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Abstract

Popular figure-ground segmentation algorithms gener-
ate a pool of boundary-aligned segment proposals that can
be used in subsequent object recognition engines. These
algorithms can recover most image objects with high accu-
racy, but are usually computationally intensive since many
graph cuts are computed with different enumerations of seg-
ment seeds. In this paper we propose an algorithm, RIGOR,
for efficiently generating a pool of overlapping segment pro-
posals in images. By precomputing a graph which can be
used for parametric min-cuts over different seeds, we speed
up the generation of the segment pool. In addition, we
have made design choices that avoid extensive computa-
tions without losing performance. In particular, we demon-
strate that the segmentation performance of our algorithm
is slightly better than the state-of-the-art on the PASCAL
VOC dataset, while being an order of magnitude faster.

1. Introduction
In recent years, figure-ground object segmentation has

re-ignited interest in using unsupervised segmentation in an
object recognition pipeline. Without supervision, systems
such as [9, 6, 19, 34, 31] are able to generate a pool of over-
lapping segment proposals, where most foreground objects
are captured by at least one segment from the pool. In the
challenging PASCAL VOC benchmark, a spatial coverage
of about 80% has been achieved using hundreds of segments
per image. Because of the figure-ground setting, the result-
ing segments are often holistic, in that they may contain
significant internal texture and edges. This is in stark con-
trast to superpixels, which tend to be homogeneous in ap-
pearance. The segment proposal pool generated by these
methods is usually smaller than the number of hypothe-
ses considered in conventional bounding box-based meth-
ods, and are more informative because they delineate object
boundaries. Recognition pipelines based on these segment
proposals have significantly advanced the state-of-the-art in
both object detection and semantic segmentation [27, 1, 11].

However, segmentation-heavy approaches are generally

computationally intensive. When enumerating bounding
boxes and computing their features, tricks such as integral
image and distance transform [10, 23] can help to speed-up
the computation, even achieving real-time performance in
certain tasks [3, 29]. From this perspective, segmentation-
heavy approaches lose in the first stage, since state-of-the-
art methods usually need from half a minute up to sev-
eral minutes to compute segment proposals for a single im-
age. This makes segmentation-based methods impractical
for large-scale or real-time applications, such as video anal-
ysis [24], object tracking or robotics.

In this paper, we devise a method to generate segment
proposals in a computationally efficient manner. Our ap-
proach is based on two main contributions: (1) a precom-
putation step which reuses computation for multiple related
parametric min-cuts (§3), and (2) a set of design choices to
avoid lengthy computations to produce a segment pool (§4).

State-of-the-art figure-ground segmentation methods
perform parametric min-cut on multiple seed graphs cre-
ated by enumerating foreground seeds at different image lo-
cations [6, 9, 19]. Each seed covers a small image region
that is designated to be within the foreground object, and the
parametric min-cut on the resulting seed graph finds object
segments that encapsulate the seed region. Using a large set
of diverse seed locations increases the chances of finding
objects of interest. Fig. 1 shows that with more seeds, even
small background objects can be captured. However, a large
number of seeds means that many parametric min-cuts need
to be solved, which slows down the algorithm.

Intuitively, computing multiple min-cuts from different
seed graphs should result in redundant computations that
could be cached to improve efficiency. We propose a graph
precomputation scheme in which a single residual graph is
built for all foreground seeds. This residual graph is then
converted for warm starting the parametric min-cut for each
specific seed accordingly. Such a precomputation scheme
over all foreground seeds helps ameliorate the cost of min-
cut when using a large number of seeds.

We have also introduced speed-ups via algorithm design.
We show that segmentation performance does not suffer by
using a superpixel graph and simple unary/pairwise poten-
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Image One Seed (Pool of 32 Segments)

16 Seeds (411 Segments)

100 Seeds (1404 Segments)

Figure 1: Effect of segment seeds (best viewed in color). With
one seed at the center the algorithm is able to segment the horse.
With more seeds it finds the person and gradually starts to obtain
segments on the cars in the background.

tials, as opposed to the pixel graph or complex potentials
used in previous methods. For computing the pairwise po-
tential, we propose an efficient piecewise-linear regression
tree that is used in a boosting framework.

We test our algorithm, RIGOR, on PASCAL VOC 2012.
Experiments show that our method achieves slightly better
results than previous methods, while being at least an or-
der of magnitude faster. RIGOR can compute segment hy-
potheses for most images within 2-4 secs, with the prospect
of being real-time with future GPU implementations.

2. Related Work

Graph cuts have been a mainstream approach for image
segmentation over the last two decades [16, 30]. However,
the original min-cut approaches either tend to find fore-
ground regions with a very small size [35] or attempt to
solve an NP-hard problem [30, 33]. [22, 21] characterized
the submodular functions that can be optimized globally
with graph cut, especially the parametric max-flow formu-
lation [21] that produces cuts with multiple unary terms at
the same time. This led to multiple image segmentation ap-
proaches such as CPMC [6], object proposals [9] and con-
tour completion [26] that produce objects of different sizes
by enumerating multiple unary parameters related to object
size. Later, shape priors were introduced to improve the
segmentation of objects of known shape [19, 34].

The resulting pool of multiple figure-ground segment
proposals has been applied successfully in semantic seg-
mentation [27, 1] as training/testing examples, leading to
top scores in the PASCAL VOC segmentation challenge. It
has also been used to generate additional features for bound-
ing box detectors [11] and in video segmentation [24].

Due to the popularity of min-cuts for vision tasks, the
idea of reusing max-flow computation of one graph for an-
other similar graph is not new. Boykov and Jolly [4] pro-
posed a scheme to reparameterize a graph when only a
small amount of unary capacities change. In their appli-
cation, these changes were induced by user scribbles dur-
ing interactive segmentation. Kohli and Torr [20] identified
how max-flow could be reused even when edge capacities
change between graphs. Equipped with these reparameter-
izations, they showed an efficient way to compute object-
background segmentation in videos, where the capacities in
the graph change slowly from one frame to the next.

Unlike these two methods, we explore the idea of reusing
max-flow computation among graphs where the pairwise
capacities remain the same, but unary capacities change
drastically, which is the relevant case for generating a pool
of segments for an image. Here, the pairwise costs do not
change because they depend on constant edge potentials.
On the other hand, unaries change significantly because
each different seed adds high capacity t-edges to different
parts of the graph. Furthermore, when using color unary
terms [6], unary capacities can change for all other nodes
because a separate color prior is adopted for each seed.

In addition, the graph reparameterization methods of
[4, 20] are iterative approaches, where the max-flow for a
graph needs to be computed before it can be utilized for an-
other graph. In contrast, our method first runs a relatively
light precomputation stage, which takes all seed regions
into account. Once complete, max-flow for all seed graphs
can be computed in parallel, while obtaining increased effi-
ciency due to the precomputation stage.

Verma and Batra [32] quantitatively tested different max-
flow algorithms in vision applications. Our choice of build-
ing on the Boykov-Kolmogorov algorithm (BK) [5] was
partially motivated by their results, since BK tends per-
form equally or better than push-relabel [15] and Pseudo-
flow (PF) [17] in small density graphs like the ones we use.

3. Reusing Graph Cut Computations
Our segmentation algorithm, like other methods [9, 6],

uses graph min-cuts from multiple seeds to compute seg-
ments. For each seed i, a directed seed graph Gi = 〈V, E〉
is created, which has a set of nodes, V and edges, E . The
energy function minimized by min-cut is of the form:

Eiλ(X) =
∑
u∈V

Di
λ(xu) +

∑
(u,v)∈E

Vuv(xu, xv) , (1)
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Figure 2: The use of superpixel edges in multiple min-cuts. Given
parametric min-cuts from all seed graphs, the color of each edge
indicates how many times it was included in a cut (edges separat-
ing fg from bg). White indicates an edge that was never used for a
cut. A saturated red means the edge was included in many cuts.

where X = {xu}|V|
u=1 is the set of binary labels {0, 1}

for each superpixel u. In order to minimize this energy
function, min-cut employs two special terminal nodes: the
source s and the sink t. The graph edges connecting nodes
to s or t are known as t-edges, whose weights represent
the unary potentials Di

λ, and all others are n-edges, whose
weights represent the pairwise Vuv . Min-cut produces two
disjoint sets S and T , where node u ∈ S iff xu = 1, and
u ∈ T iff xu = 0. The cut is defined by the sum of edge
weights from S to T , which can be verified to equal (1).

Distinct segments are produced by enumerating fore-
ground seeds at different locations of an image. Each node
in our formulation represents a superpixel in the image, as
described in §4.1. The set E consists of all superpixel pairs
which share a boundary. The term, Vuv , is the pairwise po-
tential (see §4.1) between a pair of superpixels in E . Vuv
and E do not change with the seed. Each seed i comprises
of a set of superpixels Si (note, Si ⊂ V), such that any
superpixel xu ∈ Si has a unary potential Di

λ(xu) = ∞ if
xu = 0. In other words, all superpixels belonging to fore-
ground seed i have an infinite cost if assigned to the back-
ground label 0. For the remaining superpixels, the unaries
are set parametrically, Di

λ(xu) = fi(xu) + λ, where differ-
ent fi(·) define uniform and color graph types. Increasing
the parameter λ returns larger segments.

For each foreground seed i, unary costs are computed
(Sec. 4) and the resulting energy function is minimized by
obtaining the MAP solution via graph min-cut. As men-
tioned in the introduction, we seek to reuse computations
across all seed graphs. This is possible in our case because
all pairwise potentials are guaranteed to be the same regard-
less of the choice of seed. If we visualize parametric min-
cuts for all seed graphs, one notices that some (u, v) ∈ E
never belong to the cut set, i.e. u and v always belong to
the same segment. Fig. 2 shows an example, where each

edge in the graph is colored by the frequency with which it
appears in a cut set. An edge is unlikely to be in any cut set
if it aligns with a weak boundary, regardless of the choice
of seed. Our experiments show that around 45% of edges
are never in the cut. We have developed a computationally
efficient scheme to capture such information, so it can be
recycled for computing min-cuts on different seed graphs.

We utilize the reparametrization technique described
in [4, 20], which demonstrated that if only unaries change,
one can reparameterize a graph so that the min-cut does not
change and only the flow value changes. This is desirable
since we are mostly interested in the cut (segment) and not
the flow value itself. Our reuse scheme first generates a pre-
computation graph which consists of one tree for each fore-
ground seed plus a sink tree, as an extension to the source
and sink trees used in the Boykov-Kolmogorov algorithm
(BK) [5] (summarized in §3.1).

Given this precomputation graph, the final two stages run
independently, in parallel, for each seed graph. The second
stage reparametrizes the precomputation graph into a graph
suitable for the current seed (§3.2.2). In the final stage, the
trees in the precomputation graph are transformed to com-
pute multiple parametric min-cuts (§3.2.3). Since these pro-
cesses only involve reparameterizations, the cuts for each
seed graph Gi do not change.

3.1. Boykov-Kolmogorov Max-flow

Augmenting path algorithms find max-flow by dis-
covering unsaturated paths from s to t. Flow is
pushed/augmented along these paths, until no more aug-
menting paths remain [12]. A path p between nodes u, v ∈
V is denoted by u  v. At termination, only nodes which
have an unsaturated path p ≡ s  u, are in S. All other
nodes belong to T .

Typical augmenting path algorithms use breadth-first
search (BFS) trees to find shortest augmenting paths in a
graph. Unlike algorithms like blocking flow [7] which per-
forms BFS afresh for exploring every new depth level, BK
maintains two search trees, S (originating from s) and T
(from t). If u, v ∈ S and u is the parent of v, then (u, v) is
unsaturated. In tree T , the opposite holds true i.e. if v is the
child of u, (v, u) is unsaturated. An augmenting path can
be found through a path in these trees because they consist
only of unsaturated edges. The algorithm iterates over three
steps until no unsaturated paths from s to t exist:

I. Growth Stage: In this stage, both S and T trees greedily
acquire nodes which do not belong to any tree. When we
find an unsaturated edge (u, v), where u ∈ S and v ∈ T ,
we advance to the next stage. The algorithm terminates if no
such edges are found after completely growing both trees.

II. Augmentation Stage: Flow is augmented over the path
found in the previous stage. This saturates one or more



edges (u, v) in the path, which disconnects u or v from S
or T respectively, forming its own tree. At this point, the
disconnected node is called an orphan.

III. Adoption Stage: Disconnected orphans are adopted
back by their parent tree through an unsaturated edge, or
set free if no such edge exists. In the latter case, the chil-
dren of the free node are marked as orphans. Note, all free
nodes can be later taken by S or T during the growth stage.

3.2. Graph Cuts Over Multiple Seed Enumerations

In order to reuse the S, T trees from BK, [20] runs an
adoption like stage from BK to reflect the change to a new
graph. Motivated by [20], we propose a precomputation
step which builds a tree from s for each foreground seed
Si. These trees are then transformed to solve the min-cut
on each seed graph. Reusing these multiple source trees is
possible due to the structure of our problem.

To illustrate our technique, let us consider two fore-
ground seeds S1 and S2, which induce seed graphs G1 and
G2. One could run BK separately for each of these graphs,
producing trees S1, T1 and S2, T2 respectively. Suppose a
node s1 ∈ S1 has an augmenting path s1  t in graph G1.
Similarly, s2 ∈ S2 has an augmenting path in G2, s2  t.
If there exists a node u such that u  t is common to both
augmenting paths (s1/s2  u  t), then the flow can be
recycled from one graph to the other. Conceptually, these
paths might be discovered by finding the common sections
in trees S1 and S2 (and similarly in T1 and T2). But finding
such common paths can be hard in itself, since BK trees are
not unique, and, even if they were, finding common paths
will add unnecessary complexity to the problem.

3.2.1 Precomputation Graph: Instead of building trees
in isolated seed graphs, we first create a precomputation
graph Gp, which containsN seed trees Spi , for each of theN
seed enumerations. An additional tree T p is from the sink,
as before. To reiterate, this is possible in our formulation
because all seed graphs only differ in their unary capacities.

To construct Gp, we start with any seed graph, let’s say
G1, which would have infinite unary capacities from s to
nodes in S1. Fig. 3a would be equivalent to G1 if we replace
the infinite capacity (s2, 11) green edge with an (11, t)
edge. Next, in this graph we reparameterize all nodes be-
longing to seeds {Si}Ni=2. This reparameterization would
result in a graph which has infinite capacity from s to all
seeds {Si}Ni=1. These seed node unaries are reparameter-
ized in the same way as explained in [20, 4]. Initially, each
source tree Spi consists only of nodes in Si. This graph con-
struction is illustrated in Fig. 3a.

We now use BK to grow trees in this graph. We need
to introduce some changes to BK to handle multiple trees
from s. The first critical change is in the growth stage,
where free nodes would be absorbed by Spi and T p trees

until an augmenting path is found. Like before, we can find
unsaturated edges from any tree Spi to T p. On the other
hand, we disallow finding augmenting paths between any
two seed trees Spi and Spj . This is enforced because both
trees originate from s, making flow augmentation impos-
sible over such paths. This process necessitates that each
node, in any source tree, stores the index i of its tree. More-
over, since source trees need to be disjoint, no two seeds can
have any common superpixels, i.e. Si ∩ Sj = ∅, ∀i 6= j.

The second difference is in the adoption stage. When
a node in Spi becomes an orphan due to the augmentation
stage, it can only be adopted back by Spi , otherwise it is set
free. The reason that we do not allow adoption by any other
seed tree Spj 6=i is to prevent adoption by a tree which itself is
rooted at an orphan. This is similar to the condition in BK,
where an orphan node from S cannot be directly adopted by
T , and vice versa. Running BK with these changes results
in the precomputation graph Gp with multiple seed trees Spi
and T p (Fig. 3b). In the figure, each seed tree has its own
source si for a simpler presentation. This is equivalent to
using multiple sources in flow networks.

Once Spi and T p have fully grown in Gp, they can be
used for computing min-cut in any seed graph Gi. This is
accomplished through the reparameterization and transfor-
mation steps detailed in the next two subsections.

Notation: On a directed edge (u, v), the capacity is cuv;
the flow is fuv; and the residual capacity is ruv = cuv −
fuv+fvu. When ruv > 0, the edge is unsaturated, i.e. more
flow can be pushed through it. The unary capacity cu is
defined as cu = csu−cut, the unary flow as fu = fsu−fut,
while the unary residual capacity is ru = cu − fu.

3.2.2 Reparameterizations: Boykov and Jolly [4]
demonstrated that if the capacity difference, cu = csu−cut,
remains unchanged in a new graph, the min-cut would be
the same as in the original graph, and only the flow value
would change. We use this idea to reparameterize all nodes
whose unary capacities change from Gp to Gi, resulting in
a graph Gpi . For each node where cpu 6= ciu (the superscript
denotes that the quantity cpu is from Gp, ciu is from Gi, the
same convention will be used throughout the paragraph),
we would like to make sure that the flow at u remains the
same as in the precomputation graph, while the unaries
change from cpu to ciu. In order to achieve this, we increase
the capacities of both t-edges by the same amount, so that
ciu = cisu − ciut, cisu ≥ fpsu and ciut ≥ fput (there is enough
capacity to hold flow in the precomputation graph). After
this, the new residual capacity riu is computed as:

riu = rpu + (ciu − cpu) = ciu − fpu . (2)

Note when riu > 0, then (s, u) is unsaturated, and if riu < 0,
then (u, t) is unsaturated.
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(a) Graph construction for computing Gp
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(c) Gp
1 : tree Sp

2 transformed to find min-cut for G1
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(e) Gp
2 : tree Sp

1 transformed to find min-cut for G2
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(b) Gp at the end of precomputation stage, contain-
ing trees Sp

1 ,S
p
2 , and T p fully grown
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(d) Min-cut for G1, computed from Fig. 3c
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(f) Min-cut for G2, computed from Fig. 3e

Figure 3: This illustrates min-cut for G1 and G2, using the precomputation graph Gp, composed of trees Sp
1 , Sp

2 and T p. The value within
each node is the unary residual capacity ru. The value on each n-edge is its residual capacity ruv . Gray edges, without an arrow, stand-in
for bi-directional n-edges. (a) shows the precomputation graph where cs4 = cs5 = cs11 = ∞, and other nodes are connected to the
sink t. The color of the node indicates which tree it belongs to. (b) shows the result once the precomputation graph Gp is built with Sp

1 ,
Sp
2 and T p. Unsaturated tree edges are given in the color of the tree. Node 2 is free because it cannot be grown into Sp

1 . (c) shows the
transformation of Gp into graph Gp1 , which is valid for finding a cut for G1. (d) shows the resulting cut after running BK on the graph in
(c). Similarly, (e) shows the transformed graph Gp2 . (f) shows the final cut. Notice that nodes 10, 13, 14 remain in the sink all the time.

As an example, let us reparameterize node 5 from Gp
(Fig. 3b) to Gp2 (Fig. 3e). The capacity of node 5 in the
original G2 was c25 = −1 (not visible in the figure). When
building Gp, a flow of fp5 = 31 was pushed from s to node 5
(all the gray links from node 5 in Fig. 3a minus the residual
capacities in the blue arrows in Fig. 3b). Hence, we know
that the residual capacity is r25 = −32 for the reparameter-
ized Gp2 (see Fig. 3e).

3.2.3 Transforming the Precomputation Graph: The
reparameterized Gpi will contain all N + 1 trees from Gp,
which now need to be transformed to a single source and
sink tree. Let us first consider uniform unaries, where fi(·)
is constant, which means unary capacities only change at
seeds u ∈ Sj 6=i. In this case, to find the min-cut for G1, for
instance, the precomputation tree Sp1 can be directly used as
S1, and T p can be used as T1. All other trees Spi 6=1, need to
be converted to either S1, T1 or set free.

These trees are converted as follows: after reparameteri-
zation, if riu > 0, i.e. u has a residual capacity from s, the
tree Spj rooted at node u can directly become a part of S1.
On the other hand, if riu < 0, Spj will need to be converted
to become part of the sink tree T1. The key idea here is to
use the existing tree structure Spj rooted at u, by searching

for unsaturated edges in the reverse direction. Starting at
u, we already know that all its children v have unsaturated
edges (u, v). What we need to find is whether (v, u) is also
an unsaturated edge. If so, node v is added to T1 using this
edge. For instance in Fig. 3b, since all reverse edges for
Sp2 , rooted at 11, were also unsaturated, the whole tree is
converted to T1, as shown in Fig. 3c. The chance of finding
an unsaturated edge in the reverse direction is high, because
the graph has the same capacity n-edges in both directions.
If any child node is not reachable by an unsaturated edge, it
is set free along with its children.

With non-uniform unaries, whole trees cannot be trans-
formed directly, because non-seed nodes can also change
between seed graphs. We run down every tree, Spi and T p,
from root and check each node to see whether it has residual
capacity. If it does, then we verify if it belongs to tree Si or
Ti, according to the sign of its residual. Any node can be
broken off from its previous parent in Spi or T p, as needed.
Since this transformation process visits each tree node once,
its computational complexity is O

(
|V|
)
. One can see two

benefits of the precomputation graph: (1) reusing tree struc-
ture is faster than building new trees, as also demonstrated
by [20]; and (2) some nodes are never revisited after pre-
computation (nodes 10, 13, 14 in Fig. 3).



4. Implementation Details
4.1. The Superpixel Graph

We adopted the superpixel graph from [9], which is cre-
ated by computing the watershed image from soft edge po-
tentials before non-maximum suppression [2]. This gives
a superpixel graph of roughly 500 − 3000 superpixels per
image and we found it to be excellent in terms of boundary
recall (> 97% across the PASCAL VOC dataset). Comput-
ing min-cuts on the superpixels is significantly faster than
the pixel-level graph used in [6] and loses little accuracy.

Foreground seeds are sampled from a regularly spaced
grid. For the uniform unary potential, we set fi(xu) = 0 so
that the potential is only dependent on λ. For the color po-
tential, we fix a Gaussian using the colors within the seed re-
gion and compute the Bhattacharya distance from this color
prior to all the superpixels as the unary.

Pairwise potentials between superpixels are learned us-
ing LAD-boosted regression trees (Sec. 4.2). The fea-
tures are computed from the distribution of edge potentials
along a superpixel boundary. For each superpixel bound-
ary, the edge potentials from all pixel boundaries are col-
lected and the percentiles (10th, 20th, . . ., 100th percentile
in our experiments) of the set are used as features, along
with the mean edge potential and number of pixels along
the edge. This reflects a much simpler potential than the one
in [18] which utilized complex geometric context features.
We have tried to add simple appearance difference features
(e.g. [26]) but they did not help. We hypothesize that the
appearance information has already been well-encoded in
the edge detection algorithm. The learning of the pairwise
potential is done on the training set of the BSDS-500 bound-
ary detection dataset. One training example is generated for
each superpixel pair in each image. Then all boundaries
between all pairs of superpixels are compared against the
human-annotated ground truth in BSDS, and the percentage
of ground truth matches along each superpixel boundary is
taken as the regression output. pairs within an image.

Instead of LAD regression, one could use a simpler al-
ternative, such as the average of all edge potentials along
the superpixel boundary to represent the same metric (per-
centage of edge matches). However, empirically we found
that the alternative was not robust enough, since along a
superpixel boundary there is often a significant percent-
age of missed edge detections or false positives, which
can negatively bias the superpixel boundary potential. The
learned edge potentials perform significantly better than this
naive choice, especially for certain boundary detection al-
gorithms, see Sec. 5.1.

4.2. LAD-Boosting on Regression Trees

We use a customized piecewise-linear regression tree
that trains a linear regressor via least squares at each split,

and decides the split based on the sum of the L2 errors of
both splits. In order to speed-up the training and avoid eval-
uating many features, only features that have been used in
previous splits are considered in the regressor. At the root,
this means that only a single dimension will be used to train
each regressor. Then, suppose the tree splits using the 3rd

dimension, its child nodes could use both the 3rd dimension
and another one to train regressors and locate splits. Since
we add only one dimension at each split, we were able to
derive an analytic formula for splitting. Thus the training is
almost as fast as a traditional decision tree with piecewise-
constant splits.

Piecewise linear decision trees have been proposed be-
fore. Our main purpose is to use this decision tree in boost-
ing in order to reduce the number of trees in a forest regres-
sor. Previous research has shown that a boosted regressor
with a few deep decision trees could achieve similar perfor-
mance as one with many shallow trees while being faster to
evaluate [14]. Our customized decision tree is designed to
be a stronger regressor for the same purpose. For boosting a
regressor, we used LAD-boosting [13] which is found em-
pirically to be more robust than L2 or Huber loss functions.
Because of the strong tree regressor, we are able to obtain
excellent results with only 5 − 50 trees of depth 5 − 7, as
compared with the several hundreds to thousands of trees in
conventional boosting and random forests.

5. Experiments
The main experiments were conducted on the validation

set of the PASCAL VOC 2012 segmentation challenge. Ad-
ditional experimental results can be found on the project
website.1 There are 1,449 images in the VOC 2012 vali-
dation dataset with pixel-level ground truth annotations for
each object. The scores we report are average object overlap
of the best segment in the pool (mean best overlap):

Ov(S, GT ) = max
i

|Si ∩GT |
|Si ∪GT |

where segment Si is in the segment pool S = {S1, . . . , Sn},
GT is the ground truth object and |S| denotes the number
of pixels in the segment. The spatial overlap treats objects
of all sizes equally, but in the PASCAL challenge, many
small objects are labeled, and segmentation would not be
very valuable in those cases. Therefore, as is common in
other papers, we also report the mean best covering:

Cov(S,GT) =

∑
j |GTj |Ov(S, GTj)∑

j |GTj |

where GT = {GT1, . . . , GTk} denotes multiple ground
truth objects in the image. Covering measures the ability to
extract larger segments and explain the scene as a whole.

1http://cpl.cc.gatech.edu/projects/RIGOR/

http://cpl.cc.gatech.edu/projects/RIGOR/


Method Mean Best Mean Best Run Number of
Overlap Covering Time (s) Segments

CPMC 70.67 82.24 34.01 624.1
Object Proposals 71.48 80.98 126.46 1544.1
Shape Sharing 67.82 82.71 410.31 1115.4

R
IG

O
R

GB-25 68.04 79.83 4.62 808.7
SketchTokens-25 67.33 78.94 2.75 839.1
StructEdges-25 68.85 79.89 2.16 741.9
GB-64 72.83 82.55 6.99 1490.3
SketchTokens-64 72.62 82.05 4.84 1630.5
StructEdges-64 73.64 82.84 4.71 1462.8
GB-100 74.22 83.25 9.26 1781.9
SketchTokens-100 73.78 82.61 6.80 1995.7
StructEdges-100 75.19 83.52 6.84 1828.7

Table 1: VOC performance and timing results. Our approach is
comparable to others in covering, better in overlap, and more than
an order of magnitude faster. The number after GB, SketchTokens,
and StructEdges indicates the amount of seeds used.

RIGOR is implemented in MATLAB with many crucial
functions written in C++. All timings were generated on
a 3.2GHz Intel i7-3930K 8 cores machine, using a set of
100 PASCAL VOC images. We combine our algorithm
with three recent approaches for fast boundary detection:
GB [25], SketchTokens [28] and StructEdges [8]. Separate
pairwise potentials are learnt for each boundary detector.

5.1. Segmentation Performance

The segmentation performance on the PASCAL VOC
2012 validation set is shown in Table 1. Our algorithm
is compared against CPMC [6], Object Proposals [9], and
Shape Sharing [19]. All timings are for the full pipelines,
which includes time taken for boundary computation. GB
is used for computing CPMC boundaries. Note that CPMC
results are about 1% better if the GlobalPB [2] boundaries
are used, as in the public version, however, GlobalPB takes
much longer to compute and therefore for the timing com-
parison it puts CPMC in a worse position.

It can be seen that our method has better performance if
more seeds are used, and the number of segments is also
larger. To illustrate the effect of the number of seeds we
have plotted the overlap and covering scores, as well as the
number of segments for different numbers of seeds in Fig. 4.
Note that SketchTokens results have not been included since
they are consistently worse than the two other boundary de-
tectors. GB and StructEdges perform similarly in covering,
but StructEdges is slightly better in overlap, potentially due
to better boundary recall than GB. Interestingly, even with
only 9 seeds the algorithm already has a mean best overlap
of about 60% and a covering more than 75%, finding most
foreground objects in the scene. This is suggestive of future
real-time applications of the segmentation algorithm.

Table 2 presents results for learning the pairwise poten-
tials. It can be seen that improvements are significant for
StructEdges, which has higher recall but more false posi-
tives. For GB, the improvements are not significant since
the precision is already high.
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Figure 4: The number of seeds and algorithm performance.

Method Mean Best Mean Best
Overlap Covering

StructEdges-Median 67.59 80.27
StructEdges-Mean 69.96 81.82

StructEdges-Learned 73.64 82.84
GB-Median 71.38 82.42
GB-Mean 72.67 82.39

GB-Learned 72.83 82.55

Table 2: Effects of learning pairwise potentials, on 64 seeds per image.

5.2. Detailed Timing Results

We quantitatively verified our use of the precomputation
graph in comparison to other methods. We used the imple-
mentation provided by authors of BK [5] and PF [17]. Kohli
and Torr [20]’s implementation comes packaged with BK.

We first generated precomputation graphs for each graph
type (uniform and color unaries) in parallel, which are
then reparameterized (§3.2.2) and transformed for each seed
graph (§3.2.3), and solved in parallel. All parallelization
for our method and others is done using Intel TBB. The
comparative performance with different numbers of seeds
is shown in Table 3 and Fig. 5. The results suggest that it
is advantageous to use a precomputation graph when using
4-25 seeds. Fig. 5a-5c shows that the benefit of having a
single precomputation graph tapers off when the number of
seeds becomes higher. This indicates that having more than
25 trees in a single precomputation graph is less beneficial,
because each tree now only contains a small set of variables.
In this case, the cost of generating, reparameterizing and
transforming such a graph diminishes its benefits. In future,
we plan to generate multiple precomputation graphs, where
each accommodates a small set of seeds with similar unar-
ies. Parallelizing this process will harness the power of our
concept further.

Time (ms) [5] [20] [17] Ours
RIGOR StructEdges-9 632.8 347.5 502.2 282.1
RIGOR StructEdges-25 1,363.8 825,4 813.5 688.5
RIGOR StructEdges-64 3,181.3 2,038.8 1,511.8 1,846.2

Table 3: Max-flow/Min-cut timing comparison
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(d) Pipeline timing comparison to Object Proposals [9]

Figure 5: Timing comparisons. (a), (b), and (c) give speedup factors for our parametric min-cut when compared to [5], [20], and [17], with
increasing number of seeds. Here, 2× means twice as fast. Note that the scale is different across graphs, but coloring is consistent; a more
saturated green bar is better. (d) compares RIGOR StructEdges-64 timing of each component in the pipeline to its counterpart in [9].

6. Conclusion
RIGOR is the first approach to compute high-quality

figure-ground segmentation proposals from a single image
in just a few seconds. Our speed-up over previous methods
hinges on two contributions. The first is a formulation that
reuses graph computations by building a precomputation
graph that considers graphs with different seeds and unary
potentials simultaneously. Second, we made several design
choices that avoid extensive computations. The resulting al-
gorithm can compute a pool of segments with similar accu-
racy as previous methods, but an order of magnitude faster.
We plan to implement our algorithm on the GPU to achieve
real-time segment proposal pool generation.
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