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Abstract

A recent trend of research has shown how contex-
tual information related to an action, such as a scene
or object, can enhance the accuracy of human action
recognition systems. However, using context to im-
prove unsupervised human action clustering has never
been considered before, and cannot be achieved using
existing clustering methods. To solve this problem, we
introduce a novel, general purpose algorithm, Dual As-
signment k-Means (DAKM), which is uniquely capable
of performing two co-occurring clustering tasks simul-
taneously, while exploiting the correlation information
to enhance both clusterings. Furthermore, we describe
a spectral extension of DAKM (SDAKM) for better
performance on realistic data. Eztensive erperiments
on synthetic data and on three realistic human action
datasets with scene context show that DAKM/SDAKM
can significantly outperform the state-of-the-art clus-
tering methods by taking into account the contextual
relationship between actions and scenes.

1. Introduction

Much recent research in the field of computer vision
has focused on the representation and recognition of
human actions from varied sources, such as YouTube
videos and Hollywood films. In these realistic videos,
the actions usually have a considerable amount of con-
text — in particular, the place it is performed in, or
the object it is performed with. This context informa-
tion can be integrated into an action recognition sys-
tem to help disambiguate between similar classes, and
thereby improve classification results, as demonstrated
in Marszalek et al. [7]. If an action’s scene context is
recognised as a basketball court, for instance, this in-
forms us that the action to be classified is more likely
to be “playing basketball” - Figure 1 illustrates this
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Figure 1: Above: various stills from videos, showing
human actions happening in different scene contexts.
Below: a simple model example of an action/scene re-
lationship table. The information in this table can be
directly inferred from training data in supervised learn-
ing, but in unsupervised learning it must be estimated
simultaneously with the action/scene categories.

concept.

While context for supervised action recognition has
been explored, however, no previous research has con-
sidered using context for unsupervised human action
clustering. This is important to consider, as accurate
unsupervised and semi-supervised clustering of human
actions is crucial to many practical tasks, such as au-
tomatic annotation of video databases or fast content-
based video retrieval. Action clustering can also assist
in determining the semantic similarity of two videos’
contents, which can be used, for example, to enhance
the recommendation systems of video databases. How-
ever, it is not straightforward to apply existing action
context research to action clustering. In existing work,
labeled training data is typically available for both the



actions and the context, which permits direct infer-
ence of the relationship between the action categories
and their contexts — it is straightforward to construct
a contextual recognition model based on this relation-
ship. For the goal of action clustering with context, on
the other hand, no training labels are provided, and
so the action/context relationship cannot be learned
directly. It is instead necessary to simultaneously esti-
mate the action clustering, the context clustering, and
the action/context relationship together.

In this paper, to perform unsupervised action clus-
tering with context, we propose the idea of dual as-
signment clustering and the novel Dual Assignment k-
Means clustering algorithm (DAKM). This algorithm
learns two clusterings of a dataset according to two
views of the dataset, using the relationship between
the views to improve both clusterings. We first demon-
strate the theoretical applicability of DAKM on syn-
thetic data, then combine it with a spectral representa-
tion to show state-of-the-art results on several realistic
human action datasets (using actions and scenes as the
two views).

The rest of this work is structured as follows. We
outline previous works in clustering and contextual hu-
man action recognition in Section 2. Section 3 de-
fines dual assignment clustering, and details the Dual
Assignment k-Means (DAKM) clustering algorithm as
well as its spectral extension. Experiments on syn-
thetic data and three realistic human action datasets
are given in Section 4. We conclude with a discussion
of our findings in Section 5

2. Previous Work

Many recent works on human action recognition
have considered the effect of context. Marszalek et al.
[7] demonstrate how two classifiers can be trained —
one for actions and one for scenes — and then used in
combination to improve the classification results with
a set of weights associating the two classifiers. Ikizler-
Cinbis and Sclaroff [3] go further, combining object,
scene and action information in a multiple instances
learning framework, to improve the classification per-
formance of YouTube videos. Prest et al. [10] use a
weakly supervised framework to learn the interaction
between human actions and the objects in the scene,
in particular learning the spatial relationship between
actions and objects. All of these techniques rely upon
training data, however, to learn the relationship be-
tween actions and context.

Other works have focused on fully unsupervised clus-
tering of human actions. Yang et al. [14] demonstrate
that a global action descriptor and a temporal match-
ing algorithm provide superior results to local feature

based methods for clustering. Niebles et al. [J] use
pLSA and LDA — techniques originating from natural
language processing — to cluster the actions based on
the intermediate topics associated with them. Wang
et al. [13] show the effectiveness of spectral cluster-
ing, using a linear programming technique to find the
distance between pairs of action images.
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Figure 2: A visualisation of various clustering ap-
proaches, showing the dependence relationship between
latent categorisations of the dataset, G, and the observ-
able views on that dataset, V. (a) Ordinary Clustering.
(b) Multiview Clustering for two views. (c) Alterna-
tive Clustering for two solutions. (d) Dual Assignment
Clustering.

Recent advances in general-purpose data clustering
should also be considered. In particular, multi-view
clustering [1, 4] and alternative clustering [2] bear some
similarity to dual-assignment clustering. We visualise
how these concepts compare to our own in Figure 2.

Multi-view clustering uses multiple views of the
same dataset, rather than just one view, to improve
clustering performance. It assumes that there is a sin-
gle, true clustering of the dataset, and that the mutual
information between the views can be used to find this
clustering.

Alternative clustering assumes that there are mul-
tiple valid clustering solutions for a single dataset. It
then finds these multiple clustering solutions based on
a single view of the dataset, maximising the optimality
of each individual clustering, but also maximising the
dissimilarity /orthogonality between all the clusterings.

In our algorithm, dual assignment clustering, we as-
sume that there are two valid clusterings of the dataset
(similar to alternative clustering) but we also have two
views on the data (similar to multi-view clustering).
Each valid clustering is associated with one view. We
estimate the mutual information between the two clus-
terings and use it to improve the results of both clus-



terings simultaneously.

3. Dual Assignment Clustering

In this section, we define the problem of dual assign-
ment clustering, describe one possible multi-objective
optimisation approach, and then describe the Dual As-
signment k-Means algorithm (DAKM) as an approxi-
mation to this optimisation.

3.1. Definition

We define the specific dual assignment clustering
problem as follows. We wish to cluster a set of videos
into discrete groups of similar videos. We assume that
there are two separate, valid clusterings of the videos:
the first is based on a video’s scene; the second clus-
tering is according to the action of the video. We also
assume that these two video clusterings are not inde-
pendent — if the scene is known, this provides informa-
tion as to the probability of the action occurring in that
video. Finally, we assume that there are two views of
each video — one view (derived from motion features)
is generated by the action of the video, and the other
view (derived from static features) is generated by the
scene of the video. The aim is to produce both an ac-
tion clustering and a scene clustering, estimating the
relationship between actions and scenes to enhance the
accuracy of both solutions.

In realistic scenarios, the relationship between ac-
tions and scenes is many-to-many. That is, a single
scene can be associated with multiple actions (e.g.,
both cycling and walking a dog can occur in a park),
and a single action can be associated with multiple
scenes (e.g., basketball can be played either indoors
or outdoors). Additionally, in realistic datasets cer-
tain action/scene pairs are more likely than others, and
certain combinations are impossible (e.g., playing bas-
ketball in a swimming pool). We wish to capture the
full complexity of this many-to-many relationship, dis-
tinct from the one-to-one assumption implicitly made
in multi-view clustering, where one action corresponds
to exactly one scene.

We can model this relationship using a correlation
matrix, R. R captures correlation information using
the joint and marginal probability distributions:

R = PAS) (1)

p(A)p(S)
If the labels of the actions and scenes are known, the
joint distribution p(A,S) can be approximated using
the relative contingency table F', where each entry Iy, s
indicates the percentage of videos in the dataset con-
taining both action a and scene s. p(A) and p(S) are

calculated as the relative marginal frequencies of the
actions and scenes in the whole dataset, represented
by M, and M, respectively. R is thus calculated as:

R =F o (M, ® M,) (2)

where ® and © indicates Kronecker product and
Hadamard division operations respectively.  Thus,
R, s = 1 indicates that a and s have no correlation.
Similarly R, s > 1 shows a positive correlation, and
R, s <1, a negative correlation.

3.2. Optimisation Problem

To provide further insight into the clustering prob-
lem, we define it as an optimisation problem. First,
given a set of observations (xi,Xa,...,X,), the basic
k-means hard clustering algorithm optimises the fol-
lowing:

n k
argmin Y3 Cy 1 — 12 (3)
C ==

In hard k-means clustering, C is a binary cluster-
membership matrix, where each element C; ; indicates
whether observation x; belongs to the jth cluster, and
each observation belongs to only one cluster. j; is the
jth cluster centroid.

In the dual assignment problem, the goal is to
cluster two related sets of observations (or views),
(x1,X2,...,Xp) and (y1,y2, -, ¥n), into k¥ and kY sets
C* and CY respectively, where corresponding pairs x;
and y; co-occur, and there is an unknown (but non-
zero) correlation between them. We propose an mod-
ification to the original k-means problem, making a
multi-objective optimisation problem over C* and CY.
The first objective function is:

n  k* kY

argmin » > " CF|Ix; — p|PCY llyi — 1 |1* (4)

C=CY 1 j=11=1

This objective is essentially identical to that of the orig-
inal k-means problem, extended for two sets of obser-
vations. It is intended to reduce the sum of distances-
to-cluster-centroids for both x and y. As this objective
takes the product of the two distances rather than the
sum, we do not need to account for any scale variation
between x and y. The second objective is:

k< kY
argmin — Z ZRj,l IOg(Rj,l) (5)
C*,Cy j=11=1

R is calculated via Equation 2 using Cx and Cy.
Equation 5 roughly corresponds to maximising the mu-
tual information between Cx and Cy. We include this



objective, as we are interested in finding a sparse re-
lationship between the clusters of x and those of y.
When Equation 5 is maximal, R is a uniform matrix,
and no information is shared between the two cluster-
ings — in this case, we would rather apply two individual
clusterings for improved time efficiency. As H(R) (the
joint entropy between x y) decreases, R approaches a
one-to-one correspondence (or when k* # kY, a many-
to-one correspondence) between the clusters in x and
y, and a great deal of information is shared between the
two clusterings. If H(R) is too low, however, R might
be distorted by noise, or may be too sparse to accu-
rately represent the relationship between x and y, so
we balance it with the first objective. Our regularisa-
tion method to balance these two objectives is detailed
below.

3.3. Dual Assignment k-Means Algorithm (DAKM)

Simple Expectation-Maximization clustering ini-
tially seems an ideal solution to directly optimise the
objectives above. This is similar to the method used
for alternative clustering by minimising mutual infor-
mation in [2]. This approach is intractable, however,
due to our calculation of the second objective which
introduces dependence between every row of Cx and
Cy. Instead, we devise an iterative update scheme that
approximately optimises both objectives in Equations
4 and 5. The full method is shown in Algorithm 1.

First, the cluster memberships of both datasets are
initialised separately using the original k-means algo-
rithm (or using another clustering algorithm with bet-
ter guarantees, such as k-means++). Then, R, C*,
CY, u* and p¥ are updated iteratively in a procedure
also inspired by the original k-means.

The first iterative step is to estimate R. We calcu-
late R according to Equation 2, and then normalise it
so all elements sum to one. Then we get R’ according
to Equation 6:

) log(1 + )\Rj)l) (©)
P S log(1+ ARjy)

VR

where A is a user-defined parameter controlling the uni-
formity of R’ and A > 1.

The second iterative step updates the membership
variables C* and CY. For each pair of samples (x;,y;),
we calculate the distance to every pair of clusters j €
[L..k*],1 € [1.kY], and divide by R),;. Then we find
the values of j and [ that minimise the following:

x; — ||+ ||y — 1
argmin”7 11| /||Yz oAl )

Jil 3,0

Algorithm 1: Dual
(DAKM)

Data: Two sets of observations, (x1,Xa, ...,Xp)
and (y1,¥2,...,¥n), where x; and y;
co-occur

k*, kY, the number of clusters in each dataset

A, a parameter controlling the final sparsity of R

Result: Membership vectors C* and CY

begin

(C*, i*) + Kmeans (x, k*)

(CY, 1Y) < Kmeans (y, kY)

repeat

R < UpdateRelationships(C*,CY \)

(C*,CY) «

UpdateMemberships (x,y,u*,uY ,R)

w* < UpdateCentroids (x,C*,k*)

wY < UpdateCentroids(y,CY,kY)
until C* and CY don’t change

Function UpdateRelationships(C*,CY \)

R + zeroes(k*,kY), M* < zeroes(k*)

MY + zeroes(kY)

for i + 1 ton do

Roxey < Roxoy + 5

Mg  ME< +

Mgy & Mgy + 5
R+~Ro(M*®MY) (Eqn 2)

log(1+AR) )
R« Zl%g(l-&-)\R) (Eqn 6)
R

return R
Function UpdateMemberships (x,y,1*, ¥ ,R)
for i + 1 ton do
for j < 1 to k* do
for [ < 1 to k¥ do

‘ dlStS(]al) — ||Xi_uy‘l‘?,t|l|Yi_u?,l‘
(C¥,CY) + argmin dists
4.l
return (C*, CY)
Function UpdateCentroids(d,C,k)
for i <1 to k do
| pi < mean({d|(d,c) € {(d,C)} Ac=i})

return p

Assignment  k-Means

As R/ is the divisor, more points tend to be assigned to
frequent cluster-pairs, and fewer points will be assigned
to rarer cluster-pairs. Over many iterations, this effect
implicitly minimises the second objective — the entropy
of R — shown in Equation 5.

The final step is to update the cluster means of both
datasets independently. This is identical to that in
ordinary k-means. The algorithm terminates when C*
and CY stop changing.



The parameter A acts as a regularisation parameter
— it serves to balance the two objectives of the optimi-
sation problem. For higher values of A, R’ will tend
to have a higher entropy, a more uniform distribution,
and a higher weight is placed on minimising the to-
tal distance to cluster centroids; for lower values of A,
R’ tends to lower entropy, or high sparsity, and places
more weight on utilising the mutual information be-
tween the datasets. In practical use, a lower A results
in better performance but less robustness to noise —
therefore, A should be high on noisy datasets or when
there is a complex relationship between x and y — if
A is too low, poor performance (below the initial base-
line) will occur. However, lower values of A result in
a better clustering solution when the dataset is clean
and R is relatively sparse.

There are two drawbacks to DAKM that may be
improved in future work. Firstly, the computational
complexity of DAKM is O(k*kYn) for each iteration,
where n is the number of items in the dataset. As such,
DAKM is most practical for low values of k* and kY. A
hierarchical extension of DAKM could be considered as
a more suitable alternative for larger cluster numbers.
Secondly, as DAKM only approximates the objective
functions given above, it does not provably find a local
optimum with respect to each of them. In an extended
later work we expect to demonstrate the convergence
of a modified DAKM to a single, regularised objec-
tive function. Despite this, in the experiments below
DAKM reliably terminates with a good result in fewer
than 100 iterations in all cases, and we show consis-
tently superior accuracy in our comparisons.

3.4. Spectral Representation

The method presented above extends the original k-
means algorithm. However, k-means does not always
result in the best clustering results on natural data —
especially when pairs of clusters are not linearly separa-
ble. This is evident in human action clustering, where
Yang et al. [14] use spectral clustering and Niebles et
al. [9] use natural language techniques LDA and pLSA,
rather than opting for k-means. To gain the advantages
of spectral clustering for our own algorithm, we adapt
DAKM to combine dual assignment clustering with a
spectral representation. First, let us observe that step
5 of the spectral clustering algorithm in Ng et al. [8] is
ordinary k-means clustering. It is therefore straightfor-
ward to perform steps 1 through 4 of the algorithm in
[8] separately on two views of the dataset, and replace
step 5 with DAKM to exploit the mutual information
between the two spectral representations. We refer to
this modified algorithm as Spectral DAKM (SDAKM),
and we apply it to the human action clustering exper-

iments in Section 4.2.

4. Experiments

In this section we detail several clustering experi-
ments. To compare experimental results to the ground
truth, we use the clustering accuracy metric provided
in [14]. If each cluster ¢ contains datapoints x1, .., Zy,
and each datapoint is associated with a ground truth
label 4, ..,1,, the label [. of cluster c is:

1 ifl. =1
arglrcnaxz;{ 0 otherwise (8)

We then calculate percentage of datapoints across
the whole dataset that have the same label as their
assigned cluster.

4.1. Synthetic Data Clustering

We create several synthetic datasets to demonstrate
the applicability of DAKM.

4.1.1 Synthetic Data Generation

To generate the artificial dataset, we first set the to-
tal number of clusters for x and y (k* = 12, k¥ = 8).
For relationships between x and y, we randomly gener-
ate a ground truth relationship matrix Rground, where
an entry of 1 indicates that two clusters can co-occur,
whereas an entry of 0 indicates the opposite. We en-
sure there is at least one positive entry per row and
column. Each cluster in x and y is represented by a
2-dimensional Gaussian distribution, where the mean
is chosen randomly between a range of values, the co-
variance is a diagonal matrix, and the entries of the co-
variance vary between a range of values. Then, 10000
samples are generated — for each sample, two clusters
from x and y are chosen simultaneously in accordance
with Rground, then two vectors are generated from the
clusters’ Gaussian distributions.

These synthetic data allow us to test how various
dataset properties affect the performance of DAKM —
in particular, we focus on the effect of: 1) the number of
relationships in Rground, and 2) how well the clusters
are separated. We compare results with ordinary k-
means clustering. For all of the synthetic experiments
we set A = 1.

4.1.2 Synthetic Results

We first look at the effects of varying the number of re-
lationships between x and y, which we achieve by con-
trolling the number of non-zero entries in Rground. We
show the difference in clustering performance between
ordinary k-means clustering and DAKM on a synthetic
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Figure 3: How improvement in DAKM accuracy (av-
eraged over x and y) changes with the number of rela-
tionships between x and y.

Table 1: Performance of DAKM when view difficulty
is varied.

Task Diff. k-means DAKM A

X y X y X y
Hx,Hy | 56.7 60.0 | 59.3 624 | 2.7 24
Hx,Ey | 56.5 92.8 |63.3 959 | 6.7 3.2
Ex, Ey | 8.0 928|909 975 |79 4.7

dataset over a range of values for |Rground| in Figure 3.
As expected, as |Rgrouna| increases, the performance
improvement decreases, as there is less mutual infor-
mation to exploit between x and y.

We next consider how DAKM is affected by the dif-
ficulty of the individual clustering tasks. We generate
4 views, based on how difficult they are to cluster ac-
curately: a hard (H) x and hard y, an easy (E) x and
easy y. The hard clustering tasks are generated in such
a way that there is greater overlap between the clusters
than in the easy tasks. We show the results of cluster-
ing various combinations of these views in Table 1. The
accuracies displayed are for k-means and DAKM, and
we additionally show the difference between the two.
As can be seen, DAKM results in significant improve-
ments over ordinary k-means in all cases. This shows
the robustness of DAKM: one might expect, for in-
stance, that the noise from a more difficult task would
degrade the performance of an easier task, but this is
demonstrably not the case.

4.2. Human Action Clustering

4.2.1 Datasets

We use three real-world datasets for experimentation:
UCF YouTube [5], UCF Sports [11], and Hollywood-2
[7]. We report only on the accuracy for action clus-
tering, as the scene ground truths are not provided.
The UCF YouTube dataset consists of 1168 videos of
various physical human activities. The UCF Sports
dataset consists of 150 videos of various sports videos,

taken from various broadcast sources. The Hollywood-
2 dataset consists of 1707 action videos collected from
Hollywood films.

4.2.2 Setup

To extract a motion representation of the actions, we
use the publicly available code for dense trajectory fea-
ture extraction as presented in Wang et al. [12], with
the default settings of the software. We then process
the features for a bag-of-words type representation. We
perform PCA and then k-means clustering on each
of the descriptors separately (HOG, HOF, MBH, Tr),
where we capture 95% of the variance from PCA and
k = 2000 for the clustering. This results in a 8000-
dimensional (4 x 2000) frequency histogram of motion
features. For scene representations, we use SIFT fea-
tures [6], extracted from each video at intervals of 10
frames. Once again, PCA and k-means are performed,
with & = 2000, resulting in a 2000-dimensional fre-
quency histogram of static features. We normalise the
histograms of both the motion and static features.

To get a spectral representation, we first find the
pairwise distance between all histograms in a set using
the histogram intersection:

S(a,b) = Z min(a;, b;) (9)

We apply Equation 9 to get a similarity graph for both
actions and scenes. We then perform steps 2-4 of Ng et
al. [8] on the actions and scenes separately to get two
independent spectral representations. We then per-
form DAKM on the resulting vectors. We set k, (the
number of action clusters) to the number of action cat-
egories in the dataset. As the ground truths are not
provided for scenes of the datasets, we have no prior
knowledge of kg, but preliminary experiments shows
that a relatively high number of scenes works best —
we set ks = 40 for all datasets. As all algorithms are
stochastic, all experiments are run 10 times and the
results averaged.

4.2.3 Human Action Clustering Results

The results for motion clustering over all three datasets
are summarised in Table 2. We compare the following
clustering methods: Spectral Single-View (SSV), ap-
plying Ng et al. [8] to motion features only; Spectral
Concatenated Views (SCV), applying Ng et al. [8] to a
concatenated motion and static histogram; Co-Trained
Spectral Multi-View (CMV), a recent multi-view clus-
tering method presented in Kumar and Daume III [4],
treating motion and static features as two views of the



Clustering Accuracy (%)
SSv. SCV. CMV  SD1k SDO
YouTube 39.2 407 38.1 41.8  43.9
UCF Sports | 68.0 67.2 64.2 729 76.0
Hollywood-2 | 356 324 315 36.5 36.5

Dataset

Table 2: Clustering performance of various methods on
realistic datasets.

action; SDAKM with A = 1000 (SD1k); SDAKM with
A set to the optimal value for each dataset individually
(SDO). For SDO, we consider the following values for
A: 1, 5, 10, 50, 100, 500, 1000, 5000, 10000 and 50000.

(a) UCF YouTube (b) UCF Sports
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Figure 4: Performance of SDAKM with various A.

As can be seen from the table, SDAKM with op-
timal A (SDO) gives the highest accuracy on all three
datasets — we propose this is because it most effectively
utilises the complex relationship between actions and
scenes. CMV performs far worse than the baseline clus-
tering method (SSV) on all datasets, demonstrating
that the multi-view assumption is not applicable to the
relationship between motion and static features. Con-
catenating motion and static vectors (SCV) also nega-
tively impacts accuracy for two of the three dataset.

SDAKM gives the greatest performance increase
over the baseline on the UCF Sports dataset, which
we attribute to two properties of the dataset: a highly
sparse relationship Ryround, and easy-to-cluster scenes.
Alternatively, the weakest performance is seen on the
Hollywood-2 dataset, observing only a 0.9% increase
in accuracy, even with the optimal A. This is unsur-
prising: Marszalek et al. [7] used context to enhance
recognition accuracy on the Hollywood-2 dataset, using

training data to directly infer the relationship between
actions and scenes, but only observed a 1.1% improve-
ment over baseline performance.
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Iterations
Figure 5: SDAKM on the YouTube dataset with A =1
— a high peak performance after few iterations, but
eventually the algorithm terminates with poor perfor-
mance.

We show the effect of varying parameter A on the
performance of SDAKM on the different datasets in
Figure 4. Peak performance is observed at a differ-
ent X\ for each dataset — this is expected, as the spar-
sity of the unknown Rgrouna is likely to differ between
datasets. In future work it would therefore be benefi-
cial to estimate the optimal value of A automatically
using the mutual information between the two views
of the dataset. However, there is still a significant im-
provement over SSV for all datasets when A > 1000.

To understand the effect of A further, we consider
clustering on the YouTube dataset when A = 1. We
propose that under this condition, R’ tends to be-
come more sparse than the true relationship between
actions and scenes, which will distort the clustering
results. Figure 5 illustrates this situation, showing
the iteration-by-iteration performance of clustering the
YouTube dataset with A = 1. Iteration by iteration,
R’ grows more sparse. Initially, this results in more
accurate clustering — 3.6% better than the initial solu-
tion after the third iteration — but when the algorithm
terminates, it has fallen to 1.7% below the initial ac-
curacy, suggesting that R’ no longer reflects the true
relationship between scenes and actions.

Although none of the datasets have ground truths
for the scenes, in Figure 6 we provide a few examples
of discovered scene categories on the UCF YouTube
dataset. Several key scene categories clearly arise:
shots including the sky; playing courts; fields; swim-
ming pools; trampolines. These are each more or
less commonly associated with certain actions in the
dataset, as one might expect. For instance, the sky
scenes typically show golf, tennis or soccer juggling,
but the playing court scenes more usually show volley-
ball, tennis, or basketball. Furthermore, the swimming
pool and trampoline scenes have a nearly one-to-one



Diving 7 Basketball, Tennis, Volleyball

Basketball, Golf, Juggling Biking, Walking, Riding, Juggling

Figure 6: Examples of scene categories discovered in the UCF YouTube dataset, and their most strongly associated

actions below.

correspondence with diving and jumping respectively.
It is clear in these cases how extra information from
the scene category may aid in clustering the actions.

5. Discussion

In this paper a new algorithm has been introduced
— Dual Assignment k-Means clustering, or DAKM —
for generating two clustering solutions according to
two co-occurring views of a dataset. Unlike previous
methods, it is suitable for use when there are two co-
occurring views of a dataset, and a separate cluster-
ing solution associated with each view — similar previ-
ous clustering methods have either only been suitable
to generate multiple clustering solutions from a sin-
gle view (alternative clustering) or to generate a sin-
gle clustering from multiple views (multi-view cluster-
ing). We have shown DAKM can significantly improve
clustering results on synthetic data and realistic hu-
man action/scene datasets. This performance improve-
ment is apparent even when the clusters in both views
are poorly separated, demonstrating the robustness of
DAKM/SDAKM.

Our further work will focus on determining A auto-
matically, which we believe can be calculated as a func-
tion of the mutual information between the two views
of the dataset. Also, while the algorithm presented
here is restricted, for complexity reasons, to consider-
ing dual-assignments only, in future we plan to consider
multiple-assignment clustering.
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