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Abstract

Gradient domain methods are popular for image pro-
cessing. However, these methods even the edge-preserving
ones cannot preserve edges well in some cases. In this pa-
per, we present new constraints explicitly to better preserve
edges for general gradient domain image filtering and theo-
retically analyse why these constraints are edge-aware. Our
edge-aware constraints are easy to implement, fast to com-
pute and can be seamlessly integrated into the general gra-
dient domain optimization framework. The improved frame-
work can better preserve edges while maintaining similar
image filtering effects as the original image filters. We also
demonstrate the strength of our edge-aware constraints on
various applications such as image smoothing, image col-
orization and Poisson image cloning.

1. Introduction
In the context of image filtering, manipulation of content

in an image is generally performed using gradient domain
methods. As the name implies, gradient domain algorithms
do not operate in the 0th order domain (i.e. color domain),
but instead impose changes to the 1st order derivatives of
the input image, i.e. the image gradient. This is because
gradients are integral to the way in which human beings
perceive images. It is widely believed that human cortical
cells may be hard wired to preferentially respond to high
contrast stimulus in their receptive fields [28], which di-
rectly correlate with gradients in an image. These gradient
domain methods allow editing an image without introduc-
ing artifacts at the boundaries of the edited regions. Conse-
quently, gradient domain methods are widely used in image
processing for many applications including image smooth-
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Figure 1. Signal obtained from an image scanline to illustrate the
effect of our edge-aware constraints. As the red arrow indicates,
with our edge-aware constraints, we can better preserve edges than
[Xu et al. 2012] [35] while maintaining similar image filtering
effect.

ing [11, 3, 34, 35], sparse data interpolation over images
[21, 24], image inpainting [27], seamless cloning and com-
positing [26, 9] and matting [31].

A challenging problem in gradient domain image fil-
tering is reducing, or if possible avoiding, artifacts at im-
age edges. As already discussed by several researchers
[23, 11, 22], both blurring and sharpening of edges may
cause halos and gradient reversals. Consequently, vari-
ous edge-preserving image filtering methods have been pro-
posed, such as WLS optimization [11], L0 smoothing [34],
structure extraction from texture via relative total variation
[35] and so on. These gradient domain methods generally
specify two constraints: zeroth-order constraints to get de-
sired pixel values and first-order constraints to get desired
pixel-gradients over space and time. There are no explicit
constraints to treat edges in these methods, where the edge-
preserving properties are usually implicitly achieved via the
first-order constraints. As a result, in some cases, in order
to get desired image filtering effect, these edge-preserving
methods cannot preserve edges well, as shown in Figure 1.
This is because image filtering is usually a image coarsen-
ing process accompanying with image smoothing. When
these edge-preserving methods consider image filtering ef-
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fect and edge-preserving effect together, edges may be s-
moothed inevitably.

To better preserve edges during filtering, we explicitly
add first-order edge-aware constraints to the general gradi-
ent domain optimization framework. Our motivation origi-
nates from edit propagation [24, 25] which enforces the pol-
icy that similar edits are applied to spatially-close regions
of similar appearance. The edge-aware constraints enforce
similar image filtering effects to be propagated in local re-
gions with similar appearance. We point out that the cor-
responding Laplacian matrix of the edge-aware constraints
can be treated as a special case of the Laplacian matrix of
KNN matting [6], thus theoretically prove its reasonabili-
ty for edge preserving. The new image filter maintains the
original filter properties and can better preserve edges, as
shown in Figure 1. The added edge-aware constraints are
fast to compute, easy to implement, and can be rewrited in
the form of first-order gradient constraints, by which they
can be seamlessly integrated into the original gradient do-
main optimization framework. We also revisit and improve
upon various applications such as L0 smoothing [34] and
structure extraction from texture via relative total variation
[35], image colorization [24] and Poisson image cloning
[26].

2. Related Work
Gradient domain image filtering. General gradient do-
main image processing can benefit from our added edge-
aware constraints. A full review of all work in this aspect
is outside the scope of the paper. Instead, we only survey
the methods that are most relevant to our formulation. For
a more extensive introduction to the gradient domain litera-
ture, the reader is referred to [1] and [3].

Gradient domain image filtering is very popular for im-
age processing. One of the first work was tone-mapping
[13]. It manipulated the gradient field of the luminance im-
age by attenuating the magnitudes of large gradients, and
then a new, low dynamic range image is obtained by solving
a Poisson equation in the modified gradient domain. Using
generic interpolation machinery based on solving Poisson
equations, Perez et al. [26] introduced a variety of tools
for seamless editing of image regions. In Poisson matting
[31], the problem of natural image matting was formulated
as one of solving Poisson equations with the matte gradient
field. Levin et al. [21] demonstrated an gradient domain op-
timization approach for image colorization using a few user
drawn color scribbles. This work was further generalized
by Lischinski et al. [24] for interactive local tonal adjust-
ment. They demonstrated that various user-specified local
edits could be interpolated over the image in a piecewise-
manner with respect to the underlying gradient field of the
luminance image. Farbmanet al. [11] advocated the use of
weighted least squares optimization for multi-scale tone and

detail manipulation. Bhat et al. [3] presented the general
gradient domain optimization framework for various image
filtering tasks such as image relighting, non-photorealistic
rendering, image de-blocking and image colorization. A
similar optimization framework was introduced by Lang et
al. [20], which introduced temporal consistency to a large
class of optimization driven image-based computer graphics
problems. Recently, many measures were presented to run
in the gradient domain for image filtering. Xu et al. [34]
presented a new image smoothing method for sharpening
major edges by making use of L0 gradient minimization to
globally control how many non-zero gradients were result-
ed in. New measure for inherent variation and relative total
variation was proposed by Xu et al. [35] to extracted struc-
ture from texture.

Edge-preserving smoothing. To avoid artifacts in gradi-
ent domain image filtering, many edge-preserving smooth-
ing methods have been proposed and used in a wide variety
of computational photography applications [11]. Popular
edge-preserving smoothing filters include the bilateral filter
[32], for which a number of efficient implementations have
been proposed [5, 36, 17, 15]. Subr et al. [30] proposed an
edge-preserving smoothing approach based on identifying
and fitting envelopes to local extrema in the image. Fattal
[12] introduced edge-avoiding wavelets, and demonstrated
their usefulness for very fast edge-preserving smoothing,
as well as for edge-aware editing. Another class of edge-
aware filtering used weights based on the geodesic-distance
[8, 14], which performs pixel mixing inversely proportional
to the distance over the IR5(RGBXY) image manifold, as
opposed to the L2 norm (used for bilateral filtering).

Edge-aware interpolation. Our edge-aware constraints are
inspired by edit propagation, which enforce the policy that
similar edits are applied to spatially-close regions of simi-
lar appearance. In this aspect, there have been many works.
Levin et al. [21] and Lischinski et al. [24] edited images
by smoothly interpolating sparse constraints across spatial-
ly contiguous image regions. Yatziv and Sapiro [37] prop-
agate similar constraints by intrinsic distance based blend-
ing. AppWand approach [25] extended these methods to ed-
it spatially- and temporally-varying measured materials. An
and Pellacini [2] propagated the initial rough adjustments to
the final refined ones by enforcing the editing policy over
all pairs of points in the dataset. Chen et al. [7] used the
locally linear embedding to represent each pixel as a linear
combination of its neighbors in a feature space and sought
to maintain the manifold structure formed by all pixels in
the feature space. Farbman et al. [10] demonstrated the
benefits of using diffusion distances in a variety of image
editing contexts. Xu et al. [33] proposed to accelerate the
all-pairs approach by computing the propagation between
pairs of clusters in the feature space, rather than between
pairs of pixels. Bie et al. [4] further used clustering and
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Figure 2. Matting using the Laplacian matrix of our edge-aware
constraints.

efficient sampling techniques together to achieve real time
edit propagation.

3. Edge-Aware Constraints
In this section we introduce our constraints and theoreti-

cally analyse why they are edge-aware.
General gradient domain optimization framework. Fol-
lowing the description in [3], we first briefly review the
general gradient domain optimization framework for image
processing. The task of an image filter is to transform the
input image into the final image, and can be expressed as
an energy function involving its zeroth and first order terms.
Suppose f and u represent the sets of the pixels in the target
and the input images respectively. That is, the final result f
is generated by minimizing the following energy function:

E(f) =
∑
p∈f

Ed(p) + Eg(p) (1)

where p is a pixel of f , Ed is the data cost function, and Eg
is the gradient cost function. These two terms are quadratic
functions defined as follows:

Ed(p) = wd(p)[f(p)− d(p)]2

and

Eg(p) = wx(p)[fx(p)− gx(p)]2 + wy(p)[fy(p)− gy(p)]2

where wd, wx and wy are per-pixel weights for constraints,
d provides the data constraint for each pixel in f , fx and fy
denote the x and y derivative of f , gx and gy specify the de-
sired x-derivative and y-derivative of f respectively. Thus,
the data and gradient energy terms are the squared errors
between the desired values specified by d, g and the actual
values of the final image. As shown later, several effect-
s can be achieved by varying these terms, including image
smoothing, image colorization and Poisson image cloning.
Edge-aware constraints. Here we introduce our edge-
aware constraints. The above energy function specifies the

squared errors between the desired values and the actual val-
ues of f . Per-pixel weights control the amount of influence
that a constraint should have on the final image. Howev-
er, there are no explicit constraints to prevent the image fil-
ter effect not to propagate to adjacent similar objects, and
so edges cannot be well preserved, such as shown in the
1D example of Figure 1 and the application of image col-
orization in Figure 6. Inspired by edit propagation which
enforces that similar edits are applied to spatially-close re-
gions of similar appearance, we add edge-aware constraints
explicitly to the energy function, as in the below:

E(f) =
∑
p∈f

Ed(p) + Eg(p) + γEe(p)

where γ is for tradeoff between edge-aware constraints and
original constraints, and Ee are the edge-aware constraints
defined as:

Ee(p) =
∑

q∈N4(p)

we(p, q)[(f(p)− u(p))− (f(q)− u(q))]2

where N4(p) is the set of 4-connected neighbors of pixel p,
we are weights defined as gaussians of the distance between
adjacent pixels in the Lab color space:

we(p, q) = exp(−‖u(p)− u(q)‖2/σ2) q ∈ N4(p) (2)

Note that other definitions of the weights can also be used,
such as using diffusion distance [10] instead of Euclidean
distance. Let e = f − u, measuring the changes by image
filtering. The main purpose of the edge-aware constraints
is to propagate the changes in local neighborhoods so that
the image filter can cause similar effects in regions of sim-
ilar appearance. Lischinski et al. [24] and Pellacini and
Lawrence [25] used similar constraints to propagate edits,
but they did not theoretically analyse why their constraints
are edge-aware. In this paper, we prove that this is because
the corresponding Laplacian matrix of the constraints is a
special case of the Laplacian matrix of KNN matting [6].
The proof is denoted as follows:

∑
p∈f

Ee(p) =
∑
p∈f

∑
q∈N4(p)

we(p, q)[(f(p)− u(p))− (f(q)− u(q))]2

=
∑
p∈f

∑
q∈N4(p)

we(p, q)[e(p)− e(q)]2

=
∑
p∈f

∑
q∈N4(p)

we(p, q)[e(p)2 − 2e(p)e(q) + e(q)2]

= 2
∑
p∈f

∑
q∈N4(p)

we(p, q)[e(p)2 − e(p)e(q)]

The last equation is true since we(p, q) = we(q, p), if
we set we(p, q) = 0 when pixel q /∈ N4(p), then the above



equation can be rewrited as:∑
p∈f

Ee(p) = 2
∑
p∈f

∑
q∈N4(p)

we(p, q)[e(p)2 − e(p)e(q)]

= 2
∑
p∈f

∑
q∈f

we(p, q)[e(p)2 − e(p)e(q)]

= 2(
∑
p∈f

e(p)2
∑
q∈f

we(p, q)−
∑
p∈f

∑
q∈f

we(p, q)e(p)e(q))

= 2eT (D −A)e

where e is the vector representation of e, A = [we(p, q)]
is an N ×N affinity matrix andD = diag(Dp) is an N ×N
diagonal matrix, where N is the total number of pixels and
Dp =

∑
q∈f w

e(p, q) is the sum of the pth column of matrix
A.

KNN matting [6] capitalizes on the nonlocal principle
by using K nearest neighbors (KNN) in matching nonlocal
neighborhoods, and contributes a simple and fast algorithm
to give competitive results with sparse user markups. In
KNN matting, if we choose K(K = 4) nearest neighbors
for each pixel and assume the K nearest neighbors are 4-
connected neighbors of that pixel, then the Laplacian matrix
Le = D − A of the edge-aware constraints is exactly the
Laplacian matrix of KNN matting. As a result, our new
constraints are edge-aware.

Figure 2 shows the matting results using the Laplacian
matrix of our edge-aware constraints. Although our cor-
responding Laplacian matrix is just a special case of the
Laplacian matrix of KNN matting, it can produce satisfac-
tory matting results.
Computation cost and optimization. Our new added
edge-aware constraints can be categorized into the gradient
domain framework. This is because:

Ee(p) =
∑

q∈N4(p)

we(p, q)[(f(p)− u(p))− (f(q)− u(q))]2

=
∑

q∈N4(p)

we(p, q)[(f(p)− f(q))− (u(p)− u(q))]2

Since q ∈ N4(p), f(p) − f(q) is one of the discrete forms
of {fx(p),−fx(q), fy(p),−fy(q)}. Thus our edge-aware
constraints can be seamlessly integrated into the original
gradient domain optimization framework. Our edge-aware
constraints are easy and fast to implement, in a complexity
of O(N).

The improved gradient domain optimization framework
involves a linear system with a 5-point spatially inhomo-
geneous sparse Laplacian matrix, which can be solved us-
ing standard, weighted least-squares techniques like the
conjugate-gradient method [29]. For a fast solving, many
efficient techniques can be adopted, as introduced in the
following. Krishnan and Szeliski [19] unifies multigrid and
multilevel (hierarchical) preconditioners, two widely-used

(a) Source (b) L0 smoothing results (c) Our results

Figure 3. Visual comparison of L0 smoothing to our method. As
the red boxes show, our method can better preserve edges than L0

smoothing, even the small and tiny edges such as hair, while main-
taining similar image filtering effects. This figure is best viewed
in electronic form and zoomed.

approaches for solving the liner system. Recently, a new
multi-level preconditioning scheme with linear time and
memory requirements for discrete Poisson equations was
proposed by [18], which interleaved the selection of fine-
and coarse-level variables with the removal of weak con-
nections between potential fine-level variables and the com-
pensation for these changes by strengthening nearby con-
nections.

4. Applications
Our edge-aware constraints can be added to any gradient

domain optimization framework. In this section, we apply
our edge-aware gradient domain optimization framework in
various image processing applications as examples. We al-
so compare them with original image processing results to
show our advantages.

4.1. Image Smoothing

As mentioned in related work, there are various gradient
domain methods for image smoothing. Here we just list
two ones as examples to demonstrate the effect of our edge-
aware constraints.
L0 smoothing. Xu et al. [34] proposed an optimization
framework making use of L0 gradient minimization. It is
by solving the following energy function:∑

p∈f

(f(p)− u(p))2 + λC(f) (3)

where C(f) = #{p
∣∣|fx(p)| + |fy(p)| 6= 0}, counting

the pixel p whose magnitude |fx(p)| + |fy(p)| is not zero.
Since Eq. (3) is not the standard gradient domain optimiza-
tion framework as Eq. (1), Xu et al. used a splitting scheme
to solve it by splitting the optimization into two process-
es and iterating between these two processes: one is the
standard gradient domain optimization framework and the



(a) Source (b) Our result

(c) L0 smoothing with λ = 0.01 (d) L0 smoothing with λ = 0.015

Figure 4. Visual comparison of our method to L0 smoothing with
different parameters. L0 smoothing cannot smooth the back-
ground well when using smaller λ, as shown in the green boxes
in (c), and cannot maintain structures well when using larger λ,
as shown in the red boxes in (d). Our method can simultaneously
achieve both effects well.

other one is a simple voting process. As described before,
our edge-aware constraints can be seamlessly integrated in-
to the gradient domain optimization framework and have no
influence in the voting process, thus the new energy func-
tion formed by adding our edge-aware constraints to Eq. (3)
can be solved using the same splitting scheme as Xu et al..

Figure 3 shows the visual comparison of L0 smoothing
to our method. Our method can better preserve edges even
the small, tiny edges such as hair shown in the first row
of Figure 3, while maintaining the similar image filtering
results as L0 smoothing.

As shown in Figure 4, our edge aware effects cannot be
achieved with L0 smoothing via adjustment of parameters.
To maintain the face and basket structures, a smaller param-
eter λ = 0.01 should be used in Eq. (3) with L0 smoothing,
but this cannot smooth the background well, as shown in the
green boxes in Figure 4(c). On the contrary, using a large
λ = 0.015 to smooth the background well, the face and bas-
ket structures cannot be maintained using L0 smoothing, as

(a) Source (b) Xu et al. [35] (c) Our result

Figure 5. Visual comparison of Xu et al. [35] to our method. Our
method can better preserve structure edges than Xu et al. [35],
even the tiny edges shown in the second row, while maintaining
similar image filtering effects.

shown in the red boxes in Figure 4(d). As for our method,
it can simultaneously smooth the background and maintain
structures well.
Structure extraction from texture. Xu et al. [35] pro-
posed new measures for inherent variation and relative to-
tal variation, which capture the essential difference of these
two types of visual forms, and developed an efficient opti-
mization system to extract main structures. As L0 smooth-
ing, [35] is not a standard gradient domain optimization
framework, Xu et al. approximated the relative total vari-
ation measures and transformed the optimization process
into the framework as Eq. (1). Clearly, our edge-aware con-
straints can be seamlessly integrated into the optimization
framework of [35].

Figure 5 shows the visual comparison of [35] to our
method. Our method can better preserve structure edges
even the tiny edges shown in the second row of the figure,
while maintaining similar image filtering effects as [35].

4.2. Image Colorization

Levin et al. [21] proposed a gradient-domain method
for interpolating colors from a sparse set of user-drawn col-
or scribbles over a grayscale image to transform it into a
photorealistic color image. Lischinski et al. [24] observed
that Levin’s method was in fact a general and powerful tech-
nique for interpolating sparse data over images, and showed
that a variety of data types including tonal values, blurring
amounts, and white balance corrections can also be locally
adjusted using Levin’s method. As shown in [3], Lischin-
ski’s method can be easily mapped to the general gradient
domain formulation:

wd(p) =

{
∞ if d(p) is defined
0 otherwise

gx(p) = 0; gy(p) = 0



(a) Source (b) Lischinski et al. [24] (c) Our result

Figure 6. Visual comparison of image colorization results of
Lischinski et al. [24] to our method. Our method can better pre-
vent color strokes from bleeding into adjacent regions with similar
appearance, as shown in the red boxes int the middle column. This
figure is best viewed in electronic form and zoomed.

Eg(p) =
fx(p)2

|Lx(p)|α + ε
+

fy(p)2

|Ly(p)|α + ε

where the data constraint d contains the user data(e.g.,
scibbles, paint strokes), the weights wd of the data con-
straints encourage the result to maintain fidelity to the user
input, Lx and Ly are the x-derivative and y-derivative of the
log-luminance channel L respectively, α and ε are control-
ling parameters. Clearly, our edge-aware constraints can be
seamlessly integrated into the optimization framework.

Figure 6 shows the visual comparison of image coloriza-
tion results of [24] to our method. As shown in the red boxes
in the middle column of the figure, our improvement signif-
icantly reduces the amount of data bleeding in the result (or
conversely the number of user strokes required to produce
the desired result).

4.3. Poisson Image Cloning

Image composition is the process of creating a new im-
age by pasting an object or a region from a source im-
age onto a target image. Poisson image cloning [26] has
been demonstrated an effective approach for seamless im-
age composition. By solving Poisson equations using the
user-specified boundary condition, Poisson image cloning
seamlessly blends the colors from both images without visi-
ble discontinuities around the boundary of the source image.
We first show that Poisson image cloning can be mapped
to the general gradient domain optimization framework and
then demonstrate that our edge-aware constraints can im-
prove Poisson image cloning.

To paste a region of interest from the source image u to
the target image f∗ and to get the final image f , Poisson
image cloning solves the following minimization problem:

min
f

∫
p∈Ω

|∇f − v|2dp with f |∂Ω = f∗|∂Ω (4)

where v = ∇u is the guidance field for seamlessly image
cloning, Ω is the user-drawn region of interest and ∂Ω is
the exterior boundary of Ω. For discrete images, the prob-
lem can be discretized using the underlying discrete pixel
grid. Without loss of generality, suppose S and Ω represent
the pixels of the target and the source images respectively.
For each pixel p in S, letN4(p) be the set of its 4-connected
neighbors, and let 〈p, q〉 denote a pixel pair with q ∈ N4(p).
The boundary of Ω is now ∂Ω = {p ∈ S \ Ω : N4(p)∩Ω 6=
∅}. Let fp be the value of f at p, then the finite differ-
ence discretization of Eq. (4) yields the following discrete,
quadratic optimization problem:

min
f |Ω

∑
p∈S

wd(p)(fp − f∗p )2 +
∑

〈p,q〉∩Ω6=∅

(fp − fq − vpq)2

(5)
where 〈p, q〉 ∩ Ω 6= ∅ is the set of the pixel pair 〈p, q〉 that
at least one of p and q belong to Ω, vpq is the projection of
v(p+q2 ) on the oriented edge [p, q]. Here vpq = up − uq ,
with up, uq being the values of u at p, q, and

wd(p) =

{
∞ if p ∈ ∂Ω
0 otherwise

(6)

The weights wd encourage the result to maintain fidelity to
the boundary condition in Eq. 4. As energy function (5)
could be treated as the discrete form of the general gradient
domain optimization framework (1), it can be solved fast for
interactive editing of medium-sized color image regions.
Improvement: Poisson image cloning is very effective for
image composition. However, in some cases it may cause
the color bleeding problem: the colors of boundary pixel-
s in the target image will bleed into the source image to
change the appearance of the objects in the source image,
as shown in Figure 7(c). Our edge-aware constraints can
effectively prevent such color bleeding. To further alleviate
color bleeding artifacts, we add another zeroth order data
constraints to preserve original colors in the source image,
that is, we minimize the following energy function:

min
f |Ω

∑
p∈S

wd(p)(fp − f∗p )2 +
∑

〈p,q〉∩Ω6=∅

(fp − fq − vpq)2+

α(
∑
p∈Ω

sd(p)(fp − up)2+

β
∑
p∈Ω

∑
q∈N4(p)

we(p, q)[(fp − up)− (fq − uq)]2)

(7)



(a) Source (b) Target (c) Poisson Image Cloning (d) Our Result

Figure 7. Visual comparison of Poisson image cloning to our method. Poisson image cloning may cause color bleeding problem, as shown
in (c), while our method produces more photo-realistic results.

where we(p, q) and wd(p) are defined as in Eq. (2) and (6)
respectively, and sd(p) is the context-aware saliency value
of p for detecting the image regions that represent the scene
[16]. α and β are two weights. When α = 0, the above
function returns to the original Poisson image cloning.

Note that besides the edge-aware constraints, we addi-
tionally add another zeroth order data constraints. If we
treat the image cloning process as some kind of image fil-
ter, the new added data constraints perform like the original
data constraints in Eq. (1), which enforce the resulting im-
age being similar with the original image. As a result, from
the point of image filtering, Eq. (7) becomes the general
gradient domain optimization framework with edge-aware
constraints and user input sparse data constraints (i.e., the
first item of Eq. (7)). Thus our new approach can effective-
ly alleviate the artifacts from color bleeding.

Figure 7 shows the visual comparison of Poisson image
cloning to our method. Original Poisson image cloning may
generate severe color bleeding artifacts, as shown in the
third column of the figure. Colors on the boundary bleed
into the child and dog, which makes image composition un-
real. Our method can significantly alleviate such artifacts
and produces more natural compositions.

(a) Result of Xu et al. [35] (b) Our result with γ = 0.15

(c) Our result with γ = 1.45 (d) Our result with γ = 10.45

Figure 8. Results of structure extraction from texture with different
γ. Please refer to the lower left of Figure 5 for the input. γ should
be selected suitably, otherwise it cannot preserve edges well, as
shown in (b), or it may contain undesired edges for image filtering,
as shown in (d).

5. Evaluation

Our edge-aware constraints are fast to compute, and the
overall optimization framework can perform nearly as fast
as the original image filter. For example, on a PC with an



Intel i7 3.40GHz CPU and 4GB memory, Xu et al. [35]
takes 3.7 seconds to process an 800×600 color image, while
our method takes 3.9 seconds to process the same image on
the same PC.

We evaluate our method with different weights γ in Fig-
ure 8, which control the tradeoff between edge-aware con-
straints and original gradient domain constraints. Typically,
γ should be selected properly (Figure 8(c)), since small γ
value cannot preserve edges well, as shown in Figure 8(b),
and large γ value may introduce undesired image filtering
effect (Figure 8(d)). By experiences, we choose γ in [1, 10]
in our tests, by which good results can be obtained in gen-
eral.

Limitation. The Laplacian matrix of our edge-aware
constraints is a special case of the Laplacian matrix of KNN
matting. In extreme cases, they cannot preserve edges well.
Fortunately, as shown by Farbman et al. [10], such a prob-
lem can be well treated by using diffusion distance instead
of Euclidean distance when computing weights we(p, q) in
Eq. (2). Of course, this will cost much more time.

6. Conclusion
We present edge-aware constraints for improving the

general gradient domain optimization framework and attest
the superiority over existing methods in edge preserving.
We demonstrate the effectiveness of our method in various
applications including image smoothing, image colorization
and Poisson image cloning.
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