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Abstract

We pose the following question: what happens when test
data not only differs from training data, but differs from it
in a continually evolving way? The classic domain adap-
tation paradigm considers the world to be separated into
stationary domains with clear boundaries between them.
However, in many real-world applications, examples can-
not be naturally separated into discrete domains, but arise
from a continuously evolving underlying process. Exam-
ples include video with gradually changing lighting and
spam email with evolving spammer tactics. We formulate a
novel problem of adapting to such continuous domains, and
present a solution based on smoothly varying embeddings.
Recent work has shown the utility of considering discrete
visual domains as fixed points embedded in a manifold of
lower-dimensional subspaces. Adaptation can be achieved
via transforms or kernels learned between such stationary
source and target subspaces. We propose a method to con-
sider non-stationary domains, which we refer to as Con-
tinuous Manifold Adaptation (CMA). We treat each target
sample as potentially being drawn from a different subspace
on the domain manifold, and present a novel technique for
continuous transform-based adaptation. Our approach can
learn to distinguish categories using training data collected
at some point in the past, and continue to update its model
of the categories for some time into the future, without re-
ceiving any additional labels. Experiments on two visual
datasets demonstrate the value of our approach for several
popular feature representations.

1. Introduction
It has become increasingly clear that there is a signifi-

cant bias between available labeled visual training data and
the data encountered in the real world [28, 16]. Unfor-
tunately, supervised classifiers trained on one distribution
often fail when faced with a different distribution at test
time. Domain adaptation techniques offer a way to trans-
fer information learned from source (training) data to the
eventual target (test) domain, so as to diminish the perfor-
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Figure 1. Problem setup: We want to classify test data drawn from
an evolving distribution (target domain), using labeled data from
a distribution collected in the past (source domain). We show two
example scenarios. ABOVE: classifying traffic scenes streaming
from a traffic camera as busy (blue border) or empty (red border).
BELOW: classifying sedans (blue border) vs trucks (red border)
across many decades as the design and shapes of the two evolve.

mance degradation and “learn from the past.” Supervised
adaptation methods assume a few labeled target examples
are available [17, 5, 12]. However, obtaining these is often
expensive or impossible, so unsupervised adaptation is of
particular importance [10, 9, 7].

In this paper, we address the problem of unsupervised
adaptation to a continuously evolving target distribution.
Specifically, we assume that

1. ample labeled data is available in the source domain,
2. the target domain examples are unlabeled and arrive

sequentially,
3. the target distribution evolves over time.
One scenario where this problem occurs is object or

scene classification in video streams. For example, clas-
sifying scene types in a video feed from a traffic camera
is challenging. The appearance of the same scene type
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(class) in the target domain is constantly changing due to
sunlight/shadows, time of day, sensor change to IR at night-
time, and unexpected weather patterns. Another example
is classifying objects or scenes as their appearance evolves
over time. These two problems are illustrated in Figure
1. Also, while we focus on visual tasks in this paper,
the problem also occurs in spam filtering, where spammers
constantly change their tactics to deceive email users, and
sentiment analysis in social media. Current unsupervised
domain adaptation methods cannot naturally handle such
problems. They assume that the target distribution is sta-
tionary, and that a large amount of unlabeled data is avail-
able in batch for modeling this fixed target distribution.

We stress that traditional online learning methods are
not suitable for our problem. Online learning methods for
classification use sequentially arriving data, but require that
data to be labeled. In contrast, online distribution learning
can be used for estimating an evolving domain [20, 23] ,
but provides no means for adapting a classifier between do-
mains which makes it insufficient for our task. We found
that learning an evolving distribution without adaptation
had worse performance than classifying in the original fea-
ture space. Finally, online adaptation methods do learn from
streaming observations without labels [4, 8], but expect to
learn a single, stationary target distribution.

We propose a novel adaptation method which models
continuously changing domain distributions by forming in-
cremental, sample-dependent adaptive kernels. Our ap-
proach is inspired by recent methods that learn a transfor-
mation in feature space to minimize domain-induced dis-
similarity [24, 17, 5, 12]. In unsupervised adaptation, this
can be accomplished by projecting all source and target
data points to their respective lower dimensional subspaces,
and then minimizing the distance between the subspaces to
compute a domain-invariant kernel [10, 9, 7].

However, a major limitation of these methods is that all
target points are assumed to belong to a single target do-
main, or split into several domains with known boundaries.
To apply them in our scenario, we must discretize the evolv-
ing target domain into a set of fixed domains. For the traf-
fic camera example in Figure 1, this would treat all of the
changes within a certain time window as a single target do-
main. This is problematic, as it may apply the same adap-
tation to, say, sunny conditions, snow storm, and night time
images. A second major limitation with these methods is
that data is expected in batch.

We argue that it is more natural to model the domain
shift in a continuously adaptive fashion. Our technique
works by learning the optimal lower dimension subspace
for a specific test sample, rather than embedding it in a sin-
gle monolithic subspace encompassing all of the unlabeled
target data. A key advantage of our method is that there
is no need to segment the test samples into a discrete set

of domains, either manually or automatically, and thus no
need to model the number or size of such domains. Another
important advantage of our approach is the ability to more
precisely adapt to each test example in an online fashion.
This is helpful in situations when test samples are not avail-
able in batch but arrive sequentially. While we present an
unsupervised approach, the ideas can be applied to super-
vised scenarios as well.

2. Related Work
Domain adaptation has been extensively studied in

speech recognition, natural language processing and ma-
chine learning. More recently, domain adaptation tech-
niques have been applied to visual datasets. Several su-
pervised parameter-based adaptation methods have been
proposed to learn a target classifier with a small amount
of labeled training data, by regularizing the learning of
a new parameter against an already learned source clas-
sifier [29, 1]. Other supervised methods learn feature
transformations between source and target distributions,
so classifiers may be trained directly in the source and
applied to transformed target points, or trained on trans-
formed source and transformed target data jointly [24, 17].
Some methods seek to benefit from both the discriminative
power of parameter-based approaches and the flexibility of
the feature-transformation approaches through unified opti-
mization frameworks [5, 12].

A recent class of unsupervised domain adaptation tech-
niques attempts to align the unlabeled target data with the
source using manifold learning. Domains are represented as
subspaces embedded in a Grassman manifold, and adapta-
tion is carried out through geodesic flow computations on
this manifold [10, 9, 7]. However, none of these meth-
ods has considered our setting of non-discrete, continuously
evolving domains. They also require all unlabeled target
data to be available in batch and are not designed for online
adaptation. [11] argued that datasets are composed of mul-
tiple hidden domains, which they estimate via constrained
clustering, however, the number of domains is discrete and
no online solution is proposed.

Supervised online learning allows a classifier to be
trained with sequentially arriving data. At each round the
learner receives a data point, and predicts its label. The
correct answer is then revealed and the learner suffers a
loss [25]. Such methods can be used to “adapt” to the in-
coming data stream by controlling the learning rate. In our
setting, however, labels exist only in the source domain, and
supervised online learning cannot be carried out.

In vision, a classic online adaptive approach is back-
ground subtraction (see [2] for a review), where the dis-
tribution of pixels belonging to the background is continu-
ously updated. However, in classification, we are interested
in categorizing the entire scene (or object), not distinguish-



ing between foregrond and background (although we can
do that as a preprocessing step). In detection, a method
for online adaptation was proposed that bootstraps offline
classifiers to obtain new labels and uses them to continually
update car detectors in a traffic scene [15, 13]. However de-
tection fails on our traffic camera task due to the extremely
low resolution of individual objects.

The natural language processing and speech recognition
communities have developed algorithms to tackle the task
of online adaptation. In speech recognition, the recogni-
tion of a new speaker’s speech can and should be adapted
and improved over time. Online incremental unsupervised
fMLLR [8] dynamically collects acoustic statistics from the
speaker and updates the acoustic models. [4] combines pa-
rameters of multiple classifiers to do online adaptation of
spam classifiers for individual users, as well as sentiment
prediction for books, movies and appliances. However, the
domain change due to a new speaker or a new email user is
discrete. While examples may arrive sequentially, they all
arise from the same distribution (the same speaker, or the
same user). On the other hand, our approach “tracks” the
evolving distribution, and in that way it is somewhat akin
to distribution tracking methods common in the signal pro-
cessing literature, e.g., Kalman filtering [14], [21].

3. Approach

3.1. Background: Unsupervised Adaptation Using
the Data Manifold

We build on a class of methods recently proposed for un-
supervised adaptation [10, 9, 7], which are based on model-
ing the data manifold. Their key insight is that visual data
have an inherent low dimensional structure, and can thus be
embedded in lower dimensional subspaces. Furthermore,
these subspaces lie on a Grassman manifold of the same di-
mension. By exploiting the properties of the manifold, such
as smoothness, we can find a novel embedding that com-
pensates for the differences between domains.

Suppose we have a set of labeled examples drawn from a
source domain, x1, . . . , xnS ∈ RD, with labels y1, . . . , ynS .
At test time, we receive unlabeled examples drawn from the
target domain, z1, . . . , znT ∈ RD, which are distributed dif-
ferently from the source examples. For now we assume that
the target examples come from a single, stationary distribu-
tion; we will relax this assumption shortly.

To account for discrepancies between the training
(source) and test (target) distributions, we seek to learn a
linear transformation W that maps source points in a way
that makes their distribution more similar to that of the tar-
get points. Such a transformation can then be applied to
compute a kernel xTWz, which can be used in any inner-
product based classifier. An alternative is to factor the trans-
formation into two transformations W = ABT , where A

G(d,D)U P
W
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Figure 2. Conventional adaptation techniques separate samples
into a discrete set of domains, seen here as points on a domain
manifold (a single source domain S and target domain T).

and B embed source and target points, respectively, in a
new subspace.

To find W , we assume the source and target do-
mains lie on lower dimensional orthonormal subspaces,
U ,P ∈ RD×d, which are points on the Grassman mani-
fold, G(d,D) (See Fig. 2), where d � D. Several tech-
niques exist for finding such low dimensional embeddings,
including Principal Component Analysis. We then reformu-
late our goal as finding embeddings Ã and B̃ that map the
low dimensional subspaces in such a way as to make them
better aligned. This objective can be formalized as mini-
mizing the distance between the two projected subspaces,
U Ã and P B̃.

min
Ã,B̃

ψ(U Ã,P B̃) (1)

One recent approach, called the Subspace Alignment
(SA) method [7], solves the unconstrained optimization
problem in Equation (1) directly, setting the subspace
distance metric to be the Frobenius norm difference:
ψ(U Ã,P B̃) = ‖U Ã−P B̃‖2F . Since bothU andP are or-
thonormal matrices, the global minimizer for this subspace
distance metric is reached when Ã = UTP and B̃ = I .
This leads to the following transformation between points
in the original spaces: WSA = UUTPP T .

Another recent method that seeks to find embeddings for
the source and target points, so as to minimize the distance
between their distributions, is the Geodesic Flow Kernel
(GFK) [9]. This method learns a symmetric embedding
(A = B) by computing the geodesic flow along the man-
ifold, φ(·). The flow is constructed in such a way that it
starts at the source subspace at time 0, U = φ(0), then
reaches the target subspace in unit time: P = φ(1). The
intuition is to project all source and target points into all
intermediate subspaces along the flow between the source
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Figure 3. Our approach (CMA) treats each target sample as arising
from a different point (ex: indexed by time) along the continuous
domain manifold, resulting in more precise adaptation.

and target subspace. The final transformation is then com-
puted by integrating over the infinite set of all such inter-
mediate subspaces between the source and target WGFK =∫ 1

0
φ(`)φ(`)T d`, which has a closed form solution pre-

sented in [22, 9].

3.2. Adapting to Continuously Evolving Domains

We seek to adapt to and classify streaming target data
that is drawn from a continuously evolving distribution. The
drawback of the above methods is that they require dis-
crete known domains, where the data from each domain is
available in batch (see Figure 2). To adapt to each instance
the above methods would need to artificially discretize the
target by using a fixed windowed history and would still
fail to adapt until enough data had arrived to begin learn-
ing subspaces. This is not what the method was origi-
nally designed for, would be very computationally expen-
sive and would require cross-validating or tuning a hyper-
parameter to choose the appropriate window size. Next,
we present our approach, Continuous Manifold Adaptation
(CMA), which does not require knowledge of discrete do-
mains (see Figure 3).

Suppose that at test time, we receive a stream of obser-
vations z1, . . . , znT ∈ RD, which arrive one at a time, and
are drawn from a continuously changing domain.1 We as-
sume the distribution of possible points arriving at t can be
represented by a lower dimensional subspace Pt.

To align the training and test data, we seek to learn a
time-varying transformation,Wt, between source and target
points, where t indexes the order in which the examples are
received. As presented in Section 3.1, this transformation
can equivalently be written as learning two time-varying

1Our formulation can also be extended to the case of streaming source
observations.

embeddings that map between points of the two lower di-
mensional subspaces, Ãt and B̃t, with the mapping in the
original space being defined as Wt = ÃTUTPtB̃t. This
computes a time varying kernel between the source data and
the evolving target data xTWtzt which can be used with any
inner product based classifier.

Since we no longer have a fixed target distribution with
all examples delivered in batch, we must simultaneously
learn the lower dimensional subspace, Pt, representing the
distribution from which the data was drawn at each time
t. We will search for a subspace that minimizes the re-
projection error of the data:

Rerr(zt,Pt) = ‖zt − Pt(P
T
t zt)‖2F (2)

In general, we may receive as few as one data point at
each time step so we will regularize our subspace learning
by a smoothness assumption that the target subspace does
not change quickly.2

Therefore, at each time step, our goals can be summa-
rized by optimizing the following problem:

min
PT

t Pt=I,Ãt,B̃t

r(Pt−1,Pt) +Rerr(zt,Pt) + ψ(U Ãt,PtB̃t) (3)

where r(·) is a regularizer that encourages the new subspace
learned at time t to be close to the previous subspace of time
t− 1.

Equation (3) is a non-convex problem and we choose to
solve it by alternating between the three steps below:

1. Receive data zt
2. Given Ãt−1 and B̃t−1 compute Pt

3. Given Pt compute Ãt and B̃t

To optimize step 2, we begin by fixing Ãt−1 and
B̃t−1 and then we examine the third term of the opti-
mization function. Note that it would be minimized if
Pt = Pt−1. Therefore, with a fixed Ãt−1 B̃t−1, the term
ψ(U Ãt−1,PtB̃t−1) is acting as a regularizer that penalizes
whenPt deviates fromPt−1. We therefore can equivalently
solve this problem by grouping the first and third term into a
single regularizer of Pt that enforces a smoothness between
the subsequent learned subspaces. Finally, we can express
this subproblem as follows:

min
Pt

r(Pt−1,Pt) +Rerr(zt,Pt) (4)

s.t P T
t Pt = I

We first observe that solving Equation (4) for the triv-
ial regularizer r(·, ·) = constant would result in Pt which
is equal to the d largest singular vectors of the data zt,

2Our model can be extended to allow for discontinuities, but we leave
this as future work.



which can be obtained via SVD. Obviously, we prefer to
use a non-trivial regularizer, as we don’t have enough data
at time t to compute a robust SVD, and also want to make
sure that the subspaces vary smoothly over time. Thus we
solve this optimization problem with a variant of sequential
Karhunen-Loeve [20], which adapts a subspace incremen-
tally and trades-off changing the subspace with minimizing
re-projection error of z. For optimization details see [23].

When optimizing step 3, we note that the first two terms
of the objective function are not active for this sub-problem,
and we are left with the task of minimizing Equation (1).
This is just the task of aligning two known subspaces. We
experiment with solving this optimization using either of
the two methods described in Section 3.1.

4. Experiments and Results

We present performance on both a scene classifica-
tion experiment and an object classification experiment.
For both experiments we compare our Continuous Mani-
fold Adaptation (CMA) approach using two different un-
supervised adaptation techniques (Geodesic flow kernel
(GFK)[9] and Subspace Alignment method (SA)[7]) for
solving Step 3 in our algorithm and two different inner
product based classifiers: k-nearest neighbors (KNN with
k = 1) and support vector machines (SVM) – trained with
source data only. We demonstrate performance increase us-
ing our CMA method across a variety of feature spaces for
these tasks. The unsupervised adaptation methods can not
be directly applied to our problem with the streaming test
domain. However, for completeness we tried learning sub-
spaces from a fixed windowed history and then used the
unsupervised adaptation approaches. We ran experiments
evaluating the performance of various window sizes (in-
cluding using all history available, which is computation-
ally infeasible in practice), but were unable to find a result
that was competitive with our method.

4.1. Scene Classification Over Time

Dataset Our first experiment evaluates our algorithm on
scene classification over time using a real-world surveil-
lance dataset. The images were captured from a fixed traffic
camera observing an intersection. Frames were updated at
3 minute intervals each with a resolution of 320x2403. Our
dataset includes images captured over a 2 week period. This
data offers a challenging domain shift problem as changes
include illumination, shadows, fog, snow, light saturation
from oncoming sedans, change to night time IR mode, etc.

Experiment Setup We define an intersection traffic clas-
sification task, which is to determine whether one or more

3Available at the California Department of Transportation website,
http://quickmap.dot.ca.gov/

Figure 4. Sample human labeled images used for intersection traf-
fic classification. Positive examples are shown in the top row
(blue) and negative examples are shown in the bottom row (red).

cars are present in, or approaching, the intersection. We ob-
tain labels for this task using human annotators (for exam-
ple labels see Figure 4). We assume to be given 50 labeled
consecutive images (2.5 hours) and then evaluate each algo-
rithm on the immediately following 24 hours (480 images)
and 5 days (2400 images). We evaluate the classifiers in the
online setting, where classification must occur just after re-
ceiving a test point and may only be informed by previously
received test data with no knowledge of future test data.

This task is challenging and cannot be adequately solved
with approaches such as scanning-window car detection, as
the images (and especially the cars within) are too low-
resolution to be detected by conventional methods. A de-
formable parts model (DPM) detector [6] failed to detect
any sedans in the first 50 images. Instead we compute fea-
tures over the whole image and produce a scene label.

We consider two features that are known to perform well
on scene classification tasks: GIST [26] (512 dimension)
and SIFT-SPM [18] using a 200 dimension codebook and
3 pyramid layers (4200 dimension). Finally, since the im-
ages are all of a fixed scene we use a standard mixture of
gaussians background subtraction algorithm [27] to extract
a foreground mask and compute the same GIST and SIFT-
SPM on the foreground. We found that sequential images
were far too noisy to provide useful foreground masks; we
present all results here for completeness.

Results & Analysis Table 1 presents the average preci-
sion (%) when testing on the 24 hours immediately follow-
ing the labeled data. CMA is shown to provide improve-
ment over no-adaptation regardless of feature choice. The
strongest algorithm and feature combination for this setup
was to use CMA with GIST features and either type of sub-
space alignment algorithm and either classifier.

We next demonstrate that the algorithm does not diverge
and in fact continues to provide improvement by testing
over the a 5 day period (see Table 2). Here we show results
using the GIST feature with each type of classifier and adap-

http://quickmap.dot.ca.gov/


Adaptation Method Classifier GIST[26] SIFT-SPM[18] GIST[26] + BSub[27] SIFT-SPM[18]+BSub[27]

- KNN 76.30± 3.0 47.51±5.1 52.27±3.4 39.91±3.0
- SVM 74.42± 3.0 68.69±3.6 50.98±3.6 48.91±3.0

CMA+GFK KNN 78.07±1.8 49.84±5.5 52.97±2.7 39.08±2.6
CMA+GFK SVM 78.38± 3.1 74.98±2.7 59.55±2.9 47.59±2.8
CMA+SA KNN 78.71±1.7 54.08±6.2 51.33±4.2 38.21±2.6
CMA+SA SVM 78.49±3.1 75.66±2.9 59.68±2.9 49.05±2.8

Table 1. Our method, CMA, improves performance independent of the feature choice for the scene classification task. Results here are
shown with optimizing the unsupervised adaptation problem using either the geodesic flow kernel (GFK)[9] or the subspace alignment
(SA) method [7]. Average precision (%) is recorded when training with 50 labeled images and testing on the immediately following 24
hours (480 images).

Adaptation Classifier GIST[26]

- KNN 71.24±5.7
- SVM 80.40±0.6

CMA+GFK KNN 77.21± 3.8
CMA+GFK SVM 84.17±1.5
CMA+SA KNN 78.61±3.3
CMA+SA SVM 84.32±1.4

Table 2. Our method, CMA, continues to provide improvement for
the scene classification task even when testing over the 5 days fol-
lowing the labeled training data. We show here average precision
(%) for the 2400 test images following the 50 available labeled
training images.

tation optimization algorithm. We found that SVM general-
ized better over time.

To understand the performance of the adaptive method,
we examine qualitative classification examples. Figure 5
shows images that were misclassified by all algorithms ex-
cept our CMA approach. The sedans parked in the parking
lot on the left side of the image as well as the protrusion
from the snow mound between the road and turn-out were
likely confusions for the non-adaptive baselines. Figure 6
shows images incorrectly classified by all algorithms. Here
are negative examples that may have sedans present, but too
far away to be considered traffic at the intersection by our
task definition.

For reference, if one had access to all of the test data in
batch one could directly apply an adaptation methods or
even pre-cluster the test data and learn multiple transforma-
tions. The performance for batch test data using GIST fea-
tures with SA and SVM is 76.44 AP for the single cluster
case and 77.57 AP for the multiple cluster case. These are
both for the 1 day test set. We see here that actually our al-
gorithm is performing even better than using the algorithms
in batch with pre-clustering of the data.

Figure 5. Qualitative results from the intersection traffic classifica-
tion task. Training on day-time images with no snow only. Images
labeled correctly by our method (CMA) and incorrectly labeled
by all other methods. We show here the 6 examples for which the
baseline had highest (incorrect) confidence, indicating that these
examples were particularly challenging for the baseline and then
fixed with our method. We improve in the cases of nighttime,
snow, and fog, not seen during training.

Figure 6. Qualitative results from the intersection traffic classifica-
tion task. Example images where all methods classified incorrectly
– snow, sedans too far away, and bright lights in the distance make
these images difficult.



Adaptation Classifier SIFT-SPM [18] GIST [26] DeCAF [3]

- KNN 66.31± 0.6 72.77± 0.8 84.60± 0.7
- SVM 79.26± 0.6 76.40± 0.7 85.92± 0.4

CMA+GFK KNN 66.32± 0.2 72.60± 0.9 82.65± 0.5
CMA+GFK SVM 80.24± 0.7 78.32± 0.6 89.68± 0.1
CMA+SA KNN 65.06± 1.1 71.44± 1.3 81.97± 0.6
CMA+SA SVM 79.79± 0.6 78.31± 0.7 89.71± 0.1

Table 3. Our algorithm improves performance on category recog-
nition task. We evaluate our continuous manifold adaptation ap-
proach (CMA) on the task of labeling images of automobiles as
either cars or trucks. We show results using two solutions to the
unsupervised adaptation problem (GFK[9] and SA[7]) and two in-
ner product based source classifiers (KNN and SVM). We compare
across three types of features and demonstrate the benefit of us-
ing our algorithm for each feature choice, including a deep learn-
ing based feature that was tuned for object classification on all of
ImageNet[3].

4.2. Object Classification Over Time

Dataset Next, we evaluate on the task of distinguishing
sedans and trucks over time. We collected a new automo-
bile dataset that contains images of automobiles manufac-
tured between the years of 1950-2000. The data was ac-
quired from a freely available online database4 that has ob-
ject centric images of automobiles, each user labeled with
a manufactured year and a model label. This database was
recently proposed for detecting connections in space and
time [19]. The images vary in size but are usually around
400x600. We collected 30-40 images (depending on avail-
ability) from each year of the images that were tagged as
either a sedan or a truck. We directly used those tag labels
as our ground truth for the car and truck classes. See Fig-
ure 1 (bottom row) for example images.

Experiment Setup Our task is to classify each test im-
age as either a car or a truck. We use the first 5 years of
data (1950-1954) as our labeled source examples. We then
consider receiving all subsequent test data sequentially in
time. As in the previous experiment we use both GIST [26]
(512 dimension) and SIFT-SPM [18] using a 200 dimension
codebook and 3 pyramid layers (4200 dimension) represen-
tations for this data. Additionally, as this is an object clas-
sification task, we also experiment with a recently proposed
feature based on vectorizing a layer of a deep learning ar-
chitecture trained on all of ImageNet, called DeCAF [3].5

Results & Analysis We present classification accuracy
results on the automobile dataset in Table 3. All results rep-
resent an average across 10 random train/test splits. Our

4http://www.cardatabase.net
5For our experiments we use the vectorized output of layer 6 of the

network.

Figure 7. Our method clearly adapts to vehicle appearance as it
evolves to look different from that in the labeled 50’s training
data. We show example images misclassified by non-adaptive
SVM (DeCAF features) and correctly classified by CMA followed
by the same SVM classifier. The 5 sedans and 5 trucks for which
the SVM had the highest confidence (though incorrect) are dis-
played here.

algorithm, CMA, provides a significant accuracy improve-
ment over the non-adaptive baselines for the GIST and De-
CAF features. The best overall results, with 90% accuracy,
were achieved using the DeCAF features and our CMA ap-
proach followed by an SVM classifier.

To get a sense for which examples CMA provides im-
provement, we looked at the set of images that were incor-
rectly classified by a non-adaptive source SVM and then
were correctly classified by CMA. We then displayed the 5
car and 5 truck examples for which the SVM has the high-
est (incorrect) confidence – indicating these were difficult
examples (see Figure 7). In particular, they include sedans
on top of trucks and trucks with ramps off the back.

There were also examples for which all methods mis-
classified the results (see Figure 8). All algorithms were
consistently confused by vans and pickup trucks with cov-
ered beds, labeling them as sedans (though it’s debatable
which category the vans should fall into anyway). Addi-
tionally, sedans with distinctive front grates or high profiles
sedans were sometimes confused with trucks. There were
in general more mislabeled trucks than sedans.

5. Conclusion

We have presented a novel problem statement of per-
forming a visual classification task under dynamic distribu-
tion shift. Our solution method dynamically learns data spe-
cific subspaces through time in order to compute an adap-
tive transformation at each time step. We experimentally
validate that our algorithm outperforms non-adaptive base-
lines, independent of feature representation, and across two
real world visual adaptation tasks where the target is dy-
namically distributed over time.

In this paper, we focused on the unsupervised learning
task because of its practical importance, but in the future
we would like to examine the performance benefit of adding

http://www.cardatabase.net


Figure 8. Example images misclassified by all methods (sedans top
and trucks bottom). Vans and trucks with covered beds were con-
sistently labeled as sedans by all algorithms. Additionally, sedans
with distinctive front grates and/or high profiles were sometimes
confused with trucks.

a few labeled target examples in an active learning frame-
work. We suspect that especially in the setting where there
are sudden dramatic shifts in the data, the discrepancy is
perceptible by the algorithm and some supervision could
focus the subspace learning and boost performance.

Acknowledgement This research was supported in part
by DARPA Mind’s Eye and MSEE programs, by NSF
awards IIS-0905647, IIS-1134072, and IIS-1212798, and
by support from Toyota.

References
[1] Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for object

category detection. In Proc. ICCV, 2011.

[2] Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger.
Review and evaluation of commonly-implemented background sub-
traction algorithms. In Proc. ICPR, 2008.

[3] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and
T. Darrell. DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition. ArXiv e-prints, 2013.

[4] M. Dredze and K. Crammer. Online methods for multi-domain learn-
ing and adaptation. In Proc. EMNLP, 2008.

[5] L. Duan, D. Xu, and Ivor W. Tsang. Learning with augmented fea-
tures for heterogeneous domain adaptation. In Proc. ICML, 2012.

[6] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Ob-
ject detection with discriminatively trained part-based models. IEEE
Trans. Pattern Anal. Mach. Intell., 2010.

[7] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsuper-
vised visual domain adaptation using subspace alignment. In Proc.
ICCV, 2013.

[8] D. Giuliani, R. Gretter, and F. Brugnara. On-line speaker adaptation
on telephony speech data with adaptively trained acoustic models. In
Proc. ICASSP, 2009.

[9] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for
unsupervised domain adaptation. In Proc. CVPR, 2012.

[10] R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object
recognition: An unsupervised approach. In Proc. ICCV, 2011.

[11] J. Hoffman, B. Kulis, T. Darrell, and K. Saenko. Discovering latent
domains for multisource domain adaptation. In Proc. ECCV, 2012.

[12] J. Hoffman, E. Rodner, J. Donahue, K. Saenko, and T. Darrell. Ef-
ficient learning of domain-invariant image representations. In Proc.
ICLR, 2013.

[13] V. Jain and E. Learned-Miller. Online domain adaptation of a pre-
trained cascade of classifiers. In Computer Vision and Pattern Recog-
nition (CVPR), 2011 IEEE Conference on, 2011.

[14] R Kalman. A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME–Journal of Basic Engineering,
1960.

[15] A. Kembhavi, B. Siddiquie, Roland Miezianko, Scott McCloskey,
and L.S. Davis. Incremental multiple kernel learning for object
recognition. In Computer Vision, 2009 IEEE 12th International Con-
ference on, 2009.

[16] A. Khosla, T. Zhou, T. Malisiewicz, A. Efros, and A. Torralba. Undo-
ing the damage of dataset bias. In Proceedings of the 12th European
conference on Computer Vision, 2012.

[17] B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you
get: Domain adaptation using asymmetric kernel transforms. In Pro-
ceedings of the 2011 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2011.

[18] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories.
In Computer Vision and Pattern Recognition (CVPR), 2006.

[19] Y. J. Lee, A. Efros, and M. Hebert. Style-aware mid-level represen-
tation for discovering visual connections in space and time. In Proc.
ICCV, 2013.

[20] A. Levey and gM. Lindenbaum. Sequential karhunen-loeve basis
extraction and its application to images. Image Processing, IEEE
Transactions on, 2000.

[21] X. Li, K. Wang, W. Wang, and Y. Li. A multiple object tracking
method using kalman filter. In Information and Automation (ICIA),
2010 IEEE International Conference on, 2010.

[22] Q. Rentmeesters, P-A Absil, P. Van Dooren, K. Gallivan, and A. Sri-
vastava. An efficient particle filtering technique on the grassmann
manifold. In Acoustics Speech and Signal Processing (ICASSP),
2010 IEEE International Conference on, 2010.

[23] D. Ross, J. Lim, and M.H. Yang. Adaptive probabilistic visual track-
ing with incremental subspace update. In European Conference on
Computer Vision (ECCV), 2004.

[24] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual cate-
gory models to new domains. In Proceedings of the 2010 European
Conference on Computer Vision (ECCV’10), 2010.

[25] S. Shalev-Shwartz. Online learning and online convex optimization.
Found. Trends Mach. Learn., 2012.

[26] C. Siagian and L. Itti. Rapid biologically-inspired scene classifica-
tion using features shared with visual attention. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2007.

[27] C. Stauffer and W. E L Grimson. Adaptive background mixture mod-
els for real-time tracking. In Computer Vision and Pattern Recogni-
tion, 1999. IEEE Computer Society Conference on., 1999.

[28] A. Torralba and A. Efros. Unbiased look at dataset bias. In CVPR,
2011.

[29] J. Yang, R. Yan, and A. Hauptmann. Adapting svm classifiers to data
with shifted distributions. In ICDM Workshops, 2007.


