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Abstract

Visual distracters are detrimental and generally very d-
ifficult to handle in target tracking, because they generate
false positive candidates for target matching. The resilience
of region-based matching to the distracters depends not on-
ly on the matching metric, but also on the characteristics of
the target region to be matched. The two tasks, i.e., learning
the best metric and selecting the distracter-resilient target
regions, actually correspond to the attribute selection and
spatial selection processes in the human visual perception.
This paper presents an initial attempt to unify the modeling
of these two tasks for an effective solution, based on the in-
troduction of a new quantity called Soft Visual Margin. As
a function of both matching metric and spatial location, it
measures the discrimination between the target and its spa-
tial distracters, and characterizes the reliability of match-
ing. Different from other formulations of margin, this new
quantity is analytical and is insensitive to noisy data. This
paper presents a novel method to jointly determine the best
spatial location and the optimal metric. Based on that, a
solid distracter-resilient region tracker is designed, and its
effectiveness is validated and demonstrated through exten-
sive experiments.

1. Introduction
The key in visual target tracking is to perform accurate

identification of the target in the incoming image frames.
This can be done by matching candidate regions with the
given target region. Tracking fails when there are no good
matches or the good ones turn out to be false positive match-
es. In the former case, the target may disappear or be oc-
cluded; while in the latter case, the tracker is confused by
the non-target candidates that appear very similar to the tar-
get, namely the visual distracters or distracters for short.
The distracters can be induced by cluttered backgrounds,
surrounding crowds, or camouflage. Distracters are detri-
mental and generally difficult to handle. An example is
shown in Fig. 1, where other horses persistently generate

Figure 1. This paper handles visual distracters. This paper shows that the
unification of attribute selection (via metric learning) and spatial selection
(via optimal region placement) is able to robustly separate the true target
and the distracters.

false positives to the target highlighted in the yellow box,
and easily fail the tracker. This paper is concerns on han-
dling such scenarios with distracters.

In fact, the handling of visual distracters is closely re-
lated to three critical factors in region matching: visual
features, matching metric and tracking region placement.
Visual features represent the matching subjects, and have
been extensively studied in the past several decades. Vari-
ous methods have been used in tracking, e.g., local invari-
ance [17], shape [14], region appearances [8], local statis-
tics [6], or even some level of recognition [2]. This pa-
per does not focus on specific features, but assumes abstract
features without losing generality. It is common in practice
that features are matched based on a pre-defined criterion or
metric, e.g., the Euclidean metric or Bhattacharyya metric.
Recent studies [15, 16] have shown that learning an adap-
tive metric can be beneficial to discriminate the true target
from the distracters. The third factor is the placement of the
tracking region [10]. The tracking region (or attentional re-
gion [9]) is the actual region used for matching, while the
delineated target region is the rough user input for appoint-
ing the target. Simply using such rough delineated region
for matching leads to an interesting phenomenon: under a
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given metric, certain regions may produce reliable match-
ing, while some may easily be distracted. This implies that
the placement of the tracking region needs to be optimized.
This paper attempts to find a principled solution to unify
optimal metric and optimal region placement, i.e., to de-
termine the matching metric as well as jointly identify the
appropriate tracking regions so as to achieve reliable and
accurate region tracking.

This problem is actually directly related to the attention-
al selection in the human visual perception. Psychologi-
cal evidences show that the human visual perception is s-
elective [19], so that the human visual system can easily
construct accurate correspondences. There are two major
attentional selection mechanisms. One is the spatial selec-
tion that identifies special image regions (namely attention-
al regions) for visual processing; and the other one is the
attribute selection that chooses or forms appropriate visual
features. In our problem, optimal region placement plays
the role of spatial selection, and learning matching metric
is actually attribute selection. The study in this paper at-
tempts to give a plausible explanation of these mechanisms
and to provide a unified solution to these two tasks.

The basic idea of our study is based on the introduction
of a new quantity, Soft Visual Margin, that unifies both fea-
ture discrimination and spatial separability between the tar-
get and its spatial distracters. We treat a given image region
and its close spatial vicinity as the target, but those not in the
vicinity as the distracters. The proposed Soft Visual Margin
gives a soft version of the margin between the two class-
es in an analytical form. It quantifies the mixup situation
of the target and its distracters. The larger the margin, the
stronger the discrimination between the target and its dis-
tracters. As it is a function of matching metric as well as
the spatial location, it is clear that different image regions
and different metrics produce different margins. This paper
presents a novel formulation, where the joint determination
of the optimal metric and the best region placement of the
attentional region is achieved via Soft Visual Margin maxi-
mization. In this way, the identified attentional region with
the learned matching matric gives the best class discrimi-
nation, and thus matching this attentional region shall give
reliable and accurate results. Based on this, a solid region-
based distracter-resilient tracking method is designed.

This paper gives a new computational model to natural-
ly unify spatial selection and attribute selection. Besides
that, to the best of our knowledge, it is an original attempt
to jointly determine the matching metric and select the at-
tentional regions for tracking. Moreover, it provides an ef-
ficient solution to an effective region tracker.

2. Background
There have been two parallel attempts to enlarge the

class discrimination between the target and the background.

Figure 2. An illustration of attribute margin maximization via metric
learning.

One is to determine some discriminative image region-
s in the spatial domain to represent the target of inter-
est [9, 10, 13]. For example, an image region can be as-
sociated with a linear system for motion estimation. Thus
the stability of this linear system can be used to character-
ize its reliability [10], and a gradient-based local search is
designed to locate such reliable regions efficiently. In addi-
tion, an entropy-based measure, called intrackability [13], is
proposed to measure the uncertainty of the motion estima-
tion, and thus characterizing the matching reliability. But
in general, these methods are computationally demanding.
As matching failure is often associated with the distracters
that exhibit very similar visual appearance to the target, the
concept of discriminative attentional region (or D-AR) is
introduced [9]. A D-AR has a large margin to its visual dis-
tracters, and can be found through an efficient branch-bound
search [9]. All these methods assume a pre-determined met-
ric in the feature space.

The other attempt is to determine a more discriminative
feature space in which the target can be best separated from
the background, and this is generally done through only
adaptive learning. Different methods have different objec-
tives for discriminative learning. For example, the method
in [5] uses the Fisher discriminant and performs exhaus-
tive search over all possible feature combinations. When
the feature space is large, the applicability of this method is
limited due to its exhaustive search scheme. Recently, in-
teresting attempts of integrating metric learning in tracking
have been made [22, 15, 16]. These methods aim to find the
best projection of the original feature space to achieve cer-
tain objectives. For example, one objective is to collapse all
the data in its class to a single data point [11, 22]. Another
is to maximize the performance of nearest neighbor clas-
sification [12, 15, 16]. These objectives are not specifically
designed for visual tracking to distinguish the target from its
distracters, and they simply use the delineated image region
as the target.

This paper describes an original attempt to unify these
two approaches by introducing the concept of Soft Visu-
al Margin as a single objective for both spatial selection
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and attribute selection. Unlike the discriminative margin
introduced in [9] that is not analytical and is sensitive to
noise, this Soft Visual Margin has much nicer properties:
it is insensitive to noise and is even differentiable. Based
on the maximization of this Soft Visual Margin, the unifi-
cation can be achieved by jointly optimizing the matching
metric and identifying the attentional regions, which can
not be done in the existing margin-based metric learning
methods[23, 20, 12, 21].

3. Soft Visual Margin Maximization

3.1. Hard Margin

Denote by x ∈ RN the visual feature at a spatial loca-
tion of interest c, where N is the number of pre-determined
primitive attributes or features. For this location c, as the
set of locations at its spatial vicinity are still regarded as the
target itself, we treat them as positive samples and denote
the set by C+. Meanwhile, we also have a set of regions
at other locations that are regarded as mismatches or dis-
tracters, even if they may exhibit similar visual appearance
as the target, and call them negative samples and the set C−.

In the feature space RN , we denote xij
△
= xi − xj . In-

stead of taking for granted to use the Euclidean distance for
matching, we use the Mahalanobis distance:

Dij(xi,xj |A) = ∥Axi −Axj∥2 = xT
ijA

TAxij , (1)

where A is a linear transform to project the original feature
space to a new one, and it characterizes a distance metric. It
is difficult to specify this metric, but we will see in later sec-
tions how it can be learned. As Axij is a linear projection
of xij , learning this metric acts like another layer of feature
extraction.

Based on the positive and negative sets C+ and C−, we
can characterize their separability or class discrimination by
using the margin between the two sets in the feature space.
For the location of interest and its feature x, the margin is
considered as the difference between the distance from the
furthest positive sample and the distance from the closest
negative sample, i.e.,

γ(x|A)
△
= min

j∈C−
Dj(xj ,x|A)− max

j∈C+
Dj(xj ,x|A)

Conceptually this objective function is fine, but it has two
issues. First, it is sensitive to noise. Second, it is not ana-
lytical and very difficult to manipulate. This motivates our
introduction of Soft Visual Margin in the next section.

3.2. Soft Visual Margin

For the negative set C−, we can use the following soft
min to approximate the probability that x treats xj ∈ C− as

its nearest neighbor:

pj =


exp(−α∥Ax−Axj∥2)∑
k exp(−α∥Ax−Axk∥2) if j ∈ C−

0 if j ∈ C+

where k ∈ C−, and α > 0. Therefore, the soft version of
the distance from the nearest negative sample can be written
as

∑
j∈C

pjDj , where C = C+
∪
C−.

In the same fashion, we can use soft max to approximate
the probability that x treats xj ∈ C+ as its furthest neigh-
bor:

qj =


exp(β∥Ax−Axj∥2)∑
k exp(β∥Ax−Axk∥2) if j ∈ C+

0 if j ∈ C−

where k ∈ C+, and β > 0, and the soft version of the
distance from the furthest positive sample is

∑
j∈C

qjDj .

Based on that, we define Soft Visual Margin for a given
spatial location (or pixel location) c with visual feature x
as:

ϵ(x,A)
△
=

∑
j∈C(x)

(pj − qj)Dj . (2)

In contrast to the hard margin, the above proposed Soft Vi-
sual Margin is analytical and differentiable. In addition,
because it integrates all samples, it is less sensitive to noise
than the hard margin.

It is clear that the Soft Visual Margin at a particular pixel
location measures the discrimination power of its visual fea-
ture to separate the target from its nearby distracters. And it
is also clear that this discrimination power also depends on
the metric for the feature distances. In view of this, we can
unify the following two tasks:

• Attribute selection: given the location of the target,
we determine the best metric that maximizes the Soft
Visual Margin, i.e., identifying new feature projection
matrix A so as to maximize the visual discrimination;

• Spatial selection: under a given metric, the location of
the target may not present strong discrimination. Con-
sequently, the matching of the target is likely to be dis-
tracted. By maximizing the Soft Visual Margin, we
determine a location nearby that exhibits a local max-
imum discrimination. It can be regarded as an atten-
tional region. This selection allows us to find this best
attentional region for matching.

The following sections describe the details of maximiz-
ing Soft Visual Margin for attribute selection, spatial selec-
tion and its unification for visual tracking.
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3.3. Attribute Selection and Metric Learning

As mentioned before, the primitive visual features (e.g.,
the color distribution or the textures) at a given spatial loca-
tion are the attributes of the target at this location. An inter-
esting question is how we can determine the best metric of
these features to achieve the best discrimination between the
target and its nearby visual distracters. This is actually an
attribute selection task. This basic idea is shown in Fig. 2.
The primitive visual features need to be known in advance,
e.g., stacking all the pixel intensities to form a vector or 32-
bin color histogram and 32 Gabor filter responses. To learn
the best metric, our objective is:

max
A

ϵ(A|c) =
∑

j∈C(c)

(pj − qj)Dj , (3)

where C(c) is the set of positive and negative samples
collected around the given target location c, as described
before. This optimization problem can be solved by a
gradient-based method.

For the soft max form:

d
△
=

∑
j

qjDj =

∑
j Dje

βDj∑
k e

βDk
,

we obtain the following derivative:

∂d

∂Dj
= qj

[
1 + β(Dj − d)

]
.

Similar form of the derivative can be found for the soft min
operation. Denote by x0j

△
= x − xj . Then after some ma-

nipulations, we obtain the following gradient:

∂ϵ

∂A
= 2A

∑
j

{[
− αpjDjx0jx

T
0j

+ pjx0jx
T
0j + αpjDj

∑
k

pkx0kx
T
0k

]
−

[
βqjDjx0jx

T
0j + qjx0jx

T
0j

− βqjDj

∑
l

qlx0lx
T
0l

]}
(4)

3.4. Spatial Selection and Optimal Placement

Finding the best metric for a given target location may
not be enough, because under the same metric, different s-
patial locations exhibit different discrimination power. The
locations that are more resilient to noise and distracters are
more discriminative. In other words, these locations ob-
serve larger margins. Then a problem of interest is: given
an initial spatial location, can we find a location nearby that
exhibits a local maximum of the Soft Visual Margin?

Figure 3. An example of the discrimination power of spatial selection.

Of course, this can be done by performing an exhaustive
search. For every spatial location, we compute its Soft Vi-
sual Margin. Fig. 3 shows an example of the Soft Visual
Margin map for every pixel location of a face image region,
where the eye corns and mouth corners give large margins.
However, this process is quite computationally demanding.
Is there a way to accelerate?

As the Soft Visual Margin is differentiable, we have ob-
tained an efficient gradient-based search solution to spatial
selection. Without losing generality, we use the following
special case to explain our solution. Instead of using ad-
vanced visual features, here we use the image template by
stacking all the pixels to form the feature vector. At spa-
tial location c, we use Ij(c) to substitute xj . Sure, other
features can be used as well.

Given a metric, as A is obtained from the attribute selec-
tion, it is clear that pj and qj are functions of c. We rewrite:

Dj(c) = ∥AI(c)−AIj(c)∥2. (5)

Then we have:

pj(c) =


exp(−α∥AI(c)−AIj(c)∥2)∑
k exp(−α∥AI(c)−AIk(c)∥2) if j ∈ C−

0 if j ∈ C+

qj(c) =


exp(β∥AI(c)−AIj(c)∥2)∑
l exp(β∥AI(c)−AIl(c)∥2) if j ∈ C+

0 if j ∈ C−

The objective function can be written as:

max
c

ϵ(c|A)
△
=

∑
j

(
pj(c)− qj(c)

)
Dj(c) (6)

It’s easy to derive that:

∂Dj

∂c
= 2

(
I

′
(c)− I

′

j(c)
)
ATA

(
I(c)− Ij(c)

)
, (7)

∂pj
∂c

= −αpj

(∂Dj

∂c
−
∑
k

∂Dk

∂c

)
, (8)
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∂qj
∂c

= βqij

(∂Dj

∂c
−
∑
l

∂Dl

∂c

)
. (9)

Therefore, we obtain:

∂ϵ

∂c
= 2

∑
j

[
(pj − qj)

∂Dj

∂c
− αpj

∂Dj

∂c

+ αpjDj

∑
k

pk
∂Dj

∂c
− βqj

∂Dj

∂c

+ βqjDj

∑
l

ql
∂Dj

∂c

]
(10)

The localization of a local maximum can be performing
by searching along this gradient.

3.5. Unification for Visual Tracking

To design a robust visual tracking method, we can unify
the above attribute selection and spatial selection processes
through maximizing the Soft Visual Margin. This is a super-
vised process and we need both positive and negative data.
Based on the above descriptions on Soft Visual Margin, at-
tribute selection and spatial selection, we have an overall
objective for attentional selection at frame t:

(A∗, c∗)t = argmax
A,c

ϵ(A, c) (11)

This can be done through a two-step iteration process based
on the coordinate descent scheme:

• A-Step: Attribute selection that learns the best metric
for the fixed location obtained in S-Step, i.e., A∗ =
argmaxA ϵ(A|c);

• S-Step: Spatial selection that determines the loca-
tion of the most stable region (i.e., attentional re-
gion) which exhibits the largest margin based on
the new metric obtained in A-Step, i.e., c∗ =
argmaxc ϵ(c|A);

Once both attribute and spatial selections are obtained
for the target at frame t, we can perform matching at the
frame t + 1. The visual tracking is based on matching
the new attentional region by the learned new metric. The
search can be performed via either local exhaustive search
or through gradient-descent search.

In this paper, we use the image template and stack all the
pixels to form its feature vector. The target and the candi-
date regions are all resized to 20 × 20, leading to a R400

feature space. Exhaustive local search is employed to track
the target in the new frames. Once the target is localized
at time t, we perform attribute selection and spatial selec-
tion iteratively to determine the best metric and the optimal
attentional region, and use them to process the next frame.

Dataset Name Points Dimensions Classes

1 Fertility 100 9 2
2 Diabetes 768 8 2
3 ILPD 578 8 2
4 Vertebral Column 310 6 3
5 SPECTF Heart 187 44 2
6 Balance Scale 625 4 3

Table 1. Benchmark Datasets

Figure 4. Classification error rate on benchmark datasets.

4. Experiment

4.1. Attribute selection via margin maximization

To demonstrate the effectiveness of the proposed at-
tribute selection method alone, we compare the proposed
method with several widely used state-of-the-art metric
learning methods, including NCA[12], LMNN[23] and
ITML[7]. The comparison is performed on six benchmark
datasets from the UCI repository[1] that are commonly used
for evaluation in the machine learning community. The
properties of the datasets are shown in Table 1.

Fig. 4 shows the classification error rate averaged over 10
runs on the testing data by cross validation. All the meth-
ods try to learn a Mahalanobis distance but under differen-
t objectives. NCA [12] uses soft classification for metric
learning. LMNN [23] pursues the optimal metric by max-
imizing the margin between inconsistent classes in a non-
analytical way. And ITML solves the metric learning based
on entropy. Our method incorporates the ideas of soft clas-
sification and margin maximization. As shown in Fig. 4, on
4 datasets, our method outperforms all these metric learn-
ing methods. On the rest two datasets, it gives comparable
performance to the best among these baseline methods.

4.2. Spatial selection via margin maximization

To demonstrate the effectiveness of spatial selection a-
long with attribute selection, we test our method on real
videos shown in Fig. 5. The red bounding box in Fig. 5
represents the original target region. To locate the attention-
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Figure 5. Sample frames to demonstrate the spatial selection process.

Figure 6. Comparison results among basic template tracker(Green), spa-
tial selection based tracker(Yellow), attribute selection based tracker(Red)
and the proposed method(Cyan).

Figure 7. Quantitative comparison to baseline methods.

Figure 8. Comparison results between DAT(Red) and the proposed
method(Blue).

al region nearby that has the largest discrimination power,
the proposed method performs an efficient gradient-based
search (in Eq. 10). The updating process is illustrated by
the gray dash lines. After iterating between the location op-
timization and the metric optimization, the final location of
the attentional region is depicted by the yellow box in Fig. 5.
In our experiments, we observe that this process generally
converges within 6 iterations. Target matching can be per-
formed on this attentional region for robust tracking.

4.3. Soft Visual Margin for Visual Tracking

The proposed method employs Soft Visual Margin for vi-
sual tracking. To handle the scaling, we enlarge and shrink
the target template by the factor of 1.05 and 0.95, respec-
tively. We choose the best match as the optimal estimation

Figure 9. Quantitative comparison to spatial selection methods.

for target location and scale. The proposed method takes
3.8206 seconds per frame on average to complete both at-
tribute and spatial selection for each frame, as well as the
target localization by Matlab and C++ implementation on a
desktop PC with Intel Core i5 2.5GHz CPU and 6G memo-
ry. The majority of the computation attributes to the metric
learning. As it is not necessary to update the metric on ev-
ery frame. When there is no drastic changes between two
consecutive frames, the needs of metric is not urgent, and
using the same metric will not sacrifice the matching accu-
racy much.

Therefore, our implementation takes a tradeoff where
the spatial selection is performed for every frame, while at-
tribute selection is only performed after large changes or a
certain number of frames. Specifically, if the value of the
objective function in Eq.3 is no less than the 0.8 times of
the previous value, we only perform the spatial selection.
This leads to a huge speedup. Under the same setting, it
only takes 0.7732 second per frame on average. It will run
comfortably in real-time by a pure C++ implementation.

4.3.1 Comparison to baseline methods

To demonstrate the necessity of unifying the attribute and s-
patial selection, we compare the following 4 tracking strate-
gies, including: (1) basic template matching based visual
tracking, without attribute or spatial selection; (2) spatial
selection based visual tracking method, with no attribute s-
election; (3) attribute selection based tracking, no spatial
selection; (4) unified attribute and spatial selection based
tracking. The objective and subjective results are shown in
Fig. 6 and Fig. 7 respectively. It’s obvious that: (1) the basic
template matching based tracking method easily fails due
to the distractions from the false positives; (2) the spatial
selection does improve the matching in several cases; (3)
the attribute selection method can tell the foreground apart
from the background, but it may not be stable due to online
learning; (4) by unifying attribute and spatial selection, the
proposed method is robust to distracters and is stable and
consistent.
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Figure 10. Comparison among TUDAMM(Red), SRML tracker(Blue) and the proposed method(Green).

Figure 11. Quantitative comparison among TUDAMM(Red), SRML tracker(Blue) and the proposed method(Green).

4.3.2 Comparison to attribute selection methods

Metric learning methods have recently been integrated in-
to visual tracking. Some representative ones include TU-
DAMM [22] and SRML Tracker [16]. TUDAMM tries to
collapse all the training samples in the same class to one sin-
gle point. In most of the cases, such an objective is difficult
to achieve. SRML tracker is mainly developed from [15],
targeting on a robust metric learning. These methods can
improve the matching but they are not especially designed
for visual tracking. When the localization of the target is not
accurate (e.g., shifted by several pixels), this will introduce
noisy or even wrong samples for metric adjustment, and in
turn it will largely jeopardize the tracking performance.

Fortunately, this can largely be alleviated by the spa-
tial selection in our proposed method, because the spatial
selection always identifies the most stable and discrimina-
tive nearby attentional region. The collection of training
samples for metric learning is no longer centered on the
tracking result, but instead on the attentional region. This
will in turn improve metric learning. The tracking results
of the proposed methods comparing to TUDAMM and S-
RML trackers are shown in Fig. 10. It is evident that the
proposed tracker is much more robust and reliable than the
TUDAMM and SRML trackers. The quantitative compar-
isons in Fig. 11 are consistent with the subjective results,
and clearly show the superiority of the proposed method.

4.3.3 Comparison to spatial based method

Besides comparing to the attribute selection based tracking
methods, we also compare the proposed method to DAT [9],
as shown in Fig. 8 and Fig. 9. The boy in blue t-shirt has a

very similar appearance to the children nearby. We observe
that DAT is able to tell the target apart from the background
to some extend, but its discrimination power is not as good
as that in the proposed method in general.

4.3.4 Comparison to general tracking methods

We also compare the proposed method to some state-of-
the-art tracking algorithms, including LOT [18], MIL [3],
L1APG [4] and CT [25]. Most test sequences and the re-
sults of these methods are obtained from the benchmark re-
ported in [24]. As shown in Fig. 12, due to the unification
of attribute and spatial selection, the proposed method has
more discrimination power to distinguish the target from the
background, as demonstrated in the Ballet sequence. When
there are distracters with similar appearance, these baseline
algorithms can hardly give accurate results. In contrast, the
proposed method tracks the target correctly and persistently.
This is evident in most other test sequences. The quantita-
tive comparisons among LOT, MIL, L1APG, CT and the
proposed method are given in Fig.13. It clearly demon-
strates the superior performance of the proposed method.

5. Conclusion

This paper presents a new approach attempting to inte-
grate attribute selection and spatial selection for accurate
and reliable region matching in robust tracking. It gives a
plausible computational unification of these two importan-
t processes of attentional selection, based on the introduc-
tion of a new discriminative measure of Soft Visual Margin.
Maximizing it over matching metric and region placement
leads to the joint optimization for spatial selection and met-
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Figure 12. Comparison among LOT(Red), MIL(Blue), L1APG(Green), CT(yellow) and the proposed method(Cyan).

Figure 13. Quantitative comparison among LOT(Red), MIL(Blue), L1APG(Green), CT(yellow) and the proposed method(Cyan).

ric learning. This paper gives an efficient gradient-based
solution to this problem. Theoretical analysis and exten-
sive experiments demonstrate the effectiveness of this new
approach for visual tracking.
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