
Analysis by Synthesis: 3D Object Recognition by Object Reconstruction

Mohsen Hejrati
University of California, Irvine

shejrati@ics.uci.edu

Deva Ramanan
University of California, Irvine

dramanan@ics.uci.edu

Abstract

We introduce a new approach for recognizing and re-
constructing 3D objects in images. Our approach is based
on an analysis by synthesis strategy. A forward synthesis
model constructs possible geometric interpretations of the
world, and then selects the interpretation that best agrees
with the measured visual evidence. The forward model syn-
thesizes visual templates defined on invariant (HOG) fea-
tures. These visual templates are discriminatively trained to
be accurate for inverse estimation. We introduce an efficient
“brute-force” approach to inference that searches through
a large number of candidate reconstructions, returning the
optimal one. One benefit of such an approach is that recog-
nition is inherently (re)constructive. We show state of the art
performance for detection and reconstruction on two chal-
lenging 3D object recognition datasets of cars and cuboids.

1. Introduction
We focus on the task of recognizing and reconstructing

objects in images. Specifically, we describe a single model
that simultaneously detects instances of general object cat-
egories, and reports a detailed 3D reconstruction of each
instance. Our approach is based on an analysis by synthe-
sis strategy. A forward synthesis model constructs possible
geometric interpretations of the world, and then selects the
interpretation that best agrees with the measured visual ev-
idence. One benefit of such an approach is that recognition
is inherently (re)constructive.

Challenges: Though attractive, an “inverse rendering”
approach to computer vision is wildly challenging for two
primary reasons. (1) It is difficult to build accurate gener-
ative models that capture the full complexity of the visual
world. (2) Even given such a model, inverting it is difficult
because the problem is fundamentally ill-posed (different
reconstructions may generate similar images) and full of lo-
cal minima (implying local search will fail).

Our approach: Our approach addresses both difficul-
ties. (1) Instead of generating pixel values, we use forward

models to synthesize visual templates defined on invari-
ant (HOG) features. These visual templates are discrimi-
natively trained to be accurate for inverse estimation. (2)
We describe a “brute-force” approach to inference that ef-
ficiently searches through a large number of candidate re-
constructions, returning the optimal one (or multiple likely
candidates, if desired).

Latent-variable object models: Our model is related
to approaches that recognize objects with latent variable
models, such as the state-of-the-art deformable part model
(DPM) [5]. Zhu et al. [23] point out that DPMs im-
plicitly synthesize a set of deformed templates by search-
ing over possible latent values. The deformation set is
limited to obey sparse 2D spring constraints, making the
search amenable to dynamic programming. In contrast,
we explicitly synthesize a massive set of templates by enu-
merating over latent parameters in an arbitrarily-complex
forward model (that explicitly constructs 3D objects and
cameras). We perform a brute-force search through these
(re)constructions. Surprisingly, by making use of part in-
dexing, our search can be even faster than a DPM.

Overview. We introduce our shape synthesis model in
Sec. 3 and specify the forward rendering process for gen-
erating 2D templates in Sec. 4. We then describe our algo-
rithms for inference in Sec. 5 and learning in Sec. 6. We
conclude with experimental results in Sec. 7. Our model
produces state-of-the-art benchmark performance for detec-
tion and reconstruction of cuboids in indoor images [21] and
cars from the PASCAL dataset [9]. We also present a diag-
nostic analysis that shows that, in some cases, our synthesis
model is close to optimal (given our feature space).

2. Related Work
3D categorical models: Many approaches represent ob-

ject categories using local features and their geometric ar-
rangement in a 3D coordinate system [16, 17, 24]. Most
related to us are approaches based on view-based part mod-
els [13, 8, 15, 5]. In particular, [15] learn view-based car
models making use of a geometric CAD model to generate
synthetic training images. Instead of synthesizing images,
we synthesize feature templates (an easier task). We syn-

2014 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/14 $31.00 © 2014 IEEE

DOI 10.1109/CVPR.2014.314

2443

2014 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/14 $31.00 © 2014 IEEE

DOI 10.1109/CVPR.2014.314

2449
2449

Synthesis Engine Appearance Model Parametric Templates

⋯ + …

Figure 1. We describe a method for synthesizing a large set of discriminative templates, each associated with a candidate 3D reconstruction
of an object (in this case, cars). Our model makes use of a generative 3D shape model to synthesize a large collection of 2D landmarks,
which in turn specify rules for composing 2D templates out of a common pool of parts.

thesize templates that are detailed enough to perform 3D
reconstruction, while this may be difficult for view-based
approaches (since many views may be needed).

Geometric indexing: Historically, many model-based
recognition systems proceeded by aligning 3D models to
image data. Typically, a sparse set of local features are ini-
tially detected, after which alignment is treated as a feature
correspondence problem. Efficient correspondence search
is implemented through affine/projective invariant index-
ing [6], geometric hashing [12], or simple enumeration [7].
Hough transforms use sparse feature detections to vote in
a shape parameter space [2], resulting in 2D implicit shape
models [1, 18]. Our part indexing scheme is similar in spirit,
except that we use a dense set of part responses to cast votes
for a discrete set of candidate 3D reconstructions.

Model synthesis: Synthetic parametric models of
object-categories is an active area of research in the graph-
ics community. Approaches include procedural grammars
[14], morphable basis shapes [4], and component/part-
based models [11]. We make use of morphable models to
represent categorical shape variation, as in [9]. Following
past work, we show that such basis models can be learned
from 2D annotations using techniques adapted from non-
rigid structure from motion (SFM) [20, 19]. Our models
differ from past work in that we use a geometric model to
synthesize a large set of exemplars, which are then used
for “brute-force” matching. From this perspective, our ap-
proach is similar to work that relies on a non-parametric
model of object shape [3].

3. Synthesis model
We begin by defining a parametric model for construct-

ing 3D shapes from a particular object category (such as
cars). We will then sample from this parametric family to
define a large set of candidate 3D reconstructions. Our 3D
shape model should capture nonrigid shape variation within
an object category (sedans and SUVs look different) and
viewpoint variation. To do so, we make use of morphable
basis models [4, 9] that model any 3D shape instance as a
linear combination of 3D basis shapes. Our shape model
should also encode changes in appearance due to geometric
variation (wheels look different when foreshortened). To

Figure 2. Following [9], we use basis shapes to model different
types of cars, like sedans in the first column and SUVs in the
fourth.

do so, we learn separate local templates for landmarks con-
ditioned on their 3D geometry (learning separate templates
for frontal vs. foreshortened wheels).

Shape parameters: We represent the 3D shape of an
object with a set of N 3D keypoints, represented as B ∈
R3×N . Given a set of nB basis shapes {Bj} and coefficients
α, we synthesize a 3D shape B as follows:

B = B0 +

nB∑
j>0

αjBj , where B,Bj ∈ R3×N (1)

where B0 is the mean 3D shape. We visualize our shape
basis in Fig. 2.

Camera parameters: We transform B into camera co-
ordinates by rotating by R and translating by t

P = t+RB, t ∈ R3, R ∈ R3×3 (2)

When augmented with camera intrinsic parameters (the fo-
cal length), the set of camera parameters are (t, R, f). We
now summarize our parameters with a vector θ:

θ =
[
Shape Camera

]
(3)

Shape =
[
α1 α2 . . . αk

]
Camera =

[
t R f

]
Forward projection: Given a parameter vector, we gen-

erate a set of 2D keypoints, scales, and local mixtures with
the following:

Render(θ) = {(zi,mi) : i = 1 . . . N} (4)

zi = (xi, yi, σi) = (f
pix
piz
, f
piy
piz
,
f

piz
) (5)

24442450
2450

Figure 3. We learn local part mixtures by clustering the relative 3D
position of keypoint i and its connected neighbors in the underly-
ing 3D mesh. We show keypoint cluster means µi

k (above), along
with their associated part templates βk

i (below). Each synthesized
3D pose (and associated template) is constructed by adding to-
gether shifted copies of local part templates, which in turn allows
for efficient run-time search.

where (5) is a standard perspective projection model, and
pi is the ith column of matrix P . We have assumed unity-
scaled pixels factors for simplicity (though they can easily
be added).

Appearance synthesis: To capture changes in appear-
ance caused by geometry (frontal and foreshortened wheels
look different), we associate each keypoint with a discrete
mixturemi. We will use mixture-dependent local templates
βmi
i to capture such appearance variability. We now de-

scribe a simple approach for synthesizing mi conditioned
on P (the view-dependent 3D geometry). Let us define
reli(P) to be a vector of relative 3D landmark locations:

reli(P) = {pj − pi : j ∈ N(i)}. (6)

where N(i) is the set of keypoints connected to i under the
3D mesh model. We use the 3 other keypoints with highest
spatial correlation to i. Offline, we extract the set of {reli}
from the set of synthesized shapes, and cluster them using
k-means. We write the kth mean as µik. Given this clus-
tering, we now can synthesize mixture labels mi by finding
the closest geometric mean:

mi = k∗ where k∗ = argmin
k∈M

||reli(P)− µik||2. (7)

We show 3D geometric means µik and their associated
appearance-specific visual templates βki in Fig. 3.

Parameter quantization: We explore various strategies
for producing a set of parameters θ. One option is to use
the set of parameters encountered in a set of training im-
ages. Alternatively, we can synthesize a set of parameters
θ with a grid search over a bounded range of parameters
(where bounds on the camera rotation matrix is defined in
terms of elevation and azimuth Euler angles). In either case,
we clamp camera translations to be 0 (t = 0) to ensure
translation-invariance. We do search over focal lengths f to
model perspective effects during synthesis. This produces
a massive set of thousands or millions of parameters vec-
tors, produced by enumerating over a training set or a grid
search. In our results, we experiment with various quan-
tized subsets. We wish to quantize together parameters that

yield similar 2D projections. Specifically, we construct a
vector of 2D (xi, yi) keypoint positions for each discrete θ,
and cluster this set with K-means. We denote the final set
of K-quantized parameter vectors as

ΩK = {θ1 . . . θK} (8)

4. Template model
Given a parameter vector θ and image I , we describe a

method for scoring a visual template wθ:

S(I, θ) =
∑
u∈U

wθ[u] · I[u] (9)

where I[u] is an image feature extracted from a pixel lo-
cation and scale u = (x, y, σ) in image I . We write
U for the set of all possible discrete pixel locations and
scales enumerated in a feature pyramid. In practice, wθ is
a single-scale template with local spatial support. For nota-
tional simplicity, we assume that templates are zero-padded
(across space and scales).

To efficiently represent our family of templates, we con-
struct each template wθ by adding together local keypoint
templates shifted to lie at locations given byRender(θ) (5).
We write βmi

i for the (zero-padded) local visual template, or
“part”, associated with keypoint i, when tuned for mixture
mi:

S(I, θ) =

N∑
i=1

∑
u∈U

βmi
i [u] · I[u+ zi] (10)

where we drop the dependance of the rendered keypoint lo-
cation zi = zi(θ) and mixture mi = mi(θ) on parameter θ.
If keypoint i is occluded given the viewpoint specified by
θ, then the associated mi acts as an occlusion-specific mix-
ture. In such cases, the learned template βmi

i may be set to
all zeros, or it may capture image features characteristic of
occlusions (such as t-junctions).

Let us define a dummy indexing variable u′ = u + zi
and switch the order of summations in the above equation.
This allows us to write the global template wθ from (9) as a
superposition of shifted keypoint templates:

wθ[u] =

N∑
i=1

βmi
i [u− zi] (11)

where we have assumed keypoint templates β are zero-
padded outside of their default spatial extent.

5. Inference
Inference corresponds to computing

max
θ∈ΩK

S(I, θ) (12)

24452451
2451

β𝑘
𝑚𝑘

β
𝑗

𝑚𝑗

𝜔(𝜃𝑙)

𝜔(𝜃𝑙+1)

𝜔(𝜃𝑙+2) Input Image Detection +
3D Reconstruction ⋮ ⋮

β𝑖
𝑚𝑖

Figure 4. We search through a large collection of templates (with shared parts) by first caching part responses, and then looking up response
values to score each template.

To simplify notation, we assume that the translation-
invariant set of parameters θ ∈ ΩK are augmented with
camera translations at run-time. This allows the above max-
imization to perform a scanning-window search over image
translations and scales. To efficiently search over scores
for all θ ∈ ΩK given an image I , we first pre-compute a
response map of keypoint template responses for each loca-
tion u:

Rmi
i [u] =

∑
u′∈U

βmi
i [u′] · I[u′ + u] (13)

We pre-compute the above response map for each keypoint
i and mixture mi by convolving the feature pyramid I with
the part template βmi

i . We now can define the score associ-
ated with a particular object parameter by looking up values
in the cached response maps:

S(I, θ) =

N∑
i=1

Rmi
i [zi(θ)] (14)

The final inference algorithm, visualized in Fig. 4, is as
follows.

1. Offline, enumerate parameters θ ∈ ΩK and cache the
associated set of rendered keypoints Render(θ).

2. Online, given an image, compute the response map for
all N parts and M mixtures (13).

3. Evaluate S(I, θ) for each θ ∈ ΩK withN (≈ 10) table
lookups (14).

4. Return parameters θ above a detection threshold, along
with their associated reconstructions B (1).

6. Learning
Our models require two sets of parameters; those associ-

ated with shape synthesis θ, and those associated with local
keypoint templates βmi

i . We learn both using training im-
ages annotated with 2D keypoint locations.

Synthesis parameters: In some cases, one can use a
graphics engine or CAD models to directly synthesize a set

of 3D parameter vectors θ. We can also infer such 3D pa-
rameters from 2D keypoint annotations so as to minimize
2D reprojection error. As in [9], we employ nonrigid struc-
ture from motion (SFM) [19] to learn a 3D basis. Stack all
2D keypoints fromN training images into a 2N×K matrix.
In the noise-free case, this matrix is rank 3nB (where nB is
the number of basis shapes), since each row can be written
as a linear combination of the 3D coordinates of nB ba-
sis shapes. This means that one can use rank constraints to
learn a 3D morphable basis. We use the publicly-available
nonrigid SFM code from [9] to estimate both the shape ba-
sis β and parameters θ for each training example. We learn
local appearance clusters µ by clustering view-dependent
3D shapes obtained from the set of {θi}.

Template parameters: We will learn templates that
are discriminatively tuned for accurate detection and recon-
struction on single-view training images. Assume we are
given supervised training data including positives {Ii, θi}
and negatives {Ii}. Oftentimes supervision is more natu-
rally specified in terms of 2D keypoint annotations rather
than 3D shapes. In such a scenario, we use the nonrigid
SFM procedure from the previous paragraph to estimate
shape parameters θ given 2D keypoint annotations. Com-
bining (9) with (11), we can explicitly denote the score as
linear in keypoint templates β = {βmi

i }:

S(I, θ) = β · Φ(I, θ) (15)

We will learn templates that minimize the following training
objective function:

min
β

1

2
||β||2 + C

∑
i

ξi (16)

s.t. ∀i ∈ pos, β · Φ(Ii, θi) ≥ 1− ξi (17)
∀i ∈ neg,∀θ ∈ ΩK , β · Φ(Ii, θ) ≤ −1 + ξi (18)

The above constraint states that positive examples should
score better than 1 (the margin), while negative examples,
for all configurations of keypoints positions and mixtures
defined by ΩK , should score less than -1. Violations of
these constraints are penalized through slack terms. We

24462452
2452

find margin violations on negative images (not containing
the object) by running the efficient inference algorithm from
Sec. 5 to find detections that score above -1. This form of
learning is known as a structural SVM, and there exist many
well-tuned solvers such as SVMStruct [10] and stochastic
gradient descent [5]. We use a stochastic dual coordinate-
descent implementation based on [22].

Scalability: Training time scales roughly linearly with
K (the number of synthesized shapes). This holds true be-
cause β is independent of K, while hard-negative mining
scales linearly with K since each shape must be enumer-
ated. For large K, we found that one could speed up train-
ing times by stochastically subsampling shapes during hard-
negative mining without sacrificing accuracy. We subsam-
pled a fixed number (50) regardless of K, making training
time practically independent of K.

Recognition vs reconstruction: The above constraints
naturally corresponds to detection accuracy. One could aug-
ment them to ensure that, for a positive example Ii, the
true shape θi outscores incorrect shapes θ 6= θi by some
amount. This corresponds to a structured prediction task
that explicitly trains parameters so as to generate accurate
shapes. We found that these additional constraints did not
improve performance given a large enough negative set (we
use a generic set of 1000 outdoor images).

Data scarcity: Interestingly, the above formulation
learns accurate models even with a small number of pos-
itives that are dwarfed by the the number of templates
|pos| � |ΩK |. It may seem strange that we are learn-
ing templates for shapes that have never been seen - but
this is precisely the benefit of synthesis! We learn good
templates so long as there exist enough positives to train
the local parts βmi

i . Given this fact, one might be tempted
to simply train the local parts independently, but the above
structured formulation takes advantage of contextual inter-
actions between all parts, defined by the entire set of pa-
rameters ΩK . Because “hard negative” margin violations
are produced by searching across all templates in ΩK , the
learning algorithm above will tend to produce a strong set
of models {wθ : θ ∈ ΩK}.

7. Results
Datasets: We evaluate our model using two object de-

tection/ datasets. The SUN primitive dataset [21] contains
785 images with 1269 annotated cuboids. The UCI-Car
dataset [9] contains 500 images from PASCAL VOC2011
containing 723 cars with detailed landmark annotation. For
both datasets, we use the same train-test split provided by
the curators for training and evaluation.

Evaluation: Our models report back object detections
with associated 3D reconstructions. Because annotating im-
ages with 3D shapes is cumbersome, we evaluate our recon-
structions by evaluating 2D landmark re-projection error.

This allows us to use standard benchmarks and compare to
past work. For object detection we use now-standard av-
erage precision measure introduced in PASCAL. For land-
mark localization, we follow [21] and plot landmark accu-
racy for various levels of object-detection recall. A pre-
dicted landmark is defined to correct if it lies within t pixels
of the ground-truth location, where t = 15% of the square
root of the area of the ground-truth box.

Baselines: We compare to previously published results
for both datasets. In particular, we use state-of-the DPMs as
baseline for object detection [5], and supervised tree-based
part models as baselines for landmark prediction [21, 9].
Notably, both [21, 9] use a two-stage inference procedure
for reconstruction, where detections from a 2D tree-based
part model are refined to produce 3D reconstructions. Our
model performs both detection and reconstruction in a sin-
gle stage.

Implementation: For our car models, we set the number
of basis shapes nb = 5. We learn a model with N = 20
3D landmarks, each modeled with |M | = 9 local mixtures.
For our cuboid models, we manually define a 3D parametric
cuboid model of varying aspect ratios. Our model consists
of N = 17 3D landmarks (consisting of cube corners and
midpoints), with |M | = 12 local mixtures.

Synthesis strategies: We explored numerous strategies
for constructing a set of 3D shape parameters {θi}. First,
our Exemplar model uses the shapes encountered in the
training set of annotated images, augmented with synthetic
camera translations. Exemplar Synthesis augments this set
with additional exemplar shapes. We implement this strat-
egy by learning a model with a subset of training images,
but using the larger (full) set of keypoint annotations. This
mimics scenarios where we have access to a limited amount
of image data, but a larger set of keypoint annotations.
Parametric Synthesis constructs a shape set by discretely
enumerating θi over bounded parameter ranges. Finally,
Oracle Synthesis uses shapes extracted from annotated test-
data. We use this upper bound on performance (given the
the “perfect” synthesis strategy) for additional analysis.

Interactive synthesis: We have implemented an inter-
face for interactive synthesis (Fig. 5). A common tool for
visualizing morphable models is an interface where a user
can dynamically toggle/slide shape coefficients, and view
the resulting model. We have constructed such an interface,
and can use it to visualize our family of 3D shapes, cam-
era viewpoints, and associated HOG templates. We find it
to be an intuitive user experience for “understanding” the
modeling capacity of our representation.

Anytime recognition/reconstruction: Our models have
a free parameterK, the number of enumerated shapes. Both
performance and run-time computation increase with K.
When comparing to baselines with fixed run-time costs, we
plot performance as a function of run-time, measured in

24472453
2453

Box detection Box landmark reconstruction

20

25

30

35

40

45

50

55

60

5 25 125 625

A
ve

ra
ge

 P
re

ci
si

o
n

Time (seconds)

Param Synth

Exemp

Oracle Synth

DPM

Tree

Xiao et al.
20

25

30

35

40

45

50

55

60

65

70

5 25 125 625

A
ve

ra
ge

 A
cc

u
ra

cy

Time (seconds)

Param Synth

Exemp

Oracle Synth

DPM + Regress

Tree

Xiao et al.

Car detection Car landmark reconstruction

55

60

65

70

75

80

85

5 25 125

A
ve

ra
ge

 P
re

ci
si

o
n

Time (seconds)

Param Synth

Exemp

Oracle Synth

DPM

Tree

Multiview Star
45

50

55

60

65

70

75

80

85

90

5 25 125

A
ve

ra
ge

 A
cc

u
ra

cy

Time (seconds)

Param Synth

Exemp

Oracle Synth

Tree

Multiview Star

Figure 6. Detection (left) and reconstruction accuracy (right) versus running time of our method and other baselines, including
DPMs [5], supervised-tree models [9], and multi-view star models [9]. Points correspond to different (constant-time) baselines, while
curves correspond to our models. Because our models can process a variable number of synthesized templates, we sweep over
K ∈ {20, 50, 100, 500, 1000, 4000} templates to generate the curves. Note that Exemplars are limited by the number of training im-
ages. Exemplars always dominate Parametric Synthesis (for a given K), suggesting our parametric model is failing to capture important
shape statistics. We examine this further in Fig. 7. Our box (top) detection and reconstruction results (43% and 48%) nearly double the
best previously-reported performance from Xiao et al.[21] (24% and 38%), while being 10X faster. Our car (bottom) results approach the
state-of-the-art tree models of [9], but directly report 3D shape while being 5X faster.

↵1 ↵2 ↵3 ↵4 ↵5

Figure 5. A visualization of our interactive, morphable interface
for exploring 3D shapes and their associated templates. We dis-
play the corresponding shape coefficients α as colored bars.

terms of seconds per image. All methods are run on the
same physical system (a 12-core Intel 3.5 Ghz processor).
Recall that we obtain shape sets for smaller K by cluster-
ing a larger set of shapes. Our plots reveal that a simple
re-ordering of shapes in a coarse-to-fine fashion (with hier-
archical clustering) can be used for any-time analysis. For
example, after enumerating the first K = 20 coarse shapes,
one can still obtain 65% car landmark reconstruction accu-
racy (which in turns improves as more shapes are enumer-
ated).

Box benchmark results: Fig. 6 plots performance for
box detection and localization. Exemplars almost double
the best previously-reported numbers in [21], in terms of
detection (43% vs 24%) and landmark reconstruction (48%
vs 38%). Interestingly, the tree model of [9] outperforms
[21], perhaps due to its modeling of local part mixtures. Our
models even surpass [9], while directly reporting 3D recon-
structions and while being 10X faster. Exemplar and Para-
metric Synthesis perform similarly for low numbers of tem-
plates, but Exemplars do better with more templates, par-
ticularly with respect to reconstruction accuracy. Moreover,
both methods still fall short of the upper-bound given by
Oracle Synthesis. These results suggests that our paramet-
ric model is not capturing true shape statistics. For exam-
ple, people may take pictures of certain objects from iconic

viewpoints. Such dependancies are not modeled by Para-
metric Synthesis, but are captured by Exemplars. We later
demonstrate (Fig. 7) that Exemplar Synthesis also captures
such dependancies.

Car benchmark results: We find similar trends when
evaluating detection and landmark accuracy for cars. Our
models fall just shy of the tree model of [9], but directly re-
port 3D reconstructions while being 5X faster. As before,
Exemplars dominate Parametric Synthesis for any fixed
number of templates. But Parametric Synthesis can po-
tentially outperform Exemplars with additional shapes (be-
cause Exemplar is limited to observed training data). More-
over, our upper-bound analysis reveals that both models are
close to the upper bound provided by Oracle Synthesis. This
suggests that our morphable 3D model is a rather accurate
description of car shapes.

Diagnostic analysis: We present qualitative results for
both boxes and cars in Fig. 8. In Fig. 7, we present fur-
ther diagnostic analysis of our box model with respect to
training data size. When training on small amounts of train-
ing data, Exemplar Synthesis noticeably improves perfor-
mance by 5%. To realize this improvement, it is important
to discriminatively-train the full synthetic set of templates.
These results suggest that accurate shape statistics are cru-
cial to realize the benefit of synthesis. Indeed, we show that
one can produce a state-of-the-art model with as little as 20
training images.

Conclusions: We have introduced a new approach for
recognizing and reconstructing 3D objects in images based
on an analysis by synthesis strategy. We make use of
forward synthesis models to synthesize a large number of
possible geometric interpretations, and efficiently search

24482454
2454

Figure 8. Recognition + reconstructions from our method. Odd rows show the test image and recognized + reconstructed object overlaid
on it. Even rows illustrate the associated template that triggered the detection. Our method can recognize objects from various viewpoints,
shapes and is robust to heavy occlusion. Because every synthesized template has a 3D shape, recognition is inherently reconstructive. On
the top right, we show results for images with multiple cars. Our box results show accurate reconstructions across various viewpoints,
aspect ratios, and even perspective effects. However, some images are genuinely ambiguous, like the Rubik’s Cube (bottom-right).

24492455
2455

Box detection (diagnostics)

20

25

30

35

40

45

20 100 500 All data = 1196

A
ve

ra
ge

 P
re

ci
si

o
n

Number of Training

Exemp

Exemp + Exemp Synth

Exemp + Exemp Synth + Retrain

All Training Data

Figure 7. We plot the performance of various synthesis approaches
as a function of the amount of training images. Exemp enumer-
ates the set of shapes encountered in the training set of images.
+Exemp Synth uses the learned local templates β from Exemp
and instantiates new shapes obtained from keypoint annotations
not in the training set. This improves performance by up to 2%.
+Retrain discriminatively retrains β given this synthesized set of
shapes, further improving performance by up to 5%. Hence it is
crucial to discriminatively-tune the synthesized set. Our synthesis
models outperform state-of-the-art methods [21] with orders-of-
magnitude less training data.

Figure 9. We show an example detection for which the recon-
struction problem is fundamentally ill-posed (in our HOG feature
space). Our brute-force strategy for enumerating all reconstruc-
tions can readily return multiple high-scoring interpretations, ad-
dressing a classic limitation of “inverse rendering” approaches.

through this set with indexing schemes. Our methods dis-
criminatively train a large set of synthetic geometric mod-
els, such that they are accurate for both recognition and re-
construction. Constructing this set from an observed col-
lections of exemplar shapes does remarkably well, but one
can still improve on these results with accurate shape-driven
synthesis.

Acknowledgements: Funding for this research was
providedby NSF Grant 0954083 and ONR-MURI Grant
N00014-10-1-0933.

References
[1] M. Arie-Nachimson and R. Basri. Constructing implicit 3d

shape models for pose estimation. In ICCV, 2009. 2
[2] D. H. Ballard. Generalizing the hough transform to detect

arbitrary shapes. Pattern recognition, 13(2), 1981. 2
[3] P. N. Belhumeur, D. W. Jacobs, D. Kriegman, and N. Kumar.

Localizing parts of faces using a consensus of exemplars. In
CVPR, pages 545–552. IEEE, 2011. 2

[4] V. Blanz and T. Vetter. A morphable model for the synthesis
of 3d faces. In Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, pages 187–
194. ACM Press/Addison-Wesley Publishing Co., 1999. 2

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE PAMI, 99(1), 5555. 1, 5, 6

[6] D. Forsyth, J. L. Mundy, A. Zisserman, C. Coelho, A. Heller,
and C. Rothwell. Invariant descriptors for 3 d object recog-
nition and pose. IEEE TPAMI, 13(10):971–991, 1991. 2

[7] D. Glasner, M. Galun, S. Alpert, R. Basri, and
G. Shakhnarovich. Viewpoint-aware object detection and
pose estimation. In ICCV. IEEE, 2011. 2

[8] C. Gu and X. Ren. Discriminative mixture-of-templates for
viewpoint classification. ECCV, pages 408–421, 2010. 1

[9] M. Hejrati and D. Ramanan. Analyzing 3d objects in clut-
tered images. In NIPS, 2012. 1, 2, 4, 5, 6

[10] T. Joachims, T. Finley, and C. Yu. Cutting plane training of
structural SVMs. Machine Learning, 2009. 5

[11] E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun. A
probabilistic model for component-based shape synthesis.
ACM Transactions on Graphics (TOG), 31(4):55, 2012. 2

[12] Y. Lamdan and H. Wolfson. Geometric hashing: A gen-
eral and efficient model-based recognition scheme. In ICCV,
pages 238–249, 1988. 2

[13] R. Lopez-Sastre, T. Tuytelaars, and S. Savarese. Deformable
part models revisited: A performance evaluation for object
category pose estimation. In ICCV Workshops, 2011. 1

[14] P. Merrell and D. Manocha. Model synthesis: A general
procedural modeling algorithm. Visualization and Computer
Graphics, IEEE Transactions on, 17(6):715–728, 2011. 2

[15] B. Pepik, M. Stark, P. Gehler, and B. Scheile. Teaching ge-
ometry to deformable part models. In CVPR, 2012. 1

[16] S. Savarese and L. Fei-Fei. 3d generic object categorization,
localization and pose estimation. In ICCV, 2007. 1

[17] M. Sun, H. Su, S. Savarese, and L. Fei-Fei. A multi-view
probabilistic model for 3d object classes. In CVPR, pages
1247–1254. IEEE, 2009. 1

[18] A. Thomas, V. Ferrar, B. Leibe, T. Tuytelaars, B. Schiel, and
L. Van Gool. Towards multi-view object class detection. In
CVPR, volume 2, pages 1589–1596. IEEE, 2006. 2

[19] L. Torresani, A. Hertzmann, and C. Bregler. Learning non-
rigid 3d shape from 2d motion. NIPS, 16, 2003. 2, 4

[20] L. Torresani, D. Yang, E. Alexander, and C. Bregler. Track-
ing and modeling non-rigid objects with rank constraints. In
CVPR, volume 1, pages I–493. IEEE, 2001. 2

[21] J. Xiao, B. Russell, and A. Torralba. Localizing 3d cuboids
in single-view images. In NIPS, 2012. 1, 5, 6, 8

[22] Y. Yang and D. Ramanan. Articulated pose estimation with
flexible mixtures-of-parts. In CVPR, 2011. 5

[23] X. Zhu, C. Vondrick, D. Ramanan, and C. Fowlkes. Do we
need more training data or better models for object detec-
tion?. In BMVC, pages 1–11, 2012. 1

[24] M. Zia, M. Stark, B. Schiele, and K. Schindler. Revisiting
3d geometric models for accurate object shape and pose. In
ICCV Workshops, pages 569–576. IEEE, 2011. 1

24502456
2456

