
Deblurring Low-light Images with Light Streaks

Zhe Hu1 Sunghyun Cho2∗ Jue Wang2 Ming-Hsuan Yang1

1 University of California, Merced 2 Adobe Research

Abstract

Images taken in low-light conditions with handheld cam-
eras are often blurry due to the required long exposure time.
Although significant progress has been made recently on
image deblurring, state-of-the-art approaches often fail on
low-light images, as these images do not contain a sufficient
number of salient features that deblurring methods rely on.
On the other hand, light streaks are common phenomena
in low-light images that contain rich blur information, but
have not been extensively explored in previous approaches.
In this work, we propose a new method that utilizes light
streaks to help deblur low-light images. We introduce a
non-linear blur model that explicitly models light streaks
and their underlying light sources, and poses them as con-
straints for estimating the blur kernel in an optimization
framework. Our method also automatically detects useful
light streaks in the input image. Experimental results show
that our approach obtains good results on challenging real-
world examples that no other methods could achieve before.

1. Introduction
Taking good pictures in low-light conditions such as at

night or in a dark room is perhaps the most challenging task
for non-professional photographers. Since a longer expo-
sure time is often required in these cases to produce a well-
lit image, the captured image using a handheld camera often
ends up to be blurry due to inevitable camera shake. It is
thus highly desirable to apply image deblurring techniques
to recover a sharp image from a blurry low-light image.

Although single image deblurring techniques have been
largely advanced in recent years [4, 20, 15, 2, 13, 11, 1, 19],
the state-of-the-art methods often have difficulties to handle
low-light images. This is because most recent approaches
rely on salient image features such as edges [2, 9, 7, 19]
for blur kernel estimation, however in low-light images the
amount of salient image features that can be extracted is
often limited, as shown in examples in Fig. 1. Further-
more, low-light images often have gone through heavy in-

∗The second author is now with Samsung Electronics.

Figure 1. Deblurring low-light images. (a) A real example. (b)
A cropped region from (a). (c-e) Cropped deblurring results of
Cho and Lee [2], Xu and Jia [19], and our approach, respectively.
Please refer to the supplementary material for full resolution im-
ages and complete results.

camera non-linear tone mapping, which breaks the linear
blur model that most approaches assume [16].

In this paper, we examine a special phenomenon that of-
ten appears in low-light images for helping image deblur-
ring: light streaks. Light streaks are caused by blurred light
sources such as light bulbs, flash lights, reflected lights,
etc., which are very common in both natural (e.g., stars in
the sky) and man-made scenes (e.g., street lights). Given
that these light sources are small, high-intensity objects, the
light streaks they create roughly depict the shapes of the un-
derlying blur kernels. Intuitively, light streaks contain rich
blur information that could potentially help us achieve bet-
ter deblurring results.

However, without proper treatment, the presence of light
streaks can actually jeopardize the performance of existing
deblurring approaches and prevent them from estimating a
correct blur kernel. The reasons are twofold. Firstly, many
blur kernel estimation methods extract and use salient edges

1

for blur kernel estimation [2, 9, 18], but light streaks of-
ten contain sharp, strong edges that may be mis-treated as
structural edges by these algorithms. Secondly, light streaks
often contain saturated pixels. As shown in [3], without
proper handling of saturated pixels, deconvolution of light
streak pixels may result in severe ringing artifacts, causing
problems for both blur kernel estimation and producing a
high quality final output.

In this work, we propose a new deblurring framework
that properly uses light streaks as an additional cue for blur
kernel estimation. We extend the widely-used linear blur
model by explicitly modeling point light sources and light
streaks, resulting in a non-linear model that more accurately
describes the formation of low-light images that contain
light streaks. We then formulate a kernel estimation en-
ergy function that takes into account light streaks as well
as other image structures. Our method also automatically
detects “good” light streaks that are useful for kernel esti-
mation. After the blur kernel is estimated, the final output
image is obtained by a regularized Richardson-Lucy decon-
volution with outlier handling to suppress ringing artifacts.

There has been only limited work that considers light
streaks for image deblurring. Regarding blur kernel esti-
mation, Harmeling et al. [6] and Whyte et al. [17] discard
saturated pixels and estimate the blur kernel using remain-
ing pixels, but they do not use light streaks as a cue. To
suppress artifacts caused by saturated pixels in non-blind
deconvolution, Cho et al. [3] and Whyte et al. [17] explic-
itly model saturated pixels in their optimization processes,
which alternatingly detect saturated pixels and estimate the
latent image using non-saturated ones. The most related
work to ours is an interactive deblurring method proposed
by Hua and Low [8], in which the user needs to manually
select a light streak region, and the system applies image
processing operations in it for extracting the kernel. Since
no other image structures are used, the blur kernel generated
from a small cropped region may not be optimal for the en-
tire image. In contrast, our method not only automatically
detects useful light streaks, but also incorporates them into
a more principled optimization process for estimating more
accurate blur kernels.

2. Light Streak Detection
We now describe how to detect image patches which

contain “good” light streaks for kernel estimation, based
on pre-defined properties. It is a three-step approach: we
first detect a set of candidate image patches that poten-
tially contain light streaks; we then select the light streak
that is most similar to the underlying blur kernel using a
power-spectrum-based metric; finally, we use the selected
best light streak to find additional good light streak patches
for kernel estimation.

The motivation for extracting multiple light streaks is

that a single light streak may be fully or partially saturated,
thus it may contain only limited information about the blur
kernel. By using multiple light streaks, we can cumulatively
extract more blur kernel information from them. Further-
more, using multiple light streaks from different parts of
the image helps the system achieve better stability against
image noise and local distortions.

2.1. Candidate patch detection

Our method first identifies a set of image patches that
may potentially contain light streaks. Given the physical
nature of light streaks, we define the following properties
as the appearance priors for good light streak patches: (1)
pixels covered by a light streak should have relatively high
intensities and those on the background have relatively low
intensities in a local neighborhood; (2) the high intensity
pixels in a light streak patch should have a very sparse distri-
bution; (3) the light streak should be located near the center
of a patch; and (4) there should be no other image structures
in a light streak patch.

Since the goal of this step is merely removing irrelevant
image patches from being considered in the following steps
for reducing computational cost, we apply a set of heuristic
filters to quickly achieve it. Firstly, we apply two thresh-
olds on maximum image intensity and gradient magnitude
to filter out dark and flat patches. The thresholds are set
adaptively based on global statistics, i.e., top 10% pixels are
above the thresholds. According to Property 2, we discard
those patches that contains too many high intensity pixels
(more than 15%). According to Properties 3 and 4, we di-
vide each patch into two regions: the center region whose
size is half of the original patch, and the border region. We
then compute how many pixels have either high intensity or
high gradient magnitude (above the thresholds) in the bor-
der region, and normalize it by the number computed from
the center region. If the ratio is higher than 30%, we dis-
card the patch. In this way we can quickly rule out most
irrelevant patches and generate only a reasonable number
of candidate patches for more careful light streak detection.

2.2. Finding the best light streak patch

From the set of candidate light streak patches, we then
carefully find the one that best resembles the underlying
blur kernel. Intuitively, the best light streak patch should
contain a well-lit light trajectory that has roughly the same
shape as the blur kernel, on a relatively clean background.
This requires the underlying light source to be well in-focus
and to have a small size, and to be well separated from other
image structures.

Unfortunately the blur kernel is unknown so we cannot
directly use it for selecting the best light streak. Recent
work [5] shows that we can get a good approximation of
the power spectrum of the blur kernel directly from the in-

Figure 2. Examples of light streak detection. The red box indicates the best light streak patch and the green boxes show additional light
streak patches that are automatically identified.

put image. We thus define a power-spectrum-based metric
for selecting the best light streak.

Specifically, the power-law of natural images shows:

|Î(ω)|2 ∝ ‖ω‖−β , (1)

where Î is the Fourier transform of an image I , ω is the
coordinate in the frequency domain and β ≈ 2. It is well
known that a Laplacian filter is a good approximation to
‖ω‖−β , so that:

|Î(ω)|2|L̂(ω)| ≈ C, (2)

where L is a Laplacian filter, and C is a constant. For a
blurred image B = K ∗ I + N , where K is a blur kernel,
N is noise and ∗ is a convolution operator, we have:

|B̂(ω)|2|L̂(ω)| ≈ |Î(ω)|2|K̂(ω)|2|L̂(ω)| ≈ C|K̂(ω)|2.
(3)

In the spatial domain, we have B ⊗ B ∗ L ≈ C(K ⊗K),
where⊗ is a correlation operator. We thus define our metric
as:

d(P,B) = min
C
‖B ⊗B ∗ L− C(P ⊗ P)‖2, (4)

where P is a candidate light streak patch. The opti-
mal C can be found by solving a least square problem.
Among all the candidate patches, we select the one with
the smallest distance as the best light streak patch, P0 =
argminP d(P,B). Note that this method also naturally fa-
vors unsaturated light streaks, as saturated ones would re-
sult in larger metric distances. In Fig. 2, we show some
examples of the best light streak patch selected using this
method.

2.3. Finding additional light streak patches

Next, we use the selected best light streak patch to find
additional light streak patches from the initial candidate set.

This is done by computing the Euclidean distance between
the candidate patch P and the best patch P0. A histogram
equalization operation has been applied to all patches be-
fore computing the distances to account for the intensity
difference between different light streaks. By setting a
threshold, we define a set of detected light streak patches
P = {Pi}NP

i=1. We use a threshold 0.13SP max(P0) where
SP is the patch size in our implementation. Fig. 2 shows
some examples of detected light streak patches.

3. Blur Kernel Estimation using Light Streaks
We now describe how to estimate the blur kernel using

the detected light streaks as well as other image structures.
The traditional linear motion blur model is formulated as
B = K ∗ I + N . This simple formulation however is in-
sufficient to model the behavior of light streaks. To sep-
arately handle image structures and light streak patches,
we divide the pixels in the observed image B into three
complementary sets Bp, Br and Bs, which are defined as
Bp =

⋃
Pi, Br = {x|B(x) is not saturated ∧ x /∈ Pi ∀i}

and Bs = {x|B(x) is saturated ∧ x /∈ Pi ∀i}. We assign
eachB? a binary maskM? so thatB? =M? ·B. Here · de-
notes per-pixel multiplication. The three sets can be easily
determined after the light steak detection step, before kernel
estimation, and they remain fixed in later steps.

We then introduce a more accurate, nonlinear blur model
for the input image as:

Bp =
∑
Pi

Br =Mr · (K ∗ I) +N

Bs =Ms · c(K ∗ I +N)

, (5)

where c is a clipping function defined as c(v) = v if v is in
the dynamic range of the camera sensor, and c(v) = 0 or 1
otherwise1.

1In this paper, we use the dynamic range normalized into [0,1].

We use P̂i to denote the unclipped light streaks such that
Pi = c(P̂i). We also introduce auxiliary variables Di, for
each detected light streak patch Pi, which describe the ap-
pearance of the original point light sources that produced
the light streaks. We further assume each point light source
has a disk shape, but may have a different size and at a dif-
ferent intensity value. In our method, these variables are
estimated as well. Specifically, each light streak is modeled
as:

P̂i = K ∗Di +N. (6)

Thus, the first line in Eq. (5) becomes

Bp =
∑

c(P̂i) =
∑

c(K ∗Di +N). (7)

Given the above model, we seek the best K, Di and I
that can best describe the observed image and detected light
streaks. This is done by adopting the widely-used alternat-
ing optimization approach: given the initial values of the
three variables, we fix two of them at each time and opti-
mize the one that is left.

3.1. Updating K

In this step, we fixDi and I , and updateK by optimizing
the following energy function:

fK(K) =
∑
x∈Mr

|∂hB(x)− (K ∗ Ph)(x)|2

+
∑
x∈Mr

|∂vB(x)− (K ∗ Pv)(x)|2 + λ‖K‖1

+µ
∑
Pi∈P

∑
x∈Pi

|(Di ∗K)(x)− P̂i(x)|2, (8)

where x is the pixel index. The first two terms on the right
side are data terms based on the prediction scheme proposed
by Cho and Lee [2]. ∂h and ∂v are partial differential opera-
tors along the horizontal and vertical axes, respectively, and
Ph and Pv are predicted gradient maps along the two axes,
respectively. Please refer to [2] for more details on how to
compute Ph and Pv using image filtering techniques. Note
that the first two terms are applied only on pixels in Mr, so
that they are affected by neither saturated pixels nor light
streaks. This is in sharp contrast to previous edge-based
approaches [2, 19] where edge extraction is inevitably af-
fected by light streaks and saturated regions. The third term
is a prior on K. The last term is derived from Eq. (6).

To obtain the underlying light streak P̂i, we replace the
saturated pixels in Pi with the interpolated pixels using
spline interpolation (explained in more detail in Sec. 3.4).
The computation of P̂i is pre-defined before the optimiza-
tion process. Then the energy in Eq. (8) is minimized using
an iterative reweighted least square method (IRLS). Here
we set µ as SI/(SPNP) at the beginning, where SI is the
image size. We reduce µ with a factor 0.75 over iterations

to rely more on the data error term. We set λ as σ2S2
P /50

2

with σ denoting the noise deviation of the Gaussian prior.

3.2. Updating Di

In this step, for each selected light streak patch, we esti-
mate its original unblurred light source. As mentioned ear-
lier, we assume that the original point light Di has a disk
shape, and its size and intensity can vary. Thus, we model
Di as a function of two parameters ti and ri, which denote
the intensity value and the radius of the disk, respectively.
Note that ti is not restricted to the dynamic range of the
image. We then derive an energy function for this step as:

fDi(ti, ri) = ‖Di(ti, ri) ∗K − P̂i‖2

+‖Di(ti, ri)− Ii‖2, (9)

where Ii is the patch in the latent image I covering the same
pixels as Pi. Since we have a strong prior knowledge about
the light sources, e.g., they are usually very small and have
high intensities, we thus sample a discrete set of possible ti
and ri values, and find out the optimal one that minimizes
fDi(ti, ri). In practice, we find that this exhaustive search
works well in both synthetic and real examples.

3.3. Updating I

In this step, we update the latent image I using the up-
dated blur kernel K and light sources Di by optimizing the
following energy function:

fI(I) =
∑
i

µ‖Di − Ii‖2 +
∑
x

|B(x)− c(K ∗ I)(x)|2

+γ
∑
x

(|∂hI(x)|α + |∂vI(x)|α) , (10)

where the third term is the sparse prior term proposed
in [12] and α = 0.8. γ is a weight for the regularization
terms and we use γ = 0.005 in our experiments. We solve
Eq. (10) using an IRLS method.

3.4. Initialization and implementation details

To compute P̂i in Eq. (8), we calculate the 1D inter-
polation along horizontal and vertical axes using the Mat-
lab function interp1 and compute the average to replace
the saturated pixels. For updating Di, we sample a dis-
crete set {100/255, 120/255, 140/255, . . . , 1000/255} for
ti and {1, 2, 3} for ri. For the update of I , we refer the
readers to [3] for parameter settings.

Our system performs kernel estimation in the original
resolution without the coarse-to-fine strategy, and it usually
takes 5-10 iterations to converge. In the first iteration, we
compute K by taking out the first and second terms in Eq.
(8) and only considering the best detected light streak patch
as:

argmin
K

λ‖K‖1 + µ
∑
x∈P1

|(D1 ∗K)(x)− P̂1(x)|2, (11)

where we initialize Di as the point light source with ri = 1
and ti = max P̂i. Given the initial K and Di, we then can
compute the initial I , and iteratively update all three.

4. Deconvolution with Ringing Suppression
After the blur kernel is estimated, we use a non-blind de-

convolution method to restore the latent image. As images
taken in low-light conditions often contain lots of saturated
pixels, they should be handled properly to avoid generating
severe ringing artifacts.

There are some recent approaches for handling saturated
pixels in non-blind deconvolution. Cho et al. [3] propose
a blur model that explicitly models outliers including sat-
urated pixels, and use an expectation-maximization (EM)
method for generating the final image. Whyte et al. [17]
propose a modified Richardson-Lucy (RL) method based on
a blur model with a saturation function. While both meth-
ods use similar blur models, each has its own pros and cons.
For example, Cho et al.’s method can handle other types of
outliers, while Whyte et al.’s method provides an additional
ringing prevention scheme. In our work, we derive a new
deconvolution algorithm that combines the advantages of
these two methods.

Our approach adopts the basic framework of RL decon-
volution, because in practice we found that RL deconvolu-
tion is often more effective at suppressing ringing artifacts.
In RL-deconvolution, the latent image I is estimated by
maximizing a likelihood p(B|K, I), which is defined using
Poisson distributions. The update equation of RL deconvo-
lution is derived by differentiating the log-likelihood with
respect to I:

It+1 = It ·K ⊗ B

It ∗K
, (12)

where · and⊗mean per-pixel multiplication and correlation
operations, respectively. Division is also pixel-wise.

To better handle outliers and saturated pixels, following
Cho et al.’s work [3], we formulate non-blind deconvolution
as a MAP problem:

p(I|B,K) ∝
∑
M∈M

p(B|M,K, I)p(M |K, I)p(I), (13)

where M is a mask for specifying inliers and outliers, i.e.,
M(x) = 1 if B(x) is an inlier, and M(x) = 0 if B(x) is
an outlier. M is a set of all possible M . We assume Poisson
distributions for inliers and uniform distributions for out-
liers. Then, the likelihood term p(B|M,K, I) is defined as
P (B(x)|M,K, I) = P(B(x)|K ∗ I(x)) if M(x) = 1 and
P (B(x)|M,K, I) = C otherwise, where P is a Poisson
distribution, and C is a constant defined as the inverse of
the width of the dynamic range. We define P (M |K, I) and
P (I) in the same way to Cho et al.’s approach, as detailed
in [3].

Given above formulations, we derive an EM-based reg-
ularized RL deconvolution method. The E-step computes
per-pixel weights W t at t-th iteration as:

W t =
P(B|K ∗ It)Pin

P(B|K ∗ It)Pin + C(1− Pin)
, (14)

where Pin ∈ [0, 1] is the probability thatBx is an inlier. The
M-step updates the latent image I as:

It+1 =
It

1 + λρ(It)
·K ⊗

(
B ·W t

It ∗K
+ 1−W t

)
, (15)

where ρ(I) is the derivative of a sparse prior:

ρ(I) = sign(∂hI)α|∂hIt|α−1 + sign(∂vI)α|∂vIt|α−1. (16)

We set α = 0.8. Then deconvolution is done by alternat-
ingly solving Eq. (14) and Eq. (15).

In our implementation, for better computational effi-
ciency we approximate Eq. (14) using Gaussian distribu-
tions. Then, Eq. (14) becomes:

W t =
N (B|K ∗ It,K ∗ It)Pin

N (B|K ∗ It,K ∗ It)Pin + C(1− Pin)
. (17)

We typically run 40 iterations to obtain the deconvolution
result. To further suppress ringing artifacts, we also adopt
the ringing prevention scheme in [17], which decomposes
an image into unsaturated and saturated regions and per-
forms deconvolution separately. Fig. 3 shows an example
of our non-blind deconvolution.

Figure 3. Non-blind deconvolution of a synthetic example. (a) In-
put image with the ground truth blur kernel. (b) A cropped region
from (a). (c)-(e) Cropped deconvolution results of Cho et al. [3],
Whyte et al. [17] and our approach, respectively. Please refer to
the supplementary material for complete results.

5. Experimental Results
We implement our method in MATLAB and conduct ex-

periments on a PC with an 1.73 GHz Core i7 CPU and 8

Table 1. Quantitative comparisons using kernel similarity (KS).
[2] [11] [14] [19] Ours

KS 0.5323 0.5449 0.5298 0.5312 0.7069

GB RAM. For an image of size 700× 1000, the light streak
detection step takes about 2 seconds, and the kernel esti-
mation step takes around 5 minutes with our unoptimized
implementation. Due to limited space, we only show a few
examples in this section, and more results can be found in
the supplementary material.

To evaluate the effectiveness of the proposed light streak
detection method on real-world images, we collect 40 nat-
ural low-light images that contain light streaks, and apply
our method to them. We then visually examine the extracted
light streak patches in each image to see if the selected best
light streak patches really contain light streaks. We find that
in 35 out of 40 images (87.5%), our method successfully
extract correct light streaks. Fig. 2 shows examples of our
light streak detection.

5.1. Comparisons with Hua and Low’s method

We first compare our method with Hua and Low’s
approach [8], which estimates the blur kernel from a
manually-selected light streak patch. Since this method
only uses a single light streak patch, for a fair comparison
we also limit our system to select the same patch. In this
experiment, to test the robustness of the two approaches,
for each input image we tried two different light streaks:
the best patch suggested by our method, and a manually se-
lected patch that is visually obvious to the user, resulting in
two deblurring results for each method. Fig. 4 shows the
results on one example.

The results suggest that Hua and Low’s method are sen-
sitive to the input patch: it works reasonably well with the
automatically-detected, non-saturated light streak, but fails
badly with the other one. This is because it only relies on
the light-streak patch for extracting the blur kernel, thus
it is sensitive to saturation which causes information loss.
On the contrary, our method is more robust and works well
even with the saturated patch, as we also rely on other im-
age structures for kernel estimation. Furthermore, with the
non-saturated patch, our method generates higher quality
results than Hua and Low’s method due to the proposed op-
timization scheme. The results also demonstrate that our
automatic selection method could select good light-streak
patches for deblurring. More comparisons with Hua and
Low’s method on real examples are shown in Fig. 5.

5.2. Comparisons on real images

Here we qualitatively compare our method with the
state-of-the-art general image deblurring methods [2, 19]
that performed well on the recent benchmark test [10], on
some real-world examples. As shown in Fig. 5, previous

methods performed poorly on these low-light images since
they do not contain sufficient salient edges for kernel es-
timation, and their estimated kernels tend to be close to a
delta function. In contrast, our method obtained more accu-
rate kernel estimation and produced higher quality outputs.

5.3. Comparisons on synthetic images

We also prepare a synthetic dataset to quantitatively
compare our method against others. To build the dataset,
we first capture 11 low-light images in RAW format cov-
ering a variety of scenes, using a Canon Rebel Xsi camera
with an EF-S 18-55 mm lens. For each image we stretch
the pixel intensities that beyond a certain value and then
apply 14 different blur kernels, followed by adding Gaus-
sian noise with 1% variation and clipping to dynamic range
[0,1]. This gives us 154 test images in total.

Fig. 7 shows some representative examples of this
dataset, as well as the deblurred results using different algo-
rithms. For a fair comparison we use the non-blind decon-
volution method described in Sec. 4 for all methods. The
results suggest that our results have significantly higher vi-
sual quality than those generated by other methods, due to
more accurate kernel estimation.

For quantitative evaluation, we use the error-ratio his-
togram originally proposed in [13], and the results are
shown in Fig. 6. We also compute the average kernel simi-
larity [7] of each estimated kernel, and the results are shown
in Table 1. These results demonstrate that the proposed
method outperforms previous general image deblurring ap-
proaches on deblurring low-light images, due to the explicit
light streak modeling.

Figure 6. Cumulative error ratio histogram on the synthetic dataset.

5.4. Failure cases

The proposed method also fails in some cases. One sce-
nario is when the underlying light sources of light streaks

Figure 4. A comparison with Hua and Low’s approach [8]. The red box indicates our selected light streak patch and the green box is a
manually selected patch. (a) Input image; (b) cropped regions from (a); (c) & (e) cropped results by Hua and Low [8], using the red and
green light streak patches, respectively; (d) & (f) cropped results by our method. Please refer to the supplementary material for complete
results.

Figure 5. Comparisons with state-of-the-art methods on real examples. (a)(f) Input image; (b)(g) cropped regions from (a) and (f); (h)
cropped results by Cho and Lee [2]; (c)(i) cropped results by Krishnan et al. [11]; (d)(j) cropped results by Hua and Low [8]; (e)(k) cropped
results of our approach. Please refer to the supplementary material for complete results.

are large and no longer point lights, as shown in Fig. 8(a).
This type of light streaks may be selected by our algorithm
and could lead to an erroneous kernel estimation. This prob-
lem can be partially alleviated with user guidance by man-
ually selecting a better patch, if it is available in the image.

Another difficulty is non-blind deconvolution on a large
saturated region as shown in Fig. 8(b). For this synthetic
example, even if we supply the ground truth blur kernel, the
proposed method and other non-blind deconvolution meth-
ods can not generate satisfactory results due to severe infor-
mation loss by intensity clipping, as shown in Fig. 8(c).

6. Conclusion
In this paper we propose a new deblurring method that

explicitly models light streaks for low-light image deblur-
ring. Our method detects the light streaks appearing in the

(a) (b) (c)

Figure 8. Examples of failure cases. (a) a blurry image with failed
light streak detection; (b) a deblurred image using the ground truth
kernel; (c) a cropped region of (b).

blurry image and incorporates them into an optimization
framework, which jointly considers light streaks and other
image structures for kernel estimation. We also carefully

(a) (b) (c) (d) (e) (f) (g)

Figure 7. Comparisons on synthetic examples. (a) Input image with ground truth kernel; (b) cropped region from (a); (c)-(g) cropped results
by Cho and Lee [2], Levin et al. [14], Krishnan et al. [11], Xu et al. [19] and our approach, respectively. Please refer to the supplementary
material for complete results.

suppress the ringing artifacts caused by light streaks in the
non-blind deconvolution step. Experimental results show
that our system can obtain decent results on the challenging
images that previous methods can not handle.

Acknowledgements
This work was done when the first author was an intern at
Adobe Research. This research is partially supported by
NSF CAREER Grant #1149783, NSF IIS Grant #1152576
and gift from Adobe.

References
[1] J.-F. Cai, H. Ji, C. Liu, and Z. Shen. Framelet-based blind motion

deblurring from a single image. TIP, 21(2):562–572, 2012. 1
[2] S. Cho and S. Lee. Fast motion deblurring. In SIGGRAPH Asia,

2009. 1, 2, 4, 6, 7, 8
[3] S. Cho, J. Wang, and S. Lee. Handling outliers in non-blind image

deconvolution. In ICCV, 2011. 2, 4, 5
[4] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman.

Removing camera shake from a single photograph. In SIGGRAPH,
pages 787–794, 2006. 1

[5] A. Goldstein and R. Fattal. Blur-kernel estimation from spectral ir-
regularities. In ECCV, 2012. 2

[6] S. Harmeling, S. Sra, M. Hirsch, and B. Schölkof. Multiframe blind
deconvolution, super-resolution, and saturation correction via incre-
mental EM. In ICIP, 2010. 2

[7] Z. Hu and M.-H. Yang. Good regions to deblur. In ECCV, 2012. 1, 6
[8] B.-S. Hua and K.-L. Low. Interactive motion deblurring using light

streaks. In ICIP, 2011. 2, 6, 7
[9] N. Joshi, R. Szeliski, and D. J. Kriegman. PSF estimation using sharp

edge prediction. In CVPR, 2008. 1, 2

[10] R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, and S. Harmeling.
Recording and playback of camera shake: benchmarking blind de-
convolution with a real-world database. In ECCV, pages 27–40,
2012. 6

[11] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution using a
normalized sparsity measure. In CVPR, pages 233–240, 2011. 1, 6,
7, 8

[12] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image and depth
from a conventional camera with a coded aperture. In SIGGRAPH,
2007. 4

[13] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understand-
ing and evaluating blind deconvolution algorithms. In CVPR, pages
1964–1971, 2009. 1, 6

[14] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient marginal
likelihood optimization in blind deconvolution. In CVPR, pages
2657–2664, 2011. 6, 8

[15] Q. Shan, J. Jia, and A. Agarwala. High-quality motion deblurring
from a single image. In SIGGRAPH, 2008. 1

[16] Y.-W. Tai, X. Chen, S. Kim, S. J. Kim, F. Li, J. Yang, J. Yu, Y. Mat-
sushita, and M. S. Brown. Nonlinear camera response functions
and image deblurring: Theoretical analysis and practice. TPAMI,
35(10):2498–2512, 2013. 1

[17] O. Whyte, J. Sivic, and A. Zisserman. Deblurring shaken and par-
tially saturated images. In ICCVWorkshops, pages 745–752, 2011.
2, 5

[18] L. Xu and J. Jia. Two-phase kernel estimation for robust motion
deblurring. In ECCV, 2010. 2

[19] L. Xu, S. Zheng, and J. Jia. Unnatural L0 sparse representation for
natural image deblurring. In CVPR, 2013. 1, 4, 6, 8

[20] L. Yuan, J. Sun, L. Quan, and H. Shum. Image deblurring with
blurred/noisy image pairs. In SIGGRAPH, 2007. 1

