when there are only a few frames (Fig-
ure 7).

1.2. Background

Epipolar geometry is the intrinsic projective geometry
between two views, so it depends on the camera internal
parameters and relative pose. The fundamental matrix rep-
resents this epipolar geometry, which satisfies the following
constraint:

xT
2 Fx1 = 0, (1)

where the fundamental matrix F is a 3×3 matrix of rank 2,
x1 and x2 are homogeneous coordinates; x1 = [x y 1]T ;
and x2 = [x′ y′ 1]T .

In equation 1, Fx1 represents an epipolar line in the other
image and x2 lies on the line, so the equation should be zero.
However, in real environments, there are certain errors, such
as measurement, quantization, and round-off errors; due to
these errors, the equation is not exactly zero.

Consequently, for the matrix F estimation, the least
square method can be utilized. Equation 1 can be rear-
ranged as follows:

aT f ≈ 0, (2)

where a = [xx′ xy′ x yx′ yy′ y x′ y′ 1]T and vector f ∈
R9 is obtained by scanning each row of F. Consequently, a
collection of equations 2 for m-points can be rearranged as
follows:

Af ≈ 0, (3)

where A is an m× 9 matrix, which is a collection of vector
aT . Also, the m is the number of corresponding points.

The degree of freedom of the matrix F is eight since the
ninth element is fixed as one; therefore, at least eight cor-
responding points are required for the fundamental matrix
estimation. However, the matrix is of rank 2, so seven is the
minimal number of points required.

f̂ = argmin
f
||Af ||, (4)

The f̂ is easily estimated by using a singular value decom-
position method [6]. This method is known as direct linear
transformation (DLT).

1.3. Notation

Before explaining our proposed algorithm, the notation
is defined in this section. We usually use terms like “group”
and “cluster” interchangeably; the notation is defined as fol-
lows:

X = G1 ∪G2 ∪ . . . ∪Gc, (5)



(a) Frame k (b) Frame l

Figure 2. Motion segmentation with epipolar geometry. (a)
Green points are used for the estimation of the fundamental ma-
trix. The red cross is the point existing on the bicycle (same mo-
tion with the green cross), and the yellow cross represents the point
having different motion. (b) The red and yellow line are extracted
by the red and yellow points with F estimated from the green
points in frame k. The corresponding red point in frame l lies
on the red line, but the corresponding yellow point does NOT lie
on the yellow line.

X is the set of whole points and Gi the disjoint set of points
belonging to the ith group where i = 1, . . . , c. Also, c rep-
resents the total number of clusters.

To express points, we use xi where i = 1, . . . , n. This
is a homogeneous coordinate of the point, and n is the to-
tal number of points. Hence, the point set X is defined as
follows:

X = {x1, x2, . . . , xn}, (6)

In the video, there are many frames, so we express
the frame index by a superscript, such as x

(j)
i where i =

1, . . . , n, j = 1, . . . , f , where f is the total frame number
of the video. Therefore, x(j)

i represents the homogeneous
coordinate of the i-th point in frame j. A superscript with-
out parenthesis is defined as an iteration number. In other
words, Gt

i means the i-th group at iteration t. Also, we
define matrix F(k,l) as a fundamental matrix estimated by
the k and l-th frames. The histogram storing voting score
is denoted by h[·], and hi[·] means the histogram for point
i = 1, . . . , n with c bins.

2. Methodology
2.1. Motion Segmentation with Epipolar Geometry

The proposed motion segmentation algorithm is based
on the epipolar geometry, which is represented by matrix F.
This matrix F, obtained from the moving object, indicates
motion because it encapsulates the intrinsic geometry. We
utilize two properties of the fundamental matrix for motion
segmentation as follows:

Property 1. Points on the same moving rigid object have
the same matrix F.

Property 2. If a set of points lies on the same mov-
ing object in an image, the corresponding points in the

other frame lie on the corresponding epipolar lines. Even
if the points are not used for estimating the matrix F, the
same moving object’s corresponding points lie on the lines.

For instance, if there are ten points on the same mov-
ing object, nine particular points can be used for estimating
the matrix F. Then, the distance between the remaining
one point and the corresponding epipolar line, computed
from the matrix F, is zero, from equation 1. On the other
hand, if a point does not lie on the corresponding epipolar
line, two cases can be considered; the point does not lie
on the same moving object, or the estimated matrix F is
invalid. Figure 2 demonstrates these properties. We use the
properties to solve the rigid motion segmentation problem.
If the distance between the epipolar line and the point is
small, the point is likely to belong to the same group and
vice-versa.

Various methods, such as algebraic distance, and geo-
metric distance and its approximation, are used to measure
the distance between the point and the epipolar line [6]. We
utilize the Sampson distance, which is the first order ap-
proximation of a reprojection error, as follows:

SD(x, y,F) =
yTFx

(Fx)21 + (Fx)22 + (Fy)21 + (Fy)22
, (7)

where, for instance, (Fx)2j represents the square of the j-th
entry of the vector Fx. If we know the matrix F for each
object, the sum of the distances over the whole frames is
approximately zero when there are noises, as follows:

E(Xk,Fg) =

f∑
i=1

f∑
j=1

SD(x
(i)
k , x

(j)
k ,F(i,j)

g ) ≈ 0, (8)

where Fg is a set of fundamental matrices estimated from
object g and Xk is a trajectory of the k-th point. Conse-
quently, for motion segmentation, we can find the label that
minimizes the function.

ĝ = argmin
g

E(Xk,Fg), (9)

where ĝ is an estimated group of the k-th point with Fg.
Thus, if the fundamental matrices for all the motions
are known, whole points can be easily clustered into the
corresponding objects and vice-versa. However, in motion
segmentation, both labels and fundamental matrices are
unknown. This is a chicken and egg problem.

2.2. Randomized Voting Algorithm

As mentioned in the previous section, the proposed
epipolar geometry-based motion segmentation approach is
difficult due to the chicken and egg problem. To resolve the
problem, we approach it using an iterative method. First, the



Algorithm 1 Randomized Voting
Input: {Xi, Gg, hi[·]}; i = 1, . . . , n; g = 1, . . . , c
Output: {Gg , hi[·]}; i = 1, . . . , n; g = 1, . . . , c

1: k, l← random frame number
2: for each group Gg ⊂ X do
3: p ∼ U(0, 1) // uniform random variable
4: if p < Tp then
5: Select m-points in Gg with the highest votes
6: else
7: Randomly select m-points from Gg

8: end if
9: Estimate Fg using selected m-points

10: for each point x(k)
i ∈ X do

11: di = SD(x
(k)
i , x

(l)
i ,F

(k,l)
i )

12: hi[g] = hi[g] + e−λdi

13: hi[g̃] = hi[g̃]− e−λdi + 1 for all g̃ ̸= g
14: end for
15: end for
16:
17: Update each Gg , g = 1, . . . , c
18: hi[·]← αhi[·] for i = 1, . . . n

labels are initialized randomly, and the fundamental matri-
ces are estimated using the initial labels. Next, we update
the labels using the fundamental matrices, and the process
is repeated. In this process, we adopt a voting scheme to uti-
lize the information from a previously estimated fundamen-
tal matrices. We call this algorithm ”randomized voting”.
This method is well illustrated in Figure 3.

Our algorithm randomly selects m-points and estimates
the fundamental matrix F using the selected points. Then,
the Sampson distance is calculated by using the matrix F
for all the points. We vote scores for the whole points based
on the distance. Finally, the label is assigned according to
the value of the score. The randomized voting algorithm is
explained in Algorithm 1.

2.2.1 Random Frame Selection

For the estimation of a matrix F, two-view images are nec-
essary, basically. Neighboring frames can definitely be used
as two-view images, but the objects movements may not
show up. Furthermore, this can lead to inaccurate estima-
tion of F, so a different motion may not be well separated.

To avoid this problem, we utilize all combinations of
views, and this method generates many more cases; if there
are f frames, we have

(
f
2

)
combinations of views. However,

to deal with all cases can be a hard work, if f is increasing,
so we utilize a subset of the combinations of views by se-
lecting two frames randomly.

Figure 3. Randomized voting. To resolve the chicken and egg
problem, our algorithm initializes the points as random label.
Based on the label, each matrix F is estimated and we vote scores
for each point. Then, each point is relabeled using the score. This
process is iteratively performed to find the solution.

2.2.2 m-Points Random Sampling

When m-points are selected for the estimation of F, most
of points should lie on the same moving object. In order
to satisfy this condition, neighboring feature points may be
useful; because they are located close to each other, so they
are more likely to belong to the same moving object. How-
ever, the movement of feature points in the local area can be
different from the object’s motion. Therefore, we present
another method to select m-points using the accumulated
histogram.

In our method, with probability (1 − Tp), m-points are
uniformly and globally selected from the same cluster, but
with probability Tp they are selected from among best-voted
m-points. The best-voted points are occasionally used to
increase the probability of the points belonging to same ob-
ject. If this method is solely used, the matrix F may be
inaccurate due to fitting to the local motion. Finally, this
causes wrong segmentation results.

For instance, suppose there is a long rectangular object
that is rotating and the instantaneous center is the center of
the object. When the points are selected far from the instan-
taneous center, the matrix F cannot represent the entire mo-
tion of the object well, due to the local motion ambiguity
with the translation motion. To prevent this phenomenon,
we also select m-points randomly from all the points be-
longing to the corresponding group.

2.2.3 Fundamental Matrix Estimation

We utilize the fundamental matrix F to represent the motion
of an object. The matrix F can be estimated using several
methods such as normalized-DLT and gold-standard algo-
rithm. Most representative method for estimating the ma-
trix F is a normalized-DLT method [6], which minimizes



algebraic error. The solution is simply computed by using
a singular value decomposition, so it is fast and efficient.
However, because it minimizes algebraic error, this method
can be less accurate compared to other methods like a gold-
standard algorithm [6].

Our algorithm iteratively finds a solution, therefore the
estimation should be performed several times. Any algo-
rithm can be used for the estimation of the matrix F, but we
adopt normalized-DLT method to make faster algorithm. In
the proposed algorithm, the estimation error does not mat-
ter, because the error effect is decreased during voting score.

2.2.4 Score Voting

For computing the score of a point, we use the Sampson
distance, which is a suitable metric to use as an evaluation
criteria. Once the fundamental matrix F is estimated, the
distance di = SD(x

(k)
i , x

(l)
i ,F

(k,l)
g ) between the epipolar

line from the matrix F
(k,l)
g , and each point x(k)

i is calcu-
lated, where i = 1, . . . , n, g = 1, . . . , c. Then each point
xi ∈ X is voted by e−λdi where the parameter λ controls
the voting strength. If the value of λ is small, then it gives
a large voting value to the point and vice-versa. This means
that the lower value, more robust, but discriminative power
also decreases.

hi[g]←hi[g] + e−λdi , (10)

where hi[g] is a histogram with bin g = 1, . . . , c and
i = 1, . . . , n. In other words, if the distance value is large, a
histogram of the point is accumulated by small values where
the accumulated histogram has c bins. In this step, our
algorithm also votes scores to other groups with the same
di = SD(x

(k)
i , x

(l)
i ,Fg), as follows:

hi[g̃]←hi[g̃]− e−λdi + 1 for all g̃ ̸= g. (11)

This method helps to escape easily from incorrect label.
If the algorithm is repeated infinitely, the accumulated

value of the bin of the histogram hi[g] represents the likeli-
hood of point xi belonging to the corresponding group Gg;
and for i = 1, . . . , n we assign point i to group Gĝ, where

ĝ = argmax
g

hi[g] for i = 1, . . . , n. (12)

It is natural that each point belongs to the highest voted
cluster. Finally, the histogram decays by multiplying a for-
getting factor α, because incorrect information can exist in
the accumulated score. If the α is small, incorrect informa-
tion can be reduced, but the algorithm is difficult to con-
verge. On the contrary, if its value is large, the algorithm
is easily converged. However, it does not have good perfor-
mance.

Algorithm 2 Motion Segmentation Algorithm
Input: Xi, i = 1, . . . , n // points trajectories.
Output: Gg, g = 1, . . . , c

1: t← 1 // initialize the trial number
2: repeat
3: t← t+ 1
4: Randomly initialize Gt

g for g = 1, . . . , c
5: ht

i[g]← 0 for i = 1, . . . , n; g = 1, . . . , c
6: k ← 0 // initialize the voting number
7: for k < Ti do
8: {Gt

g}cg=1, {ht
i[·]}ni=1

9: ← RV( {Xi}ni=1, {Gt
g}cg=1, {ht

i[·]}ni=1)
10:
11: if k = Tr then // reinitialization at Tr

12: ht
i[g]← 0 for i = 1, . . . , n; g = 1, . . . , c

13: end if
14: k ← k + 1
15: end for
16: until t = T or {Gt

g}cg=1 is not changed over Tc

17:
18: if {Gt

g}cg=1 is not changed over Tc then
19: A← AffinityMatrix({ht

i[·]}ni=1, {Gt
g}cg=1)

20: Gg ← SpectralClustering(A)
21: else
22: Gg ← Gt

g for g = 1, . . . , c // when converged
23: end if

2.3. Motion Segmentation

In this section, we present a motion segmentation algo-
rithm using the randomized voting algorithm results. This
algorithm is explained in Algorithm 2. First, it starts as a
randomly initialized group, and performs randomized vot-
ing until Ti iteratively. Then, the histogram is accumulated
by randomized voting process, but it is possible to be in-
correct due to random initialization, so our algorithm reini-
tializes each histogram at Tr while preserving Gg, where
g = 1, . . . , c.

To define the termination condition, we set up two crite-
ria: iteration number and convergence. To test for conver-
gence, our algorithm checks to insure that the randomized
votings result is not changed during Tc. If Tc is large, our
algorithm can be more stable, because it mostly depends on
the spectral clustering. If the results are not converged, our
algorithm is terminated by force at t = T .

The result of the randomized voting is reliable when
the result is converged. However, if the iteration is termi-
nated without convergence until the maximum number of
trials, the results are less reliable. In other words, the re-
sults can vary, so each point cannot belong to a particular
group. In this case, our algorithm aggregates all the his-



Figure 5. Distributions of 155 error rates. Our algorithm is com-
pared to state-of-the-art algorithms.

tograms and grouping results over the T trials to decide the
final grouping. To this end, we utilize a spectral clustering
method [12].

First, we define matrix Ht as follows:

Ht =


ht
1[1] ht

1[2] · · · ht
1[c]

ht
2[1] ht

2[2] · · · ht
2[c]

...
...

. . .
...

ht
n[1] ht

n[2] · · · ht
n[c]

 , (13)

where Ht is an n × c matrix. We build the matrix V using
Ht and Gt.

V =
[
H1 · · · HT l(G1) · · · l(GT )

]
, (14)

where V is an n × (c + 1)T matrix. Also, l(·) is a column
vector of the label index.

Finally, affinity matrix A is built using an inner product
between the row of V and column of V as follows:

A = VVT , (15)

where matrix A is an n × n affinity matrix. This A matrix
is used as an input for the spectral clustering.

Figure 4 (a), (b) shows the final motion segmentation re-
sults and the (c) is final voting score for each group. While
iterating the randomized voting algorithm, the score in-
creases as shown in Figure 4 (d), (e), (f). Especially, when
the k reaches to the Tr, the score is initialized to the zero.

3. Experimental Evaluation
We adopted the Hopkins155 dataset [17] to evaluate

our algorithm. This dataset has been commonly used for
testing motion segmentation problems. It consists of 155
sequences: 120 and 35, for two and three rigid motions,
respectively. We compared the error rate of the proposed
algorithm with those of state-of-the-art methods.

RANSAC is basic subspace fitting algorithm, and a gen-
eralized principal component analysis (GPCA) is proposed

Figure 6. Accuracy with multiple levels of Gaussian noise. We
performed just one test for SSC and PAC due to high computa-
tion time requirements. Our algorithm RV, and LatLRR were per-
formed 10 times and 20 times, respectively.

Figure 7. The average error rates according to the number of
input frames. Our algorithm showed the lowest average error
rates even if there are few frames.

in [19]. SCC means spectral curvature clustering which is
presented in [1]. The spectral clustering (SC) method and
ranking of locally sampled subspaces (RLS) are presented
in [9] and [3], respectively. Moreover, LCV [23] is linear
combination of views based algorithm. SSC [4], PAC [21],
LatLRR [11], and ICLM [5] are mentioned in Section 1.1.
Also, LBF is local best-fit flats [22].

Accuracy with noise-free data. Table 1 lists average er-
ror rates according to two-motions, three-motions, and both.
Our algorithm is based on random initialization and selec-
tion, so there were variations. Consequently, we repeated
our algorithm 150 times, and the average was computed.
Our algorithm achieved a 0.77% average error rate, and
its standard deviation was 0.27%. Similarly, we achieved
0.44% and 1.88% average error rates for two- and three-

SSC PAC LatLRR ICLM RV
sec 11026 123960 557 217 1017

Table 2. Total processing times. These are measured in the same
computer system, except for ICLM.



(a) Frame k (b) Frame l
(c) Accumulated Voting Score

(d) Circled Green Point (e) Circled Blue Point (f) Circled Red Point

Figure 4. Demonstration of voting score. (a),(b) Segmentation results with two-view. Green points belong to Group 1, and red and blue
points are assigned to Groups 2 and 3, respectively. (c) Final voting scores for points. The point index is rearranged according to the
ground truth (GT) label. (b),(e),(f) Voting scores for points circled by red, blue, and green, respectively, in (a).

RANSAC GPCA SCC LCV SSC SC LBF PAC LatLRR RLS ICLM RV
Total 9.48 10.02 2.70 1.86 1.24 1.2 1.35 1.24 0.85 1.03 3.81 0.77
Two 5.56 4.59 1.77 1.25 0.82 0.94 0.98 0.96 n/a 0.65 n/a 0.44

Three 22.94 28.66 5.89 3.97 2.45 2.11 2.64 2.22 n/a 2.11 n/a 1.88

Table 1. Total error rates. The first row represents average error rates for all (155 sequences). The second and third rows are two (120
sequences) and three (35 sequences) motions, respectively. N/a means the value is not presented in the corresponding paper.

motions cases.
Figure 5 shows the distribution of 155 error rates.

Our algorithm is comparable to the best performance
(PAC) when the error rate is below 3%. Using our algo-
rithm, there were no cases with error rates greater than 20%.

Robustness test. For another experimental setup, un-
der noisy environmental conditions, we directly added
artificial noise to the raw feature points, in contrast to
method [5]. We used four Gaussian noises with a zero
mean and different diagonal covariance matrix Σn = σ2

nI,
σn ∈ {0.5, 1, 2, 4}, where I is a 2 × 2 identity matrix.
The accuracies with the noise are shown in Figure 6. Our
algorithm showed comparable performance to the others.

The number of frame. To evaluate the performance ac-
cording to the input number of frames, we manually chose
the frames for three cases as follows: 1st and 5th frames
(1-5) for two-view, 1-5-10 for three-view, and 1-5-10-15 for
four-view. As depicted in Figure 7, the average error rates
tend to decrease as the number of input frames increase. In

all three cases, the performance of our algorithm showed
the lowest error rate when compared to the other algorithms.

Computational time. Table 2 indicates the total processing
times for the state-of-the-art algorithms with full frames.
We measured the computation times in the same computer
system. Our algorithm’s running time was 1 or 2 orders of
magnitude faster than SSC and PAC, and close to LatLRR
in terms of magnitude. The computation time for ICLM was
obtained from [5] due to the absence of source code.

4. Conclusion

In this work, we proposed a novel rigid motion segmen-
tation algorithm based on the randomized voting method,
which was inspired by a voting scheme. Our proposed al-
gorithm has an ability to provide large scores for correctly
estimated motion and low scores for invalid motion.

As a result, our algorithm achieved excellent perfor-
mances with average error rates of 0.44% for two-motions,
1.88% for three-motions, and 0.77% for the total motion



using full frame. Additionally, our algorithm is also appli-
cable to two-view motion segmentation, because our algo-
rithm is basically based on the two-view-based framework.
Consequently, we applied our algorithm to few-frame-based
motion segmentation problem, and our algorithm was not
degraded like other state-of-the-art algorithms.

Remaining issues for our algorithm are as follows: We
did not consider controlling outliers in this paper. However,
this is also important issue in motion segmentation problem.
Also, our algorithm’s accuracy decreases, when the σ of
noise has a high value.

In conclusion, our algorithm achieved, within a reason-
able time, the highest performance of all other state-of the-
art algorithms, and also achieved comparable accuracy un-
der noisy environmental conditions.
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