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Abstract

We propose a deep learning framework for image set
classification with application to face recognition. An
Adaptive Deep Network Template (ADNT) is defined whose
parameters are initialized by performing unsupervised pre-
training in a layer-wise fashion using Gaussian Restricted
Boltzmann Machines (GRBMs). The pre-initialized ADNT
is then separately trained for images of each class and
class-specific models are learnt. Based on the minimum
reconstruction error from the learnt class-specific mod-
els, a majority voting strategy is used for classification.
The proposed framework is extensively evaluated for the
task of image set classification based face recognition on
Honda/UCSD, CMU Mobo, YouTube Celebrities and a
Kinect dataset. Our experimental results and comparisons
with existing state-of-the-art methods show that the pro-
posed method consistently achieves the best performance
on all these datasets.

1. Introduction
Face recognition has traditionally been considered as a

single image classification problem. With the recent ad-
vances in imaging technology, multiple images of a person
are becoming readily available in numerous scenarios such
as video based surveillance, multi-view camera networks,
personal albums and images of a person acquired over a
long period of time. Face recognition from these multiple
images is formulated as an image set classification prob-
lem and has gained a significant attention from the research
community in recent years [17, 27, 25, 4, 8, 14, 26].

Compared with single image based classification meth-
ods, face recognition from image sets offers more promises
as it can effectively handle a wide range of variations that
are commonly present in the facial images of a person.
These variations include changing illumination conditions,
view point variations, expression deformations, occlusions
and disguise. Facial images of a person under different
variations are commonly modeled on a non-linear mani-
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Figure 1. The block diagram of the proposed method. During
training, class-specific models are learned from images of each
person. These models are then used by a reconstruction error
based voting strategy to decide about the class of a test image set.

fold geometry such as Grassmannian manifold [27, 25, 8]
or Lie Group of Riemannian manifold [26]. This modeling
of images on manifolds requires prior assumptions related
to the specific category of the manifold on which face im-
ages are believed to lie. In contrast, this paper introduces
a deep learning based framework which makes no prior as-
sumption regarding the underlying geometry of face images
and can automatically learn and discover the structure of
the complex non-linear surface on which face images of a
person (under different variations) are present. The pro-
posed framework first defines an Adaptive Deep Network
Template (ADNT) whose weights are initialized by unsu-
pervised layer-wise pre-training using Gaussian Restricted
Boltzmann Machines (GRBMs). The pre-initialized ADNT
is then separately trained for images of each class to learn
class-specific models. The training is performed in a way
that the ADNT learns to reconstruct images of that class. A
class-specific model is therefore made to learn the structure
and the geometry of complex non-linear surface on which
face images of that class are present. For classification, a re-
construction error and majority voting based strategy is de-
vised. The proposed framework is evaluated for video based
face recognition on Honda/UCSD [18], CMU Mobo [16]
and YouTube Celebrities datasets [6] as well as a Kinect
dataset [19, 5] and achieves state of the art performance.
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2. Related Work
Image set classification generally involves two major

steps: 1). to find a representation of the images in the set,
and 2). to define suitable distance metrics for the computa-
tion of the similarity between these representations. Based
on the used type of representation, existing image set classi-
fication methods can be categorized into parametric-model
and non-parametric-model methods. The parametric-model
methods [1] approximate an image set in terms of the pa-
rameters of a certain statistical distribution model and then
measure the similarity between two image sets (two distri-
bution parameters) using e.g. KL-divergence. These meth-
ods fail to produce a desirable performance if there is no
strong statistical relationship between the test and the train-
ing image sets. The other type of image set representation
methods i.e. non-parametric methods do not make any as-
sumption about the statistical distribution of the data. These
methods have shown promising results and are being ac-
tively developed recently.

The non-parametric model based methods represent an
image set either by its representative exemplars or on a ge-
ometric surface. Based upon the type of representation, dif-
ferent distance metrics have been developed to determine
the between-set distance. For example, for the image sets
represented in terms of representative exemplars, the set-set
distance can be defined as the Euclidean distance between
the set representatives. These can simply be the set mean
[27] or adaptively learnt set samples [4]. Cevikalp et al.
[4] learn the set samples from the affine hull or convex hull
models of the set images. The set to set distance is then
termed as Affine Hull Image Set Distance (AHISD) or Con-
vex Hull Image Set Distance (CHISD). Hu et al. [14] define
set-set distance as the distance between their Sparse Ap-
proximated Nearest Points (SANPs). SANPs of two sets are
determined from the mean image and the affine hull model
of the corresponding set and are sparse approximated from
the set images while simultaneously searching for the clos-
est points in the respective sets. As set representative based
methods require the computation of a one-to-one set dis-
tance, these methods are capable of handling intra set varia-
tions very effectively. However, their performance is highly
prone to outliers. They are also computationally very ex-
pensive as a one-to-one match of the query set with all sets
in the galley is required. These methods could therefore be
very slow in the case of a large gallery size.

Unlike set representative based methods, the second cat-
egory of non-parametric methods model a complete image
set as a point on a geometric surface [27, 25, 8, 26, 10, 23].
The image set can be represented either by a subspace, mix-
ture of subspaces or on a complex non-linear manifold.
Principal angles have been very commonly used to deter-
mine the distance between image sets represented by a lin-
ear subspace. The d principal angles 0 ≤ θ1 ≤ · · · ≤

θd ≤ π
2 between two subspaces are defined as the smallest

angles between any vector in one subspace and any other
vector in the second subspace. The similarity between sets
is then defined as the sum of the cosines of the principal
angles. For image set representations on manifolds, ap-
propriate distance metrics have been adopted such as the
geodesic distance [22] and the projection kernel metric [7]
on the Grassmann manifold, and the log-map distance met-
ric [9] on the Lie group of Riemannian manifold. In order
to discriminate image sets on the manifold surface, differ-
ent learning strategies have been developed. Mostly, Linear
Discriminant Analysis (LDA) is contrived for different set
representations. Examples include Discriminative Canoni-
cal Correlations (DCC) [17], Manifold Discriminant Anal-
ysis (MDA) [25], Graph Embedding Discriminant Analy-
sis (GEDA) [8] and Covariance Discriminative Learning
(CDL) [26].

The methods which model an image set on a geometric
surface make prior assumption about the underlying surface
on which the face data lies. For example, [17] assumes that
face images lie on a linear surface and represents the image
set as a linear subspace. Methods including MMD, MDA
and GEDA represent an image set on a non-linear Grass-
mannian manifold, whereas, CDL [26] represents an image
set in terms of the covariance matrix of pixel values on Lie
Group of Riemannian manifold. For our proposed method,
we do not make any prior assumptions about the structure of
the surface on which the facial images of a person lie. We
instead define a deep learning based framework which in-
corporates non-linear activation functions to automatically
learn the underlying manifold structure. Deep learning has
recently gained significant research attention in a number
of areas [2, 13, 15]. Ours is the first method which incorpo-
rates deep learning for image set classification. The detailed
description about our method is presented next.

3. Proposed Technique

We first define an Adaptive Deep Network Template
(ADNT) which will be used to learn the underlying struc-
ture of the data. The architecture of our ADNT is sum-
marized in Fig 2 and the details are presented in Sec 3.1.
For such a deep network to perform well, an appropri-
ate initialization of the weights is required. We initialize
the weights of the ADNT by performing pre-training in a
greedy layer wise fashion using Gaussian Restricted Boltz-
mann Machines (details in Sec 3.2). The ADNT with pre-
initialized weights is then separately fine-tuned for each of
the k classes of the training image sets. We therefore end up
with a total of k fine-tuned deep network models, each cor-
responding to one of the k classes. The fine-tuned models
are then used for image set classification (details in Sec 3.3)
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Figure 2. Structure of the Adaptive Deep Network Template
(ADNT). The parameters of the template are initialized by unsu-
pervised pre-training. The initialized template is then used to learn
class specific models

3.1. The Adaptive Deep Network Template (ADNT)

As depicted in Fig 2, our ADNT is an Auto-Encoder
(AE), consisting of two parts: an encoder and a decoder.
Both the encoder and the decoder have three hidden layers
each, with a shared third layer (the central hidden layer).
The encoder part of the AE finds a compact low dimen-
sional meaningful representation of the input data. We can
formulate the encoder as a combination of non-linear func-
tions s(.) used to map the input data x to a representation h
given by,

h = s(W
(3)
e h2 + b

(3)
e )

h2 = s(W
(2)
e h1 + b

(2)
e )

h1 = s(W
(1)
e x + b

(1)
e )

(1)

Where W
(i)
e ∈ Rdi−1×di is the encoder weight matrix

for layer i having di nodes, b(i)
e ∈ Rdi is the bias vec-

tor and s(.) is the non-linear activation function (typically
a sigmoid or tangent hyperbolic). The encoder parame-
ters are learnt by combining the encoder with the decoder
and jointly training the encoder-decoder structure to recon-
struct the input data by minimization of a cost function. The
decoder can therefore be defined as a combination of non-
linear functions which reconstruct the input x from the en-
coder output h. The reconstructed output x̃ of the decoder
is given by,

x̃ = s(W
(3)
d x2 + b

(3)
d )

x2 = s(W
(2)
d x1 + b

(2)
d )

x1 = s(W
(1)
d h + b

(1)
d )

(2)

We can represent the complete encoder-decoder struc-
ture (the ADNT) by its parameters θADNT = {θW, θb},
where θW =

{
W

(i)
e ,W

(i)
d

}3

and θb =
{
b
(i)
e ,b

(i)
d

}3

.
Later (in Sec. 3.3) we will use this template and separately
train it for all classes of the training image sets to learn class
specific models.

3.2. ADNT’s Parameter Initialization

The above defined ADNT is used to learn class specific
models. This is accomplished by separate training of the
ADNT for images of each class of the training image sets.
The training is performed with stochastic gradient descent
through back propagation. The training fails if the ADNT is
initialized with inappropriate weights. More specifically, if
the initialized weights are too large, the network gets stuck
in local minima. On the other hand, if the initialized weights
are too small, the vanishing gradient problem is encountered
during back propagation in the initial layers and the net-
work becomes infeasible to train. The weights of the tem-
plate are therefore initialized by performing unsupervised
pre-training [12]. For that, a greedy layer-wise approach
is adopted and Gaussian RBMs are used. Below, we first
present a brief overview of binary and Gaussian RBMs and
then explain their use for our ADNT’s parameter initializa-
tion.

An RBM is a generative undirected graphical model with
a bipartite structure of two sets of binary stochastic nodes
termed as the visible ({vi}Nv

1 , vi ∈ {0, 1}) and the hidden
layer nodes ({hj}Nh

1 , hj ∈ {0, 1}). The nodes of the visi-
ble layer are symmetrically connected with the nodes of the
hidden layer through a weight matrix W ∈ RNv×Nh but
there are no intra layer node connections. The joint proba-
bility p(v,h) of the RBM structure is given by,

p(v,h) =
1

Z
exp(−E(v,h)) (3)

Z is the partition function (used as a normalization con-
stant) and E(v, h) is the energy function of the model de-
fined as:

E(v,h) =
∑
i

bivi −
∑
j

cjhj −
∑
ij

wijvihj (4)

Where b and c are the biases of the visible and hidden layer
nodes respectively. The training of an RBM for learning its
model parameters {W,b, c} is performed by Contrastive
Divergence (CD), a numerical method proposed by Hinton
et al. [11, 3] for efficient approximation to gradient compu-
tation and RBM parameter learning.

The standard RBM developed for binary stochastic data
can be generalized to the real valued data by appropri-
ate modifications in its energy function. Guassian RBM



(GRBM) is one such popular extension whose energy func-
tion is defined by modifying the bias term of the visible
units as:

EGRBM(v,h) =
∑
i

(vi − bi)2

2σ2
i

−
∑
j

cjhj −
∑
ij

wij
vi
σi
hj

(5)
σi is the standard deviation of the real valued Gaussian

distributed inputs to the visible node vi. It is possible to
learn σi for each visible unit but this becomes difficult when
using CD for GRBM parameter learning. We instead adopt
an alternative approach and fix σi to a unit value in the data
pre-processing stage.

Due to the restriction that there are no intra-layer node
connections, inference becomes readily tractable for the
RBM as opposed to most directed graphical models. The
probability distributions for GRBM are given by,

p(hj = 1|v) = sigmoid (
∑
i wijvi + cj)

p(vi|h) = 1
σi

√
2π

exp(−(vi−ui)
2

2σ2
i

)
(6)

where
ui = bi + σ2

i

∑
j

wijhj (7)

Since our data is real valued, we use GRBMs to initial-
ize the weights of our ADNT. Two layers are considered
at a time and the GRBM parameters are learnt. Initially,
the nodes of the input layer are considered to be visible
units v and the nodes of the first hidden layer as the hid-
den units h of the first GRBM and its parameters are learnt.
The activations of the first GRBM’s hidden units are then
used as an input to train the second GRBM. The process
is repeated for all three hidden layers of the encoder part
of the ADNT structure. The weights learnt for the encoder
layers are then tied to the corresponding decoder layers i.e.

W
(3)
d = W

(1)
e

T
,W

(2)
d = W

(2)
e

T
,W

(1)
d = W

(3)
e

T
(See

Fig. 2 for notations)

3.3. Image Set Classification Algorithm

We are now ready to describe our reconstruction error
based image set classification algorithm. The complete al-
gorithm is summarized in Alg 1. The details are presented
below.

Problem Formulation: Given k training image sets
{Xc}1×k and their corresponding class labels yc ∈
[1, 2, · · · k], where the image set Xc =

{
x(t)

}
1×Nc

has Nc
images x(t) ∈ Rdx×dy belonging to class c, the problem of
image set classification can be formulated as follows: given
a test image set Xtest =

{
x(t)

}
1×Ntest

, find the class ytest
to which Xtest belongs to?

Unsupervised Pre-Training: We first define our ADNT
and initialize its weights by performing unsupervised pre-
training. Our ADNT is a multi-layer neural network
with 1024-400-100-400-1024 nodes. In order to initial-
ize the weights of the ADNT by GRBMs, we generate
an unsupervised training data set. Face images from all
training image sets are gathered into a data set Xu =
∪
{
∀x(t) ∈ Xc;∀c ∈ [1, 2, · · · k]

}
. The images in the re-

sulting data setXu are randomly shuffled and used for layer-
wise GRBM training of all layers of the encoder part of
the template (1024-400-100). The weights of the decoder
layers (100-400-1024) are then initialized with their corre-
sponding tied weights of the encoder layers. Using pre-
training for weights initialization has several advantages
over random initialization. Since the ADNT is pre-trained
for face images, the initialized weights are very close to the
actual weights [2]. Therefore, it is highly unlikely that the
network gets stuck in a local optima. Moreover, with prop-
erly initialized weights, the gradient computation becomes
feasible resulting in the convergence of the weights to opti-
mal values.

Learning Class Specific Models: Now that we have the
ADNT structure with pre-initialized weights, we separately
fine tune its parameters θADNT = {θW, θb} for each of the
k training image sets. We therefore learn k class-specific
models. The learning of a class-specific model θ(c) is car-
ried out by performing stochastic gradient descent through
back propagation for the minimization of the reconstruction
error, over all examples x(t) of a training image set Xc ,

J
(
θADNT;x(t) ∈ Xc

)
=
∑
x(t)

∥∥∥x(t) − x̃(t)
∥∥∥2 (8)

Since the model is being trained to reconstruct the input
data, it might end-up learning an identity function and re-
produce the input data. Appropriate settings in the config-
urations of the ADNT are therefore required to ensure that
a class specific model learns the underlying structure of the
data and produces useful representations. For our ADNT,
since the number of nodes in the first hidden layer are larger
than the dimensions of the input data, we first learn an over-
complete representation of the data by mapping it to a high
dimensional space. This high dimensional representation is
then followed by a bottleneck i.e. the data is mapped back
to a compact, abstract and low dimensional representation
in the subsequent layers of the encoder. With such mapping,
the redundant information in the data is discarded and only
the required useful content of the data is retained.

In order to avoid over-fitting and improve generalization
of the learnt model to unknown test data, we introduce reg-
ularization terms into the cost function of ADNT. A weight
decay penalty term Jwd and a sparsity constraint Jsp are



added and the modified cost function becomes,

Jreg

(
θADNT;x

(t) ∈ Xc
)
=
∑
x(t)

∥∥∥x(t) − x̃(t)
∥∥∥2+λwdJwd+λspJsp

(9)

λwd and λsp are regularization parameters. Jwd ensures
small values of weights for all hidden units. It is defined
as the summation of the Frobenius norm of all weight ma-
trices,

Jwd =

3∑
i

∥∥∥W(i)
e

∥∥∥2
F

+

3∑
i

∥∥∥W(i)
d

∥∥∥2
F

(10)

Jsp enforces that the mean activation ρ̄(i)j (over all training
examples) of the jth unit of the ith hidden layer is as close
as possible to a sparsity target ρ (typically a small value, set
to 10−3 in our experiments in Sec. 4). It is defined in terms
of the KL divergence as,

Jsp =

5∑
i

∑
j

KL
(
ρ||ρ̄(i)j

)
(11)

=

5∑
i

∑
j

ρ log
ρ

ρ̄
(i)
j

+ (1− ρ) log
1− ρ

1− ρ̄(i)j

A class-specific model θ(c) is achieved by training the reg-
ularized ADNT over all images of the set Xc,

θ(c) = min
θADNT

Jreg

(
θADNT;x(t) ∈ Xc

)
(12)

A class-specific model θ(c) is therefore made to learn the
underlying structure of the manifold on which face images
of that class lie. Since the activation functions used are
non-linear and a number of layers are stacked together, the
AE structure is capable of learning very complex non-linear
manifold structures.

Classification: Given a test image set Xtest ={
x(1),x(2), · · ·x(Ntest)

}
, we separately reconstruct (using

Eqs. 1 & 2) each of its image x(t) ∈ Xtest from all class
specific models θ(c), c = 1 · · · k. If x̃(t)(c) is the recon-
struction of the image x(t) from model θ(c) (the model fine-
tuned with images of Xc), then the reconstruction error is
given by,

r(t)(c) =
∥∥∥x(t) − x̃(t)(c)

∥∥∥
2

(13)

After computing the reconstruction errors for all k models,
the decision about the class y(t) of the image x(t) is made
based upon the criteria of minimum reconstruction error,

y(t) = arg min
c
r(t)(c) (14)

Here the idea is that the unseen image x(t) will be re-
constructed with the least error only from the model trained
from images with the same label. Following this procedure,
the class labels of all Ntest images of the test set are com-
puted. The label ytest of the test image set Xtest is then
defined as the most recurring label amongst all images of
Xtest. This is given by,

ytest = arg max
c

∑
t δc(y

(t)) ,where

δc(y
(t)) =

{
1, y(t) = c

0, otherwise

(15)

Algorithm 1 Proposed Image Set Classification Method
Input: Training data:

k Image Sets {Xc}1×k s.t. Xc =
{
x(t)

}
1×Nc

labels: yc ∈ [1, 2, · · · k]
Testing Data:

Image Set Xtest =
{
x(t)

}
1×Ntest

Output: Label ytest of Xtest

Training
Define ADNT structure
Unsupervised data: Xu ← ∪

{
∀x(t) ∈ Xc; ∀c ∈ [1, 2, · · · k]

}
Train GRBMs using Xu to initialize θADNT = {θW, θb}
for c = 1 · · · k do
θ(c)← min

θADNT
Jreg

(
θADNT;x

(t) ∈ Xc
)

end for
Testing
for each image x(t) ∈ Xtest do

for θ(c) = θ(1) · · · θ(k) do
h(t) ← s(W

(3)
e s(W

(2)
e s(W

(1)
e x(t)+b

(1)
e )+b

(2)
e )+b

(3)
e )

x̃(t)(c)← s(W
(3)
d s(W

(2)
d s(W

(1)
d h(t) + b

(1)
d ) + b

(2)
d ) + b

(3)
d )

r(t)(c)←
∥∥x(t) − x̃(t)(c)

∥∥
2

end for
Assign label to image x(t): y(t) ← argmin

c
r(t)(c)

end for
Label of Xtest: ytest ← argmax

c

∑
t δc(y

(t)). See Eq. 15

4. Experiments
The performance of our proposed method is evaluated

on four data sets for the task of image set classification
for face recognition. These datasets include three gray
scale face video datasets: Honda/UCSD dataset [18], CMU
Mobo dataset [6], YouTube Celebrities dataset [16]; and an
RGB-D Kinect dataset obtained by combining three Kinect
datasets. The detailed description of each of these datasets
and their performance evaluation using our method and
state-of-the-art methods is presented in Sec 4.2. Here, we
first describe the pre-processing steps and the common ex-
perimental configurations followed for all datasets.



4.1. Experimental Settings

The face from each frame in the videos of Honda/UCSD
and Mobo datasets is automatically detected using Viola
and Jones face detection algorithm [24]. It was observed
that face detection by [24] failed in a significant number of
frames in the case of YouTube Celebrities dataset due to its
poor image resolution and large head rotations. We used
[21] to track the face region across every video sequence
given the location of the face window in the first frame (pro-
vided with the dataset). In the case of Kinect face datasets,
the random regression forrest based classifier proposed in
[5] is used to automatically detect faces from depth images.
As depth data is pre-aligned with RGB, the same location
of the detected face in the depth image is used for the cor-
responding RGB image. After a successful detection, the
face region is cropped and all colored images are converted
to gray scale levels. The cropped gray scale images are then
resized to 20× 20, 40× 40 and 30× 30 for Honda/UCSD,
Mobo and YouTube celebrities datasets respectively. The
depth and the gray scale images of the Kinect datasets are
resized to 20 × 20. Histogram equalization is applied on
all images to minimize illumination variations. No other
pre-processing such as background removal or alignment is
applied. Each cropped and histogram equalized face image
is then divided into 4 × 4 (5 × 5 in case of CMU Mobo
dataset, as in [14, 4]) distinct non-overlapping uniformly
spaced rectangular blocks and R59 histograms of LBPu28,1

[20] are computed for every block. Histograms from all
blocks are concatenated into a single vector which is used
as a face feature vector in all of our experiments. In case
of the Kinect dataset, the LBP feature vectors for gray scale
and depth images are concatenated and the resulting feature
vector is used.

Compared Methods We compare our proposed method
with a number of recently proposed state of the art im-
age set classification methods. These include Discrimi-
nant Canonical Correlation Analysis (DCC) [17], Manifold-
to-Manifold Distance (MMD) [27], Manifold Discriminant
Analysis (MDA) [25], the Linear version of the Affine Hull-
based Image Set Distance (AHISD) [4], the Convex Hull-
based Image Set Distance (CHISD) [4], Sparse Approxi-
mated Nearest Points (SANP) [14], Covariance Discrimi-
nant Learning (CDL) [26] and Set to Set Distance Metric
Learning (SSDML) [29]. The implementations provided by
the respective authors are used for all methods except CDL
which was carefully implemented by us. The parameters
for all methods are optimized for best performance. Specif-
ically, for DCC, we set the dimensions of the embedding
space to 100. The number of retained dimensions for a sub-
space are set to 10 (90% energy is preserved) and the cor-
responding 10 maximum canonical correlations are used to

compute set-set similarity. The parameters for MMD and
MDA are adopted from [27] and [25] respectively. No pa-
rameter settings are required for AHISD. For CHISD, the
same error penalty term (C = 100) as in [4] is adopted.
For SANP, same weight parameters as in [14] are adopted
for convex optimization. No parameter settings are required
for CDL and SSDML.

4.2. Results and Analysis

Honda/UCSD Dataset: The Honda/UCSD dataset [18]
contains 59 video sequences of 20 different subjects. The
number of frames for each video sequence varies from 12
to 645. For our experiments, we consider each video as an
image set. Similar to [18, 14, 27, 25], we use 20 video se-
quences for training and the remaining 39 for testing. In
order to achieve consistency in the results, we repeat our
experiments ten times with different random selections of
the training and testing sets.

The achieved performance in terms of average identifi-
cation rates and standard deviations of our method and the
compared methods is presented in Table 1. The results show
that the proposed method achieves perfect classification on
the Honda/UCSD data set.

CMU Mobo Dataset: The Mobo (Motion of Body)
dataset [6] was originally created for human body pose
identification. The dataset contains a total of 96 sequences
of 24 subjects walking on a treadmill. Similar to [14, 27, 4],
we randomly select one sequence of a subject for training
and the remaining three sequences are used for testing. We
repeat our experiments 10 times for different random selec-
tions of the training and the testing sets. The average identi-
fication rates of our proposed method along with a compar-
ison with other methods is provided in Table 1. The results
suggest that the proposed method achieves a very high per-
formance of 97.96% and outperforms the other methods.

YouTube Celebrities Dataset: YouTube Celebrities
[16] is the largest and the most challenging dataset used
for image set classification based face recognition. The
dataset contains 1910 videos of 47 celebrities collected
from YouTube. The face images of the dataset exhibit a
large diversity and variations in the form of pose, illumina-
tion and expressions. Moreover, the quality and resolution
of the images is very low due to the high compression rate.
Since the face regions in the videos are cropped by tracking
[21], the low image quality introduces many tracking errors
and the region of the cropped face is not uniform across
frames of even the same video. We directly use the face re-
gion automatically extracted from tracking and do not refine
its cropping by enforcing constraints as in [16].

For performance evaluation, we use five fold cross val-
idation experimental settings as proposed in [14, 25, 25].



Methods Honda/UCSD CMU Mobo YouTube Kinect
DCC CVPR’07 [17] 92.56± 2.25 88.89± 2.45 51.42± 4.95 92.52± 2.00
MMD CVPR’08 [27] 92.05± 2.25 92.50± 2.87 54.04± 3.69 93.90± 2.25
MDA CVPR’09 [25] 94.36± 3.38 80.97± 12.28 55.11± 4.55 93.46± 3.57
AHISD CVPR’10 [4] 91.28± 1.79 92.92± 2.12 61.49± 5.63 91.60± 2.18
CHISD CVPR’10 [4] 93.62± 1.63 96.52± 1.18 60.42± 5.95 92.73± 1.91
SANP CVPR’11 [14] 95.13± 3.07 97.64± 0.94 65.60± 5.57 93.83± 3.12
CDL CVPR’12 [26] 98.97± 1.32 90.00± 4.38 56.38± 5.31 94.59± 0.96
SSDML ICCV’13 [29] 86.41± 3.64 95.14± 2.20 66.24± 5.21 86.88± 3.39
Our Method 100.0± 0.0 97.96± 0.28 71.35± 5.10 98.12± 1.69

Table 1. Experimental Results on Honda, CMU, YouTube and Kinect datasets for different methods

The whole dataset is equally divided (with minimum over-
lap) into five folds with 9 image sets per subject in each fold.
Three of these image sets are randomly selected for training,
whereas the remaining six sets are used for testing. Table 1
summarizes the average identification rates and the standard
deviations of different methods. It can be observed that the
achieved identification rates for all methods are low for this
dataset compared with the Honda/UCSD and Mobo dataset.
This is owing to the challenging nature of the dataset. The
videos have been captured in real life scenarios and they
exhibit a wide range of appearance variations. The results
suggest that our proposed method significantly outperforms
the existing methods and achieves a relative performance
improvement of 9.0% over the second best method.

Kinect Dataset: We also evaluate the performance of our
proposed method for RGB-D based face recognition from
Kinect data. Face recognition from Kinect data is still in
its infancy and only a few work have addressed this prob-
lem [19]. The method by Li et al. [19] first pre-processes
Kinect depth images to achieve a canonical frontal view for
faces with profile and non-frontal views. The sparse rep-
resentation based classification method of [28] is used for
recognition. Once evaluated on CurtinFaces, the method
achieves a classification rate of 91.1% for RGB , 88.7%
for D and 96.7% for fusion of RGB-D data. The proposed
method is single frame based and does not make use of the
plentitude of data which can be instantly acquired from a
Kinect sensor (30 frames per second). Here we formulate
face recognition from Kinect data as an RGB-D based im-
age set classification problem. Our formulation avoids ex-
pensive pre-processing steps (such as hole filling, spike re-
moval and canonical view estimation; otherwise required
for single image based classification) and effectively makes
use of the abundant and readily available Kinect data.

The method in [19] is evaluated on CurtinFaces (a Kinect
RGB-D database of 52 subjects). For our image set clas-
sification experiments, we combine three Kinect datasets:
CurtinFaces [19], Biwi Kinect [5] and an in-house dataset
acquired at our lab. The number of subjects in each of these

Figure 3. Example images from gray scale datasets: Honda/UCSD
(top), CMU/Mobo (center) and YouTube (bottom). Each row cor-
responds to images of one identity.

Figure 4. Sample images from Kinect datasets: CurtinFaces (top),
Biwi (center) and our dataset (bottom)

datasets is 52 (5000 RGB-D images), 20 (15,000 RGB-D
images) and 48 (15000 RGB-D images) respectively. Sam-
ple RGB images from these datasets are shown in Figure 4.
Each row corresponds to images of a person taken from
CurtinFaces (top row), Biwi (middle row) and our Kinect
dataset (last row). These datasets are combined into a sin-
gle dataset of 120 subjects. The images in the joint dataset
have a large range of variations in the form of changing illu-
mination conditions, head pose rotations, expression defor-
mations, sunglass disguise, and occlusions by hand. For
performance evaluation, RGB-D images of each subject
are randomly divided into five uniform folds. Consider-
ing each fold as an image set, we select one set for train-
ing and the remaining sets for testing. All experiments are
repeated five times for different selections of training and
testing sets. The results averaged over five iterations are
summarized in Table 1. The results show that the proposed
method achieves a very high performance. The results sug-
gest that image set classification proves to be a better choice
for Kinect based face recognition. It avoids computationally
expensive pre-processing steps and the achieved identifica-
tion rates with all image set classification techniques in Ta-
ble 1 are comparable or better than the single image based
technique (96.7%) of [19].
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5. Conclusion
We proposed a novel deep learning framework for im-

age set classification. An adaptive multi-layer auto-encoder
structure has been introduced which is first pre-trained for
appropriate parameter initialization and then used for learn-
ing class specific models. A class specific model automat-
ically learns the underlying non-linear complex geometric
surface of the images of that class. These learnt models are
then used for a minimum reconstruction error based clas-
sification strategy during testing. The proposed framework
was extensively evaluated on three benchmark gray scale
datasets as well as an RGB-D Kinect dataset and state of
the art performance has been achieved.
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