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Abstract

Low-cost RGB-D imaging system such as Kinect is
widely utilized for dense 3D reconstruction. However,
RGB-D system generally suffers from two main problems.
The spatial resolution of the depth image is low. The depth
image often contains numerous holes where no depth mea-
surements are available. This can be due to bad infra-red
reflectance properties of some objects in the scene. Since
the spatial resolution of the color image is generally higher
than that of the depth image, this paper introduces a new
method to enhance the depth images captured by a moving
RGB-D system using the depth cues from the induced opti-
cal flow. We not only fill the holes in the raw depth images,
but also recover fine details of the imaged scene. We ad-
dress the problem of depth image enhancement by minimiz-
ing an energy functional. In order to reduce the computa-
tional complexity, we have treated the textured and homoge-
neous regions in the color images differently. Experimental
results on several RGB-D sequences are provided to show
the effectiveness of the proposed method.

1. Introduction

Depth map of a scene is an important piece of infor-
mation to understand the 3D geometry of the environment.
With the ability of acquiring scene depth, many applications
such as autonomous navigation, 3D reconstruction, human-
computer interaction and more, can be achieved.

Due to the advance in technology, active depth sensors
such as imperceptible structured light sensor (e.g., Kinect
[3]) and time-of-flight (ToF) sensor (e.g., SwissRanger [4])
become widely available. They are not only targeted for
entertainment, but also widely utilized for research. Gener-
ally speaking, low-cost depth camera is only able to provide
low-resolution depth maps for the imaged scene. Therefore,
fine details of the scene are lost. Moreover, the depth maps
are usually noisy and incomplete. Kinect is a kind of RGB-

Figure 1. A RGB-D frame from a Kinect consists of a color image
and a depth map of the scene. Light intensities in the depth map
correspond to surfaces that are close to the camera, while dark in-
tensities correspond to surfaces that are far away from the camera.

D imaging system that provides both color (RGB) and depth
(D) images of the imaged scene. We have used a Kinect to
capture a small part of our laboratory. Figure 1 illustrates
the color image and the depth map in the coordinate frame
of the color image. The presence of numerous holes in black
color represents no available depth readings.

Generally, we can classify the approaches for the recov-
ery of scene depth into three groups, namely active sensors
(e.g., ToF sensor and Kinect) [14] [26], passive sensors (i.e.,
color camera) [10] [18] [25] [27] [28] [30] [36], and fusion
of active and passive sensors [39] [37] [9] [11] [12].

Passive system generally utilizes techniques such as
shape from motion (SfM) or stereo disparity to recover
scene depth. Estimation of camera pose and establishment
of dense correspondences are the two important steps in
SfM. Optical flow which is closely related to SfM has at-
tracted the attention of many researchers since the semi-
nal works of Horn and Schunck [15] as well as Lucas and
Kanade [24]. The major challenge in optical flow estima-
tion lies on the fact that the flow is only partially observable
in general due to the well-known aperture problem. In order
to overcome the difficulty, the flow is recovered by solving
a functional, usually consisting of a data term and a regular-
ization term [7] [19] [31] [34] [40]. However, solving the
functional is a computationally intensive task. This leads
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to implement various optical flow algorithms in a power-
ful computing device equipped with multi-core processor
and/or graphics processing unit (GPU). On the other hand,
the recovery of camera pose in different frames from feature
correspondences [13] or spatial-temporal image gradients
[16] [17] requires relatively lower computational time.

The complementary nature of active and passive sensors
provides a great opportunity to improve the quality of the
depth maps. However, the aforementioned research works
for sensor fusion are all about enhancement of depth maps
using stereo and active depth camera together. To the best
of our knowledge, no research work has been done on the
fusion of the depth maps captured by a handheld RGB-D
imaging system and the depth cues from the induced optical
flow. This is partially due to the fact that the computation
of variational optical flow is generally not fast enough.

In this paper, we provide a novel two-step variational
method to enhance the depth maps from a moving RGB-
D system using two RGB-D frames. Our contribution is
three-fold. First, we fill the research gap in RGB-D depth
map enhancement of what we believe is the first work which
utilizes the depth cues in the optical flow induced from a
short image sequence to complement the depth maps. Sec-
ond, we improve the computational efficiency of solving the
depth functional by treating the textured and homogeneous
regions in the RGB images differently. Third, we develop a
sparse data term and specialize a dense regularization term
for RGB-D depth map enhancement.

2. Related works
SfM is one of the most popular approaches for 3D or

depth map reconstruction. Davison proposed the use of
a top-down Bayesian framework for the simultaneous lo-
calization and mapping (SLAM) using a single camera via
the registration of a sparse set of feature points [10]. An-
other pioneering work which is related to SLAM is the par-
allel tracking and mapping (PTAM) proposed by Klein et
al.[18]. In PTAM, reliable image features are first selected
and tracked across multiple image frames. Then, sparse 3D
point clouds are mapped together using bundle adjustment.
Their approach emphasizes on the tracking and mapping si-
multaneously by using multi-thread processing.

Recent research works on SfM focus on dense 3D recon-
struction due to the advance in computing devices. New-
combe et al. recovered camera pose using a sparse point
cloud [25]. An approximate base mesh which is gener-
ated from the point cloud is warped to form a 3D model
of the scene. Then, the mesh is continuously refined using
the view-predictive optical flow. Stühmer et al. proposed
a TVL1-based variational approach for computing dense
depth maps from multiple images [30]. Later, Newcombe
et al. proposed dense tracking and mapping (DTAM) which
relies not on sparse feature correspondences but information

from all image points [27].
A nonlinear measure of the sub-pixel displacement was

proposed by Psarakis et al. for stereo correspondence [28].
However, the sub-pixel accuracy is achieved by interpo-
lation only. A fast nonlocal cost aggregation method for
stereo images using minimum spanning tree (MST) was
proposed by Yang [36]. The quality of MST directly in-
fluences the matching result.

The complementary nature of ToF and stereo has at-
tracted the attention of many researchers. Yang et al.
weighted the depth measurements from ToF and stereo ac-
cording to the signal strength of ToF and the local image
features, respectively [37]. Choi et al. proposed a method
which is able to disambiguate depth measurements from
ToF caused by phase warping using stereo [9]. Garcia et
al. presented a depth map refinement procedure by sepa-
rately treating regions with undesired effects such as occlu-
sion and missing measurements differently [12]. Gandhi
et al. proposed a ToF-stereo fusion which utilizes the ToF
measurements projected onto the stereo image pair as an
initial set of correspondences [11]. High-resolution range
data is then formed by propagating these correspondences
with the rough depth priors using a Bayesian model. Zhu et
al. modeled the fusion of ToF and stereo as maximizing a
posterior Markov random field (MAP-MRF) [39].

Our work is related to the TV-L1 approaches [27] [30].
Both of us utilize motion prior to recover dense depth map
bypassing the estimation of the optical flow field. Unlike
their works, we do not solve the functional by introduc-
ing auxiliary function. Moreover, we improve the compu-
tational efficiency by solving the depth functional for the
textured and homogeneous regions differently. For Kinect-
Fusion [26] and RGB-D Mapping [14], multiple depth mea-
surements are integrated into a global 3D model. Color im-
ages are only utilized for rendering and depth map filtering
in KinectFusion, while feature correspondences are used to
facilitate point clouds alignment in RGB-D Mapping. Here,
we restrict ourselves to the condition that only two consec-
utive color and depth images are provided. We enhance the
depth images by exploring the depth cues from the induced
optical flow of the moving RGB-D system.

3. Variational optical flow
Suppose we have two consecutive RGB images I1(x)

and I2(x) which are captured by a moving RGB-D system.
Optical flow field ẋ is often recovered by minimizing an
energy functional of the form:

E(ẋ) = Edata(ẋ) + Ereg(∇ẋ)

=

∫
edata(ẋ) + ereg(∇ẋ)dx,

(1)

where edata and ereg are the data and the regularization
terms to the data Edata and the regularization Ereg ener-
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gies, respectively. A review about some of the current vari-
ational optical flow models can be found in [40].

To minimize the functional in (1), we can apply the cor-
responding Euler Lagrange equation to update the flow field
at iteration step τ as follows:

∂ẋ

∂τ
= ẋτ−ẋτ−1 = −

(
∂edata(ẋ)

∂ẋ
− div

(
∂ereg(∇ẋ)

∂∇ẋ

))
.

(2)

3.1. Data term

The data term in (1) is related to the image brightness
constancy assumption in the work of Horn and Schunck
[15]. Edata is widely defined as the integral of the dif-
ference of the image intensities within a rectangular image
domain Π ⊂ R2 as:

Edata(ẋ) =

∫
Π

Ψ((I2(W(x, ẋ))− I1(x))2)dx, (3)

where Ψ is a penalty function, and the warp W takes the
image point x in the coordinate frame of I1, and maps it to
another image location W(x, ẋ) in the coordinate frame of
I2.

3.2. Regularization term with convolution kernel
prior

Instead of recovering optical flow from (2), it can be
shown that the estimation process can be decoupled into a
two-step procedure as [35]:

ẋτ
′
− ẋτ−1 = −∂edata(ẋ)

∂ẋ
, (4)

ẋτ − ẋτ
′

= div

(
∂ereg(∇ẋ)

∂∇ẋ

)
. (5)

In particular, the regularization of the intermediate flow
field ẋτ

′
resulted from the data term is equivalent to ap-

plying a convolution with a 2D oriented Gaussian kernel G
to the intermediate flow field as [33]:

ẋτ = G ∗ ẋτ
′
. (6)

4. Variational depth
The recovery of optical flow in homogeneous regions of

an image is ill-posed if only visual cues are utilized. Reg-
ularizer is often required to diffuse optical flows from tex-
tured regions to homogeneous regions. This fact has been
known since the seminal work of Horn and Schunck [15].
With this insight, minimization of the data term Edata(Z)
(or Edata(ẋ) for the case of optical flow) is only meaning-
ful at the image positions which are textured. The depth
values (or optical flows) at homogeneous regions are indeed
diffused from nearby textured regions. Due to the recent re-
search work about the two-step variational functional [35],

Inputs: A pair of color images (I1, I2) and the
associated pair of raw depth images (ZD1, ZD2)

1: Recover camera motion (t, w).
2: Construct image pyramids for the color and depth

images, and set the initial level l = 0 and Z1 = ZD1.
3: Propagate Z1 to level l + 1.
4: Fuse the depth images ZE1 and ZD1 (Sect. 4.5).
5: Variational depth calculation

5.1: Minimize data energy at image locations
with enough texture (Sect. 4.1).

5.2: Remove correspondence ambiguity (Sect. 4.2).
5.3: Regularize depth map (Sect. 4.3).

6: Occlusion-aware refinement (Sect. 4.4).
7: If l 6= N − 1, where N is the total number of levels,
l = l + 1, and go to Step 3.

Output: Refined depth image Z1

Table 1. Method Overview

we are able to perform minimization of Edata(Z) sparsely
at the selected image positions. Using this strategy, we can
significantly reduce the computational time of solving the
functional by focusing more on the image positions that pro-
vide more useful information to the task.

Our overall algorithm which is outlined in Table 1 is
based on iterative coarse-to-fine processing. The steps are
detailed further below.

4.1. Nonlocal data term with motion prior

Consider the RGB-D system undergoes a general camera
motion with translation t = (tx, ty, tz)

T and rotation w =
(wx, wy, wz)

T with respect to the camera center C. Optical
flow ẋ at image position x can be expressed in terms of the
camera motion (t,w) as [22]:

ẋ =

(
−f 0 x
0 −f y

)
t

Z(x)

+

(
xy
f −(x

2

f + f) y
y2

f + f −xyf −x

)
w,

(7)

where f is the focal length of the RGB camera, and Z(x) is
the scene depth at x.

The transformation H(t,w) between the two RGB-D
frames can be recovered by aligning the two associated
3D point clouds using iterative-closest-point (ICP) match-
ing [6]. Since the performance of ICP matching may be
affected if the two point clouds are not close enough, we
initialize an estimate of the transformation H0 by using the
feature correspondences in the RGB images. Distinct fea-
ture points are matched across the two RGB images by us-
ing scale-invariant feature transform (SIFT) [23], and then
H0 is computed using 8-point RANSAC [13]. If a binocular
imaging system is available, a stereo image pair resembles
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the two consecutive images. A predefined transformation
H between the two camera frames can be easily obtained
through camera calibration.

We can express the warp W in (3) as x+ ẋ for the image
frame I2 towards the frame I1 using the parametric form in
(7). Since the camera motion parameters (t,w) have been
recovered, we can reduce the 2D variational problem for
optical flow ẋ to the 1D variational problem for depth Z.
Our data term at image position x is defined as follows:

Edata (Z(x))

=

∫
Ω

ω(x,x′)

(
Ψ
(

(I1(x′)− I2 (W(x′, Z(x))))
2
)

+ αΨ
(

(∇I1(x′)−∇I2 (W (x′, Z(x))))
2
))

dx′,

(8)

with some regularization parameter α > 0. The above for-
mulation is related to the local method proposed by Lucas
and Kanade [24], but we include the contributions of image
gradient constancy and nonlocal weight w(x,x′) to it. Un-
like the works by Werlberger et al. [34] and Krähenbühl et
al. [19], we utilize the coherence of neighboring pixels over
a window Ω on the data term but not on the regularization
term. Moreover, we only perform minimization of Edata
on the image positions that have enough texture. These
positions are detected from the magnitude of spatial inten-
sity gradient (or the eigenvalues of the local image structure
tensor). It should be noted that we have only considered a
sparse depth image up to this moment.

The value of the nonlocal weight ω(x,x′) depends on of
the spatial distance, intensity difference, and intensity gra-
dient difference between the pixels at x and x′ as follows:

ω(x,x′) = exp

(
−‖x− x′‖2

2σ2
s

− ‖I1(x)− I1(x′)‖2

2σ2
c

− ‖∇I1(x)−∇I1(x′)‖2

2σ2
g

)
,

(9)

where σs, σc, and σg are the standard deviations of the
Gaussian kernels for the spatial distance, intensity differ-
ence, and intensity gradient difference, respectively. Color
images are encoded in CIELAB color space. The weight
ω is related to the conventional bilateral filter proposed by
Tomasi et al. [32], but we emphasize more on the use of vi-
sual cues from the textured regions in the image by includ-
ing a term related to the image gradient. Figure 2 visualizes
a nonlocal weight image from the Reindeer sequence of the
Middlebury stereo dataset [1]. The figure illustrates the vi-
sualization of intermediate weights having areas of size 65
× 65. All the standard deviations σ were set to 11.0. Image
pixels which have similar color and intensity gradient as the
central pixel lead to higher weights.

In order to make the data term more robust to outliers and
convenient to the computation later, we use the Charbonnier

Figure 2. Visualization of nonlocal weight. From left to right: (a)
Marked region in the Reindeer dataset, (b) Proximal weight, (c)
Color-similarity weight, (d) Gradient-similarity weight, and (e)
Combined weight for the marked region.

norm Ψ(s2) =
√

(s2 + ε2) (where ε = 0.001) to approxi-
mate the L1 norm for the penalizer Ψ. To simplify the de-
viation of the data term, we denote the inverse depth as ρ.
In the latter part of the derivation, we will need to compute
several gradient terms such as ∇I2(W(x, ρ)). The com-
putation of ∇I2(W(x, ρ)) requires dense flow field due to
the approximation of derivatives using discrete filter, and
therefore this is not suitable for minimizing data term using
sparse depth image (or flow field). Instead of computing
∇I2(W(x, ρ)), we exchange the role of I1 and I2 using the
inverse additive image alignment as Baker et al. [5]. This
not only makes the sparse depth image computation possi-
ble, but also reduces the computational complexity.

The derivative of Edata in (8) can be expressed as fol-
lows:∑

Ω

ω
(
Ψ′(I2

z )IzIρ + αΨ′(I2
xz + I2

yz)(IxzIρx + IyzIρy)
)
,

(10)
where

Ix = ∂xI1(x),

Iy = ∂yI1(x),

Iz = I1(x)− I2(W(x, ρ)),

Ixz = ∂xI1(x),

Iyz = ∂yI1(x),

Iρ = ∇IT1
(
∂W

∂x

)−1
∂W

∂ρ
,

Iρx = ∇ITx
(
∂W

∂x

)−1
∂W

∂ρ
,

Iρy = ∇ITy
(
∂W

∂x

)−1
∂W

∂ρ
.

(11)

For the simplicity of presentation, the variables x and x′ for
some of the above terms are dropped.

With iteration variable ρk instead of ρ, ρk+1 can be ob-
tained as the solution of:∑
Ω

ω(Ψ′((Ik+1
z )2)Ik+1

z Ikρ

+ αΨ′((Ik+1
xz )2 + (Ik+1

yz )2)(Ik+1
xz Ikρx + Ik+1

yz Ikρy)) = 0.

(12)
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In order to remove the nonlinearity in Ik+1
∗ , we approximate

Ik+1
∗ by using the first order Talyor expansion as:

Ik+1
z ≈ Ikz + Iρd

k
ρ,

Ik+1
xz ≈ Ikxz + Iρxd

k
ρ,

Ik+1
yz ≈ Ikyz + Iρyd

k
ρ,

(13)

where dρk+1 = ρk − dρk. Here ρk is the solution from the
previous iteration, and dρk is the unknown increment.

For the better readability, we define

(Ψ′)kc = (Ψ′)k
(
(Ikz + Iρd

k
ρ)2
)
,

(Ψ′)kg = (Ψ′)k
(
(Ikxz + Iρxd

k
ρ)2 + (Ikyz + Iρyd

k
ρ)2
)
.

(14)

We further remove the nonlinearity in (Ψ′)∗ by performing
an inner iteration loop. We initialize dρk,0 = 0, and denote
dρk,l the iteration variable at step l. The solution for dρk,l+1

is given by:

dρk,l+1

=
−
∑
ω
(
(Ψ′)k,lc Ikρ I

k
z + α(Ψ′)k,lg (IkρxI

k
xz + IkρyI

k
yz)
)

∑
ω
(

(Ψ′)k,lc (Ikρ )2 + α(Ψ′)k,lg
(
(Ikρx)2 + (Ikρy)2

)) .
(15)

4.2. Ambiguity compensated data term

The constraints which are used in the data term Edata
in (8) are the brightness and intensity gradient constancies
of the same feature point across I1 and I2. However, there
is a degenerate case which is ill-posed to the system in (8)
or other state-of-the-art methods without considering reg-
ularization. If the truth optical flow is indeed along the
iso-brightness contour, ambiguity of matching of the cor-
responding image points can occur. No matter what the
amount of the magnitude of the flow is, the associated data
energy is the same. Fortunately, this can be well detected
by applying the following detector:

cos−1
(

ˆ̇x · n
)
∈ [

π

2
± η], (16)

where n is the unit vector of the intensity gradient, ˆ̇x is the
unit vector of ẋ, and η is a small threshold. Depth values at
such image positions are replaced by the associated depth
readings from the RGB-D system.

4.3. Regularization for holes filling

Edge-preserving property is the fundamental concern of
the appropriate selection of the regularizer in Ereg . As pre-
sented in Section 3.2, the diffusion tensor can be replaced
by a convolution-based diffusion filter. In the literature, bi-
lateral filter [32] is widely used as the diffusion filter for
optical flow [35] [21] [34] [19], scene flow [38], and depth

map [26] filtering. Due to the space limit, only the bilateral
(BL) filter for depth image is presented here:

ZBL =

∫
Π
Z(x′)gs(x− x′)gc(‖I(x)− I(x′)‖2)dx′∫
Π
gs(x− x′)gc(‖I(x)− I(x′)‖2)dx′

,

(17)
where gs and gc are the two Gaussian functions for spatial
and intensity domains, respectively.

The raw depth images from the depth sensor gener-
ally contains numerous holes which are assigned with zero
depth values. If we filter the depth images using the BL
filter in (17), then any image points which are located near
to these holes will have smaller depth values than usual.
The normalization is biased because the Gaussian kernel
Gs(σs)Gc(σc) in the denominator does not take into ac-
count of the zero depth values in in the numerator. A rem-
edy to it is to multiply a binary map gh which indicates
the location of image points having zero depth values to the
kernel in the denominator. In this way, the Gaussian kernel
changes to GhGs(σs)Gc(σc), and the BL filter becomes:

ZBL =

∫
Π
Z(x′)gs(x− x′)gc(‖I(x)− I(x′)‖2)dx′∫

Π
gh(Z(x′))gs(x− x′)gc(‖I(x)− I(x′)‖2)dx′

.

(18)
Exact implementation of (17) or (18) requires O(N) op-

erations per pixel, where N is the kernel size. The bottle
neck of the running time for solving the functional is due to
the regularization. Instead of using the exact BL filter, we
implement (18) using the framework from the fast O(1) BL
filter [8]. We follow the regularization as [31] by perform-
ing a 2D median filtering before applying the BL filter.

4.4. Occlusion handling

Different kinds of occlusion often occur in optical flow
and also depth map recovery. One common consequence
is that no corresponding pixel at I2 can match the occluded
pixel at I1. Distortion and dragging are often resulted in the
warped image I2(W(x, ρ)) if no special measure is applied
to minimize the data energy Edata. As a result, estimation
of depth map can also be affected accordingly.

We exclude the occluded pixels from the minimization of
Edata by introducing an occlusion-aware penalty function
to edata. Our algorithm uses a Gaussian function which
is related to the combination of flow divergence and pixel
projection difference as Sand et al. [29].

4.5. Fusion and update framework

At the beginning of solving the variational depth at each
pyramid level (from coarse to fine manner), we not only
have the depth estimation (ZE) interpolated from the previ-
ous coarser level, but also the depth image (ZD) from the
depth sensor as well. We fuse the two depths together using
a confident-weighted sum as follows:

Z = wcZD + (1− wc)ZE , (19)

4325



where wc = EE

EE+ED
, and the simplified energy functional

E∗ (i.e. ED or EE) is defined as:

E∗(Z∗) = Ec(Z∗) + Eg(Z∗)

= Ψ
(

(I1(x)− I2(W(x, Z∗)))
2
)

+ αΨ
(

(∇I1(x)−∇I2(W(x, Z∗)))
2
)
.

(20)

5. Experiments
We evaluated the experimental results for the following

methods using several real RGB-D sequences:

1. TVL1+NL: Optical flow using TV-L1 with non-local
terms by Sun et al. [31].

2. LDOF: Large-displacement optical flow using de-
scriptor matching by Brox et al. [7].

3. ENCC: Enhanced correlation-based stereo correspon-
dence with subpixel accuracy by Psaraki et al. [28].

4. Motion-Depth (M-D): Our RGB-D depth map en-
hancement with motion and depth in complement.

It should be noted that depth map can be recovered from
TVL1+NL or LDOF by solving Z from (7) as the camera
motion parameters (t,w) have been recovered.

In the evaluation, all programs were written in MAT-
LAB. An exception is LDOF [7] which is a MEX-function
converted from C/C++ by the author. For a better compar-
ison, we also included the running time of a MATLAB’s
LDOF [2]. All the programs ran on a Win7 PC with Core
2 CPU and 4GB RAM. We used the same number of image
pyramids and inner-loop iterations as TVL1+NL but with-
out using the graduated non-convexity (GNU) scheme. For
the image pyramid, a downsampling factor of 0.5 was used.
The other parameter settings were: α = 0.8, σs = 4.0,
σc = σg = 11.0. Gaussian kernels were truncated at 3σ.

In the first experiment, we used two benchmark datasets
(Reindeer and Moebius, with resolution 463 × 370) from
the Middlebury stereo dataset [1] to evaluate the perfor-
mance of several methods, namely ENCC, LDOF, and M-
D. Figures 3 shows the color images of the two datasets.
In order to simulate the depth maps captured by a low-cost
RGB-D system, we downsampled the ground-truth depth
maps by one-tenth of the original resolution, and then re-
size them to the original resolution using bilinear interpo-
lation. We also synthesized an occlusion map for each of
the datasets by projecting the ground-truth 3D scene points
in the coordinate of the right image frame on the left im-
age plane. All the image pixels that cannot be matched are
defined as the occluded pixels. We denote the input depth
maps for the experiment with the original and reduced res-
olution as Zi and Zi↓, respectively. Figure 4 shows the re-
sulted depth maps. Our method M-D provides better depth

Figure 3. Two stereo image pairs from the Middlebury stereo
dataset.

ENCC LDOF Zi↓, M-D Zi, M-D
Reindeer 1.995 1.855 1.977, 0.5048 1.938, 0.4342
Moebius 1.649 1.831 1.715, 0.3321 1.694, 0.2715

Table 2. Quality of the input depth maps for testing and the refined
depth maps in terms of RMSE.

ENCC LDOF M-D
Reindeer 491.6 94.82 [2] (17.70 [7]) 31.92
Moebius 531.0 102.7 [2] (18.94 [7]) 33.93

Table 3. Computational time (in seconds) for the first experiment.

discontinuities. Quantitative comparison which was per-
formed using the metric – root mean square error (RMSE),
is summarized in Table 2. The computational time for the
various methods is given in Table 3. M-D performs better
than the others.

In the second experiment, we evaluated the performance
of the proposed method against three RGB-D datasets
(Kitchen, Table, and Laboratory, with resolution 640
× 480) without available ground truths. The Kitchen and
Table sequences were obtained from the multi-view RGB-
D object dataset [20]. The Laboratory sequence was cap-
tured by a Kinect for XBOX in our laboratory. Figure 5
shows the color images of the datasets. Figure 6 shows
the depth maps resulted from various methods, namely
TVL1+NL, LDOF, and M-D. It can be shown that our
method (M-D) not only recovers depth maps with sharper
depth discontinuities, but also provides more fine scene de-
tails. More specifically, we can reconstruct the cupboard
door handles for the Kitchen sequence. We can also re-
construct the computer cables and the office chair in the
Table sequence. The cable of the computer mouse in the
Laboratory sequence can also be reconstructed as well.
Other compared schemes cannot provide such fine details
of the scene. Table 4 summarizes the computational time
for the compared methods (excluding the running time for
estimating camera motion as this is the common step). Our
method requires lower computational time than the others.
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Figure 4. Experimental results on the two stereo pairs from the Middlebury dataset. From left to right: Input depth maps having (a) Reduced
and (b) Original resolution. Depth maps resulted from (c) ENCC [28], (d) LDOF [7], (e) M-D using (a) as input, and (f) M-D using (b) as
input. (g) Ground truth. For the best visual evaluation, it is recommended to enlarge the figure in the electronic version of this article.

Figure 6. Experimental results on the three RGB-D sequences captured by Kinects. From left to right: Depth maps from (a) Kinect, (b)
TVL1+NL [31], (c) LDOF [7], and (d) Proposed motion-depth (M-D) method. For the best visual evaluation, it is recommended to enlarge
the figure in the electronic version of this article.

TVL1+NL LDOF M-D
Kitchen 187.6 204.4 [2] (40.56 [7]) 43.58
Table 153.8 192.7 [2] (38.34 [7]) 48.61
Laboratory 198.0 187.4 [2] (38.12 [7]) 55.71

Table 4. Computational time (in seconds) for the second experi-
ment.

6. Conclusions

We have proposed a variational-based depth map en-
hancement which naturally fuses the depth maps from the
active sensor of a moving RGB-D system and the depth cues
from the induced optical flow. Instead of computing the
flow field, we recover the depth map directly. We have im-

proved the computational efficiency by treating the textured
and homogeneous regions differently. The overall result is
that our proposed method has a fast computational time and
the ability to recover fine details of the imaged scene.
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