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Abstract

Laser range sensors are often demanded to mount on a
moving platform for achieving the good efficiency of 3D re-
construction. However, such moving systems often suffer
from the difficulty of matching the distorted range scans. In
this paper, we propose novel 3D features which can be ro-
bustly extracted and matched even for the distorted 3D sur-
face captured by a moving system. Our feature extraction
employs Morse theory to construct Morse functions which
capture the critical points approximately invariant to the 3D
surface distortion. Then for each critical point, we extract
support regions with the maximally stable region defined by
extremal region or disconnectivity. Our feature description
is designed as two steps: 1) we normalize the detected local
regions to canonical shapes for robust matching; 2) we en-
code each key point with multiple vectors at different Morse
function values. In experiments, we demonstrate that the
proposed 3D features achieve substantially better perfor-
mance for distorted surface matching than the state-of-the-
art methods.

1. Introduction
With the emergence of accurate and long-range laser sen-

sors, efficient 3D reconstruction of large-scale objects, such
as heritage objects or urban environment, demands the dy-
namical sensing techniques that often mount a sensor on
a moving platform, e.g., a vehicle [15], a drone [20], or a
balloon [3] (shown in Fig. 1(a)). However, behind the phys-
ical convenience and efficiency brought by these dynamic
sensing systems, range scans are often distorted due to the
motion of sensors (as an example shown in Fig. 1(b)). This
shortcoming may significantly inhibit its development, and
therefore matching such kind of distorted data becomes an
essential issue for reconstruction, recognition, rectification,
etc.

In this paper, we present novel 3D features which are

(a) (b)

Figure 1. An example of dynamic sensing system in [3]: (a) bal-
loon mounted with a laser range sensor. (b) a distorted range scan
captured by the balloon sensor.

approximately invariant to the distortion caused by moving
systems. Our method consists of two main components:

1) Feature detection: We first introduce Morse theory
for deriving Morse functions which can robustly represent a
distorted surface with critical points invariant to surface dis-
tortion. We take the critical points of local extrema as our
key points and then capture the maximally stable regions
on the Morse function as our support regions. Through
defining the region stability by i) maximal extreme regions
and; ii) maximal disconnected regions, we derive the max-
imally stable extreme region (MSER) feature (mathemati-
cally equivalent to [16]) as well as a novel feature termed
maximally stable disconnected region (MSDR). Both meth-
ods show the good performances in our image matching re-
sults.

2) Feature description: Given support regions, our fea-
ture description is designed with two processes: i) canoni-
cal shape normalization; ii) description with multi-scale re-
gions. We first normalize the detected regions to canonical
shapes based on an assumption that the local region changes
can be approximated as affine transformations; then we en-
code one key point by several support regions extracted at
different scales (Morse function values).

To achieve the goal of matching distorted range images
from a large number of laser scans, we make the follow-
ing novel contributions in comparison with the most recent
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work in dealing with deformed non-rigid objects [5, 25].
1, We apply Morse theory to define Morse functions which
can robustly capture the critical points to range scans with
distortion.
2, We derive the maximally stable regions for critical points
(of index 0 and 2) by a novel maximal disconnectivity de-
tection using Disconnectivity Graph (DG).
3, We propose to normalize the local support regions to
canonical shapes for robust matching, and thus the regions
can be simply encoded by a rotation-invariant descriptor
such as Spin Image [12].

In experiments, we demonstrate that the algorithm
achieves a substantially better performance for i) repeata-
bility of feature extraction; and ii) precision of 3D surface
matching in comparison with the state-of-the-art methods
on both synthesized and real datasets.

2. Related work
Our work is related to three research streams in the liter-

ature of 3D features.
1. Volumetric features Despite of 2D image features

(e.g., SIFT, SURF, MSER [16] etc.) getting their success
in the field, 3D shape features remain a largely unexplored
topic. Extensions from 2D image features, 3D SURF [13],
3D-SIFT [8], Mean shift 3D [19], and polynomial fea-
ture [27] are designed to extract features in 3D volumetric
space. These methods are very useful for medical image
analyzing, shape recognition, and shape retrieval. However,
for range scans, since each scan is an open surface, the vol-
umetric features may introduce the ambiguities due to the
incomplete boundaries and volumes.

2. Scale-invariant features While both DoG and
SURF are grounded on the approximation of the Laplacian-
of-Gaussian kernel, the MSER finds thresholded regions
whose areas are maximally stable as the level changes.
These ideas therefore inherently adapt to 3D geometry in-
variant to scale (e.g., [25, 18, 17, 23, 21]), and MSER based
robust local region extraction (e.g., [7, 14]). The most re-
lated to our work is the Critical Nets feature proposed by Gu
et al. [10] based on 2D image matching. Our method first
extends the idea on 3D surface matching. Beyond that our
method is designed as a region-based feature which takes
advantage of the disconnectivity on a Morse function to de-
tect the maximally stable region rather than a scaled region.

3. 3D features for non-rigid objects 3D feature on
Non-rigid objects has a long history in medical imaging and
computer vision, resulting in sophisticated techniques for
matching the deformed 3D shapes [26, 22, 14, 5, 21, 25].
These techniques primarily aim to match two or more rea-
sonably complete representatives from a deformed object
class. Our work aims to match spatially distorted range
images from a large number of laser scans, each of which
covers only a small part of the scene and is distorted by

relative motion between range sensors and objects. Real-
world scenes can have detailed geometric features at mul-
tiple scales. Our approach is thus designed to capture such
features that have rarely been addressed with the techniques
for non-rigid object classification.

3. Feature Detection
3.1. Morse Theory

Although the Morse theory is already studied [24] [11]
in vision applications, this paper explores feature detection.
Here we suppose a 3D scan is a two dimensional mani-
fold M which can be measured by a real valued function
f : M → R called Morse function described as

f(x) = r, (1)

where for any vertex x(∈M) can be mapped to a real num-
ber r.
Definition 1 (Region) If a differential manifold M can be
measured by the Morse function f (smooth and real valued)
in Eq.(1), for a given real number t, a region (subset) of M
can be defined as:

M≤t = {x ∈M : f(x) ≤ t}. (2)

Note that M≤t is a region with boundary, and it may be
composed of a set of disjoints, multiple connected compo-
nents. Following the Morse theory introduced by Goresky
and Macpherson [9], recall that a point x ∈ M where the
differential df of f vanishes ( dfdx = 0) is called a critical
point of f , and the corresponding value of f(x) is called
a critical value. Morse theory considers the topological
changes to the set M≤t as t varies.
Theorem 1 Let f be a differentiable function on a compact
smooth manifold M . As t varies within the open interval
between two adjacent critical values, the topology of M≤t
remains constant. [9]

Theorem 1 tells us that the topology of M≤t only
changes at critical points. Furthermore, the Morse index
λ at a critical point (defined to be the number of negative
eigenvalues of the Hessian matrix) can be used to determine
how the topology of M≤t changes when t crosses a critical
point xc. Here, the Morse index can take on a value of 0, 1
or 2 since the Hessian matrix is 2 × 2 for a 2-dimensional
manifold.

In our case, when λ = 0, the critical point xc is a lo-
cal minimum of f(x). When λ = 1, xc is a saddle point,
and the topological change is equivalent to gluing opposite
sides. Finally when λ = 2, xc is a local maximum.

In this paper, we assume that the scan distortion caused
by sensor motion would not make the topology change. In
other words, the critical points would not change under the
surface being distorted. Based on this assumption, we de-
sign our Morse functions to evaluate the surface under the
deformation.
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(a) (b)

Figure 3. (a) Difference of Laplacian on bunny model. (b) Shows the speed δk versus the iteration times k of Laplacian.

(a) (b)

Figure 2. Bunny models colored by Morse value of IP fits: (a) the
original model and (b) a distorted model.

3.2. Make it Morse

In the common case of 3D scans, the 3D surface itself
cannot be guaranteed by the continuity and smoothness. So
now the question is “how can we make a Morse function?”
A naive method is that we can use a smooth function to
fit the original shapes to make it differentiable. Actually
beyond differential property, in our case, the Morse func-
tion should be able to robustly measure the critical points
despite of distortion. In this paper, we explore two types
of smooth functions: 1) implicit polynomial fits; and 2) β-
stable Laplacian.
Implicit Polynomial An n-degree implicit polynomial (IP)
algebraically defines a Cn function:

f(x) =
∑

0≤i,j,k;i+j+k≤n

aijkx
iyjzk (3)

where x = (x, y, z) is one point in the data set. An IP fit can
be obtained from original dataset by a linear least-squared
fitting and the degree n can be adaptively determined ac-
cording to fitting accuracy proposed by Zheng et al. [28].
In this case, we suppose the data set would not be a simple
geometry, such as a sphere, so that the Morse function (3)
is not differentiable on x.

Fig. 2 shows two 3D models (original and deformed),
each of them is colored by the value of its Morse function,

the 8-degree IP fit. The correspondences on the two models
show similar color distributions.
β-stable Laplacian Different from IP Morse function that
describes the global geometry, another choice is to find a
smooth function from local geometry. Our idea is inspired
from the β-stable Laplacian proposed by Gu et al., [10] that
calculates the difference of Gaussian (DoG) operation over
times on image intensities, and stops when the number of
extrema on the DoG maps is stable after β-time operations.
Based on this idea, we construct our Morse function using
difference of Laplacian (DoL) on 3D mesh.

A single Laplacian operation on a vertex can be simply
defined by a function L : R3 → R3

L(xi) =
∑

j∈N (i)

ωij(xj − xi), (4)

where N (i) denotes the neighborhood of point xi, and a
choice of weights is: ωij =

ξij∑
k∈N(i) ξik

with ξij = 1. Then

we can define the DoL function fk(x) at the k-th Laplacian
operation as:

fk(x) = sign(n·(Lk(x)−Lk−1(x))) ‖ Lk(x)−Lk−1(x) ‖2
(5)

where n is the surface normal at x.
Support function N(k) denotes the variation at the kth-

step over all points on the surface: N(k) =
∑
i |fk(xi)|,

then the variation speed can be defined as δk = ∂N
∂k .

Our Morse function is defined as β-stable DoL:

fk(x), s.t. δε < σ, ε ∈ [k, k + β], (6)

where σ is a threshold close to 0.
Fig. 3 (a) shows the models colored by value of DoL and

changed by Laplacian operation in several times. Fig. 3 (b)
shows the variation speed versus δk. The function tends to
be 5-stable after k ≥ 15, by setting σ = 0.02.
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Figure 4. MSDR illustration: (a) for key point p1, it owns its first
MSDR (in light blue) before it connects to p2, and it owns its sec-
ond MSDR (in both green and light blue) before it connects to p3.
(b) Disconnectivity graph (DG). p1’s two MSDRs are correspond-
ing Subgraphs in color respectively.

3.3. Maximally Stable Region

Here we use the term of maximally stable region (MSR),
inspired by MSER [16]. In this paper, we derive two types
of region stabilities based on the Morse functions men-
tioned above: 1) maximally stable extremal region (MSER);
and 2) maximally stable disconnected region (MSDR).
The former succeeds to original MSER theory [16], while
the latter defines the maximal stability when the topology
changes are detected.

According to Morse theory, the topology of a region
(a smooth manifold) is very closely related to the critical
points of the Morse function defined on the 3D surface.
Given a region M≤t defined in Eq.(2).
Maximally stable extremal region (MSER): If a con-
nected component of M≤t contains only one extreme, it
defines an extremal region. For an extremal region M≤t
(t ∈ [a, b]), it may be possible to expand or contract by
increasing t. Let | · | denote the cardinality (or area) of a re-
gion, then the maximal stability on the extremal region can
be defined as:

MMSER = argmax
t

|M≤t|
∂
∂t |M≤t|

. (7)

Maximally stable disconnected region (MSDR): In this
paper, we consider another region stability which may be
detected when topological change to M≤t occurs. Accord-
ing to Theorem 1, as t is increased, a connected component
may fail to remain as a region if a second minimum is
introduced to the region. This topological change to M≤t
only occurs at critical points. Consequently, a MSDR can
be defined as:

Definition 2 (MSDR) if a region M≤t with only one con-
nected component, then a MSDR is the maximal region that

maintains the same number of local minima:

MMSDR = argmax
t
|M≤t|, s.t.

∂|M≤t|#min

∂t
= 0, (8)

where | · |#min denotes the number of local minima in the
region.

Fig. 4 (a) shows an example that the first MSDR of p1
is illustrated in light blue which maintains one local min-
imum to be maximal. With t increasing, p1 owns its sec-
ond MSDR shown as the green and light blue regions which
maintain two local minima to be maximal.

To achieve this, we design our MSDR detection in Algo-
rithm 1 by 1) we consider a 3D mesh as a graph G = (V, E),
where V denotes the vertices and E refers to the undirected
edges connecting the vertices; 2) we suppose a connected
component M≤t in 3D mesh as a subgraph of G, which
might be small with only one vertex; and 3) we introduce
Disconnectivity Graph (DG) to represent the topological
structure for the manifold, which has been used in study-
ing the potential energy in physics and chemistry [4].

Fig. 4 (b) shows a DG example that each leaf node de-
notes a local minimum while an inner node stands for a
saddle or a local maximum, and MSDR can be viewed as
a sub-tree in the DG.

4. Feature Description

Having the support regions, the next mission is to find an
appropriate descriptor which can characterize the distorted
regions. To this end, we assume that the local deforma-
tions on distorted surfaces can be approximately treated as
affine transformations. Actually this assumption satisfies
most cases since the sensors always move along the object
surfaces. Therefore, we first apply a region normalization
technique proposed by Cao et al. [6] to transform the re-
gions to canonical shapes. We then construct a multi-scale
descriptor made by a set of Spin Images.

4.1. Region Normalization

Inspired by the idea in [6] that normalizes 2D shapes
into canonical shapes invariant to Affine transformations,
we expand this technique to our 3D regions detected by the
above process.

Denote IR as the indicator function of a region (solid
shape) R, assuming that R is previously translated so that
its barycenter is at the origin of the 3D space. The moment
of order (p, q, k) (p, q and k are natural integers) of R is
defined by:

µp,q,k(R) =
∫
R3

xpyqzkIR(x, y, z)dxdydz (9)
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Algorithm 1: MSDR Extraction
Data: G = (V, E); f(V) ∈ [a, b]
Result: a set of key points {Pi} with corresponding

MSDRsRjPi

1 % Construct disconnected graph DG
2 for t = a→ b do
3 Calculate manifold G≤t;
4 Calculate connected components {M i

≤t}(∈ G≤t);
5 if new components appear then
6 Update the list of key points {Pi}
7 (add the minima of new M i

≤ts into list);
8 Update DG
9 (add new key points as leaf nodes at t);

10 end
11 if new connections appear between {Pi} then
12 Update DG
13 (Record t as a parent node for connected Pis);
14 end
15 end
16 % Calculate MSDRs from DG
17 for i = 1→ |P | do
18 Revisit path {tij} from Pi to the root of DG;
19 for j = 1→ |ti| do
20 Get MSDRsRjPi

for Pi, i.e. the connected
component M i

≤tj ;
21 end
22 end

Let SR be the following 3×3 positive-definite, symmet-
ric matrix:

SR =
1

µ0,0,0

 µ2,0,0 µ1,1,0 µ1,0,1

µ1,1,0 µ0,2,0 µ0,1,1

µ1,0,1 µ0,1,1 µ0,0,2

 . (10)

Then, according to the uniqueness of Cholesky factoriza-
tion, the decomposition of SR: SR = BRB

T
R may be

unique, where BR is a lower-triangular real matrix with
positive diagonal entries. Then the normalized region as-
sociated to R is the shape R′ = B−1R (R) (See [6]). It can
be proved that the normalized shapeR′ is invariant to affine
transformations.

Fig. 5 illustrates the canonical shapes normalized from
the models with/without distortions. We can see that the
corresponding areas in the two models show similar shapes
in different orientations.

4.2. Multi-scale Description

Since one key point can own one or more support re-
gions, we need to describe multi-regions with a set of de-
scriptors. Since our normalized support regions remain ro-

(a)

(b)

(c)

(d)

(a')

(b')

(c')

(d')

(a) (b)

(c) (d)

(a') (b')

(c') (d')

Figure 5. Canonical shapes normalization in comparison of the
original model (top left) and the distorted model (bottom left) with
regions (a)-(d) corresponding to (a’)-(d’).

(a) (b) 

Figure 6. An example of multi-scale spin images: (a) Key point
illustrated by the green arrow. (b) illustration spin images of (a)
for support regions detected at different levels.

tation variation in the feature, we adopt Spin image [12]
(invariant to rotation) as the basic descriptor.

To use spin image in our algorithm, for each support re-
gionRjP belonging to the key point P , a spin image is calcu-
lated, as shown in Fig. 6 (b). Since the size of each support
region RjP is different, the coordinates range of α and β of
the spin image is set as the maximal distance along each co-
ordinate axis from the key point to the furthest point in the
region. The resolution of bins in the accumulator is set as
the same for all regions.

Given the spin image SIj for each support region RjP ,
We construct our descriptor of the key point P as: D(P ) =
{SI1, SI2, · · · , SIN}. Then the similarity of the two key
points P and Q is defined as the minimal pairwise distance
of spin images between their supporters:

d(P,Q) = min
SIi∈{D(P )},SIj∈{D(P )}

‖ SIi − SIj ‖ (11)
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5. Computational Complexity

For all the procedures described above, there are mainly
three steps affecting the final computational complexity:
1, Building Morse functions: while the incremental implicit
polynomial modeling proposed in [28] got a similar com-
putational cost to linear least squared method, building beta-
stable Laplacian requires O(k ∗ |V |), where k is the itera-
tion number of Laplacian operations and |V | is the number
of vertices.
2, MSER/MSDR generation: depth-first searching algo-
rithm is adopted to calculate disconnected graphs, it re-
quiresO(L∗|E|) whereL is the discretized number of value
of Morse function and |E| is the number of mesh edges. Al-
though MSER has a faster implementation for 2D images
in [16]), extending this technique to 3D mesh is beyond the
scope of this paper.
3, Feature description: calculating a descriptor for a region
requiresO(|SR|), where |SR| stands for the number of ver-
tices included in the region.

6. Experimental Results

We evaluate our method in terms of 1) repeatability for
feature detection; 2) recall v.s. 1-precision for matching;
and 3) real range data matching. All these evaluations are
based on a synthesized data set and a real data set. For the
synthesized data set, we collect around 30 models from the
Stanford and AIM@Shape 3D scanning repository [1, 2],
and selected several famous models shown in Fig. 7-10. For
the real data set, we adapt our method on a large data set in-
cluding 1.2-Terabyte range scans using different types of
laser scanners [3], we show the selected matching results
in Fig. 11 with distorted data caused by simulated motion
of a balloon sensor. we compare our results with two al-
ternatives: Heat Kernel Signature (HKS) [22] and Mesh
DoG [25] which are designed for non-rigid objects match-
ing and thus may be suitable to the distortion problem. For
each method we use default parameter settings. We also
compare 4 methods generated from the combinations of two
Morse functions (IP and β-stable Laplacian) and two maxi-
mal stability regions (MSER [16] and MSDR) proposed in
this paper.
Repeatability v.s. Deformation As shown in Fig. 7, we
transform the bunny model into 13 deformed models by
affine transformations to different extents. In this way, since
the ground truth can be known by inverse transformations,
we compare the methods mentioned above by evaluating the
repeatability between the original model and transformed
models. In Fig. 7, we show both the matching precision
and relative repeatability defined in [17] according to the
deformed models. For the other models shown in Fig. 9, we
compare the repeatability for IP and Laplacian.

(a) (b)

Figure 8. Absolute Repeatability (a) and Relative Repeatability (b)
comparison for Morse functions on three models: IP in green and
β-stable Lapacian in blue. Line markers circle, square and cross
corresponding to the models shown in Fig. 9, bust, dragon and
Buddha respectively.

Recall v.s. 1−Precision As the qualitative matching results
shown in Fig. 9, compared with HKS and Mesh DoG [22,
25] our 4 candidates show better precision for matching.
We also evaluate these 4 matching cases in Fig. 10 by the
criterion Recall v.s. 1−Precision, where recall is defined as:

recall =
#correct matches

#correspondences

Then the number of false matches relative to the total num-
ber of matches is represented by 1-precision:

1− precision =
#false matches

#correct matches + #false matches

Matching results on a real data set [3] We show the dis-
torted data matching results by the method β-stable+MSDR
in Fig. 11 in both successful cases (a)-(c) and a failure case
(d). The data distortion is caused by the simulated motion
that a sensor mounted on a balloon captures data in air (see
Fig. 1(a)).

7. Conclusion
We present a novel approach for detecting and describ-

ing 3D features based on Morse theory. Facing the problem
of range scan distortion, the proposed β-stable Morse func-
tion combined with MSDR are proved to be superior to the
others including the popular non-rigid methods [22, 25]. We
demonstrate its feasibility in experiments and show that this
provides an interesting way of dynamic sensing, because the
robust matching of distorted range scans provides the good
initials for non-rigid region to the data rectification.
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