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Abstract

The initial steps of many computer vision algorithms
are interest point extraction and matching. In larger im-
age sets the pairwise matching of interest point descrip-
tors between images is an important bottleneck. For each
descriptor in one image the (approximate) nearest neigh-
bor in the other one has to be found and checked against
the second-nearest neighbor to ensure the correspondence
is unambiguous. Here, we asked the question how to best
decimate the list of interest points without losing matches,
i.e. we aim to speed up matching by filtering out, in ad-
vance, those points which would not survive the matching
stage. It turns out that the best filtering criterion is not the
response of the interest point detector, which in fact is not
surprising: the goal of detection are repeatable and well-
localized points, whereas the objective of the selection are
points whose descriptors can be matched successfully. We
show that one can in fact learn to predict which descrip-
tors are matchable, and thus reduce the number of interest
points significantly without losing too many matches. We
show that this strategy, as simple as it is, greatly improves
the matching success with the same number of points per
image. Moreover, we embed the prediction in a state-of-the-
art Structure-from-Motion pipeline and demonstrate that it
also outperforms other selection methods at system level.

1. Introduction
Matching interest points between different images is a

fundamental operation of computer vision. Matches—i.e.
(putative) projections of the same 3D point—form the ba-
sis of state-of-the-art methods for image registration [12],
Structure-from-Motion (SfM) computation [15, 9], and
feature-based tracking [24], and support geometric verifi-
cation during object detection and image retrieval [26, 21].

The elementary computational building blocks to find
matching points in two images are simple: after indepen-
dently finding distinctive points in both images with an in-
terest point detector (e.g. Harris, Difference-of-Gaussians),
the detected points are encoded with descriptors based on

Figure 1: By looking at their descriptors, a classifier can
predict which points are suitable for subsequent matching
(green) and which are not (blue). Non-matchable points,
e.g. those detected on vegetation, can then be discarded
without compromising later processing steps.

their neighborhood (e.g. raw intensities, SIFT, SURF, etc.).
Then, for each point from the source image one searches
the best match among the points from the target image, i.e.
the nearest neighbor in the (usually high-dimensional) de-
scriptor space. Finally, the set of putative correspondences
thus found is verified by robustly fitting a suitable geomet-
ric transformation, usually with RANSAC-type sampling
methods, and discarding matches which do not support the
consensus transformation (“outliers”).

The strategy suffers from two main problems. On the
one hand, in practice, a large portion of the interest points
detected in the images cannot be matched reliably because
multiple candidates with comparable distances exist. One
thus only has the choice between rejecting all ambiguous
matches, or keeping all of them. The former option, cham-
pioned by Lowe [21], is more widely used: one finds not
only the best matching candidate, but also the second-best
one, and whenever the two descriptors match similarly well
(i.e. the ratio of the two distances is near 1) the candidate
is rejected. An alternative approach tries to find mutually
nearest neighbors, which doubles the computational effort,



but empirically does not greatly improve the matching.1

On the other hand, matching is computationally expen-
sive: for n interest points in each image an exact implemen-
tation needs O(n2) comparisons; and even inexact solu-
tions based on either approximate nearest neighbor (ANN)
search in space-partitioning trees [3] or on locality-sensitive
hashing techniques [11] always have superlinear complex-
ity. In large-scale applications such as unordered SfM or
retrieval, one is thus left with two complementary options:
either reduce the number m of images that are pairwise
matched [1, 16, 10], at the cost of completely losing some
matchable image pairs; or reduce the number n of interest
points to be matched per image, at the cost of losing some
correct matches.

In the present work we address the second option. The
question we ask is can we predict which descriptors are
matchable already before the matching stage, thereby re-
ducing the number of interest points without hurting the
later processing stages?

The starting point is the observation that at the stage of
interest point detection one aims for points that are well lo-
calized and repeatable, but interest point detection does not
explicitly search for points that can later be matched suc-
cessfully. In fact, it is known from experience that certain
strong interest points (e.g. those on vegetation, or on the
road surface) are rarely matched successfully, see Fig. 1.

We thus propose to learn a classifier that predicts which
descriptors will have a high chance of finding a match, and
reduce the number of points in such a way that mainly
useless points are discarded, and the success rate of the
matching is improved. Note that the computational cost of
the proposed prediction is linear in the number of interest
points, and negligible compared to the actual construction
of the descriptor vectors, and hence can significantly cut
down computation time.

We will show that this simple strategy works surprisingly
well and substantially speeds up the matching step, which is
the main bottleneck in applications where many image pairs
need to be matched, without sacrificing accuracy.

2. Related Work
Interest point detection has been a classic problem of

computer vision for many years, see [30] for an overview.
The most successful and most widespread methods are
based on first [14] or second [5] derivatives of the image
brightness, respectively fast approximations of the second
derivative with the Difference-of-Gaussians method [21] or
even with box filters [4]. Recently there have also been at-
tempts to speed up interest point detection with machine

1Alternatively, one could accept all point pairs with sufficiently high
similarity as candidate matches for further processing. Since at most one
of them can be correct this greatly increases the proportion of outliers,
hence it is rarely done.

learning methods, by learning computationally very cheap
detectors based on direct grayvalue comparisons [23]. Our
work is fundamentally different in that we aim to speed up
matching rather than detection with the help of statistical
learning. Importantly, the design of interest point detectors
aims for points which are repeatable (i.e. the same point is
found independently in different views of the same scene)
and which can be accurately localized. These criteria by
themselves do however not guarantee that a point’s neigh-
borhood is also suitable for matching, i.e. from a learning
perspective they do not maximize the real objective.

To find matches between interest points from different
images, the points are encoded with invariant descriptors.
The state-of-the-art are descriptors based on the local gra-
dient distribution, most notably SIFT [21] and SURF [4].
It has been proposed to use more compact descriptors [18],
and to make descriptors binary, such that their comparison
is computationally efficient [8]. Although such methods
can significantly speed up individual comparisons, match-
ing large sets of points is still computationally demanding.
Naive comparison between two sets of n interest points
would have complexity O(n2). A standard solution is to
use approximate nearest neighbor (ANN) search [3]. To
that end the descriptors from one image are organized in a
KD-tree (or a similar space-partitioning tree), and the tree is
queried with the descriptors of the other image. Since exact
NN through space partitioning loses its efficiency in high
dimensions, only an approximate search is used in practice:
rather than finding a strict nearest (and if needed second-
nearest) neighbor, the search is stopped after visiting a fixed
number t of points. ANN can be further improved by ran-
domizing the splits to some degree and constructing mul-
tiple KD-trees in the spirit of random forests, which can
then be queried in parallel [25]. By stopping after a fixed
number of tree look-ups, ANN reduces the complexity to
O(n log n) per image pair (plus O(n log n) per image to
build the trees).

Still, even with ANN it is infeasible to match all
1
2m(m − 1) possible image pairs in an unordered image
set, thus researchers have proposed different ways to bring
down the number of image pairs. Instead of exhaustive pair-
wise matching [1] focuses on a small number (≈10) of most
promising candidates, found via shared occurrence of visual
words [26]. The method [16] builds on the same princi-
ples to achieve efficient reconstruction from unordered im-
age sets by favoring promising candidates in the SfM pro-
cess. Another possibility is to exploit the redundancy in the
image set and reduce the number of images to a represen-
tative subset. In [20, 10] input images are clustered using
the GIST [22] descriptor, and only one representative per
cluster is passed on to the matching procedure. Alterna-
tively, the reduction to a representative subset can also be
formulated as a search for a connected dominating set [13]



of an image graph with edges weighted according to the co-
occurring visual words [17].

To summarize, fast nearest neighbor search reduces the
complexity of matching a fixed number n of points, whereas
pre-selection of promising image pairs reduces the number
m of images that need to be matched. Complementary to
both strategies, our work aims to reduce the number of fea-
tures n per image that need to be considered, without de-
grading the reliability of the matching.

A problem related to the one in this paper is treated
in [19] where also image points are removed. In principle
these should be points whose correspondence is ambiguous,
and thus the ones we also aim to remove from the match-
ing process. In [19] every image is matched to a certain
number of other images from the same dataset which are
sufficiently far away. Note that it is assumed that images
are already geolocated, so that the distances are known. A
confusion score is computed for the matches in a sliding
window fashion, and image regions containing confusing
features are masked out. There are several conceptual dif-
ferences to our approach. First, our ground truth labeling is
based on matching performance only and no geolocation or
other metadata are needed; second, we do not look for con-
fusing regions, but assess interest points individually; and
third, our training is a one-off, off-line procedure on a large
enough set of diverse image pairs. Note also that in [19]
the confusion score is computed after matching and thus
does not improve the computational efficiency, whereas we
compute it for single images and remove ambiguous points
before matching.

[29] propose to pre-select “useful” features, i.e. those
which are likely to be found in more than one image of the
same object or location. Contrary to our approach, the se-
lection is dependent on the given images and is not trans-
ferable to unrelated image sets. We rely on statistics ob-
tainable from arbitrary, unrelated images. In [7] an adaptive
non-maxima suppression is presented, which allows one to
select a fixed number of interest points with a good spatial
distribution in the image. This goal is orthogonal to our
goal of ensuring that the points can afterwards be matched.
The two methods could even be combined, since also well-
distributed features only help if correspondence can be es-
tablished between them.

3. Matchable Points in Structure-from-Motion
Our application scenario is Structure-from-Motion com-

putation from unordered image sets. While the proposed
framework is generic and could be adapted to other com-
puter vision tasks, SfM is maybe the most obvious exam-
ple. In classical unordered SfM, as represented e.g. by
Bundler [28], pairwise image matching dominates the com-
putation time and is the major bottleneck, since the number
of image pairs to be matched grows quadratically with the
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Figure 2: Matching two point sets. In the standard setting a
large number of matching candidates are found, only to be
decimated by (distance, ratio) thresholds (left). Predicting
who will pass the thresholds shortens the candidate list with
little impact on the number of matches (middle). A stricter
point detector also shortens the list, but a high detector re-
sponse does not guarantee good matchability (right).

input image set.2

In the following we describe the standard matching
method on which we build, explain the details of our match-
ability prediction, and discuss other potential ways to re-
duce the number of interest points to be matched. As will
be shown in the experimental evaluation, Sec. 4, the selec-
tion based on classification yields a drastic reduction in the
number of features, with minimal impact on the following
SfM computation. On the contrary, pruning to equally small
numbers of interest points randomly or based on the point
detector destabilizes SfM computation.

3.1. Structure-from-Motion Method

We build on a standard SfM pipeline. Feature points are
detected with the Difference-of-Gaussians (DoG) method
and represented with SIFT descriptors. In our implementa-
tion we use the open-source VLFeat library [31] for these
steps. Interest point matching uses approximate nearest
neighbor search with seven randomized KD-trees per im-
age and best-bin-first search limited to a total of 128 com-
parisons per query. Matches are accepted if the distance be-
tween the descriptors is dNN <

√
30, 000 (for descriptors

stored in byte values), and if the distance ratio between
the best and second-best descriptor is dNN

dNN2
< 0.8. Match-

ing is also implemented with VLFeat. We point out that in
particular the ratio test eliminates a major part of all nearest
neighbors, hence the time to find those neighbors in the first
place is wasted. Our aim is to filter out interest points which
are likely to be weeded out during matching.

For SfM computation the accepted matches are fed into
Bundler [28]. Following the default settings only image
pairs with ≥16 matches are considered for 3D modeling.

2Strategies which reduce the number of image pairs to be matched by
pair selection [1] or image clustering [10] are complementary. Moreover,
even with such methods matching is the most expensive part of SfM.



3.2. Predicting Matchable Features

As explained in the previous paragraphs, although many
detected interest points do not appear in the list of matches
and consequently do not contribute to the further process-
ing, still a lot of time is spent on trying to match them. To
mitigate this wastage and improve efficiency, we propose to
predict the matchability of the interest points before passing
them to the matching stage, see Fig. 2. The prediction only
has to be done once for each point and is thus linearO(mn)
in the number of interest points, respectively the number of
images. Moreover, the computation of the descriptors is lin-
ear, too, hence the prediction comes at almost no extra cost,
only increasing the computation time by a factor (1 + q)
with q � 1. See Sec. 4 for timings.

For simplicity we will in the remainder of the paper
refer to a hard classification into “matchable” and “non-
matchable” points. In principle one could go further and
design a probabilistic matching procedure that exploits the
soft classifier score. Still, discarding non-matchable fea-
tures with a hard threshold is in our view the most effective
strategy, due to the reduced memory requirements. Note, if
the classification is correct—i.e. the discarded point would
not have survived the matching thresholds anyway—then
no loss of accuracy or reliability is associated with the filter.

For our purposes, a classifier is needed that is on one
hand discriminative (since the distributions of matchable /
non-matchable descriptors are expected to be rather com-
plex and thus not amenable to generative modeling), and on
the other hand fast at test time (since the time spent on clas-
sifying points reduces the gain of the method). We use a
random forest [2, 6]. The forest is trained off-line (in 450 s
for our training set), with no influence on the matching time.

As training data we collect 64 short image sequences
with a total of 455 images, acquired at different loca-
tions under varying lighting conditions. The images were
recorded with a fish-eye lens. A large aperture angle re-
duces the number of points that would be suitable for
matching in terms of their appearance, but are lost because
they lie outside the field-of-view in one of the two images.

To generate training matches, each image is matched to
13 preceding and 13 subsequent images (in the order they
were recorded) through ANN search and application of the
distance and ratio thresholds. Pairs with <50 matches are
discarded to prevent situations with overly low field-of-view
overlap. All points that appear in at least one match form
the positive class, while all others (which were always dis-
carded) form the negative class. From each of the two
classes 485,000 random descriptors are selected and used to
train a random forest with 25 decision trees, using the Gini
impurity as the splitting criterion. Tree depth is limited to
25 to prevent possible over-training.

At test time the descriptors of all interest points are fed
into the random forest to classify them as matchable (i.e.

keep the point and pass it on to matching) or non-matchable
(i.e. discard the point). The classification needs to be done
only once per image, as it is independent of other images. 3

One could think of going even further and training with
only inliers after geometric verification (RANSAC fitting
of an essential matrix) in the positive class, i.e. to learn
which interest points are correctly matchable. In prelimi-
nary experiments we did not observe an improvement with
that strategy. A further investigation is left for future work.

3.3. Baseline Methods

Varying the DoG Threshold. A straightforward way to
reduce the number of features per image is to raise the
threshold for the DoG response, such that fewer interest
points are created. In our baseline method we use the stan-
dard threshold of 0.001, which generates on the order of
a few thousand DoG points per image (excluding edge re-
sponses which are removed in the process). Obviously, one
can simply use a stricter threshold to get fewer points and
speed up matching. However, high scores do not necessarily
correlate well with matchability—e.g. vegetation generates
a lot of strong interest points, especially under strong sun-
light, most of which cannot be matched. To evaluate this
method we chose the DoG threshold such that the number
of interest points is approximately the same as the number
of points that survive matchability prediction. In the exper-
iments we will show that this leads to less useful interest
points, fewer matches, and less reliable SfM results.

Random Selection of Detected Features. One may go
even further and ask whether the set of interest points with
the standard settings is just unnecessarily big. As a naive
baseline to test that case we bypass our matchability clas-
sifier and simply select the same number of features ran-
domly. This baseline serves as a sanity check which any
reasonable prediction should beat.

4. Experiments and Results
4.1. Datasets

The first dataset URBAN is a sequence of 1,000 frames
recorded at 4 fps, corresponding to a 4-minute walk through
a mixed urban/natural environment. The same fish-eye
camera was used with which we also captured the training
data (in a different recording session). The circular field-of-
view covers 185◦ and has a diameter of 1,320 pixels. For the
sequence, ground truth 6D trajectory data is available. The
ground truth was generated by fusing navigation-grade IMU
and GPS measurements, delivering post-processed position
and orientation data with an accuracy of ±5 cm, respec-
tively±0.25◦. The camera was rigidly mounted on the nav-

3Project page with classifier code is available at: http://www.igp.
ethz.ch/photogrammetry/research/pm.

http://www.igp.ethz.ch/photogrammetry/research/pm
http://www.igp.ethz.ch/photogrammetry/research/pm
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ALL MATCHABLE HIGH DOG RANDOM

Figure 3: Sample images from sequences URBAN (top), PARK (middle), and NOTREDAME (bottom). Interest points of
the reduced point sets are denoted by color dots.

igation system. The offset between IMU center and camera
center had to be estimated to convert the navigation data to
ground truth camera poses.

The second dataset PARK consists of 121 images with
6 Mpix resolution, acquired in an urban park with a stan-
dard perspective DSLR camera. No ground truth camera
poses are available for this dataset. The publicly available
NOTREDAME dataset [27], which consists of 715 images
downloaded from Flickr [32], was used for evaluation too.
The images have different resolutions and were taken in var-
ious lighting conditions and different seasons. Note that for
these additional datasets the same classifier as for URBAN
was used, i.e. we did not retrain for the different camera
and/or dataset type.

4.2. Qualitative Results

In Fig. 3 we visually compare the different methods for
decimating the feature point sets before matching and SfM
computation. Noticeable differences between the meth-
ods can be observed on URBAN. In (Fig. 3b) features are
deemed non-matchable on the street surface, but not along
the stone curb. Many features on the roof structure are
classified as matchable, whereas few on the vegetation are.
With a higher detector threshold (Fig. 3c), almost no points
in the foreground are retained. Instead, the points are con-
centrated in high-contrast regions along the border of the
sky region. While they do cover the roof on the left reason-

ably well, very few points remain on the road, whereas a
part of the tree on the right is covered where the gradients
are high (but potentially too unstructured for matching).
Note also that with the HIGH DOG method the point distri-
bution in the image is largely governed by large-scale con-
trast differences and hence less favorable for SfM computa-
tion. The RANDOM features are the other extreme (Fig. 3d).
Their distribution across the image is even, irrespective of
whether the local appearance gives rise to unique descrip-
tors. Consequently, a lower fraction of the points will sur-
vive matching, such that one ends up with fewer correspon-
dences, distributed similarly to the MATCHABLE ones.

Similar results can be observed for PARK. Non-
matchable points are concentrated on regular textures
such as vegetation (which is known to create few useful
matches), whereas regions with more structured, and thus
less confusing, gradients, e.g. man-made objects, are largely
preserved (Fig. 3f). We also point out that interest points
like those on the pavilion are particularly important for SfM
computation, because they are stable when seen from differ-
ent viewpoints. Again, the HIGH DOG method exhibits the
most uneven concentration of features in few high-contrast
areas, and quite some points on bushes, which are unlikely
to generate a valid match (Fig. 3g). The RANDOM points are
of course again distributed evenly, but such that few points
remain on favourable structures like the pavilion, and many
points will be lost altogether during matching (Fig. 3h).



(a) high response, non-matchable (b) low response, matchable

Figure 4: Detector response vs. matchability. Not all high-
contrast points have unambiguous descriptors (a), whereas
some low-contrast points do (b).

In the night scene of NOTREDAME the methods per-
form similarly again. The features classified matchable are
distributed on all the structure in the image (Fig. 3j) whereas
for the higher DoG threshold (Fig. 3k) there are many more
features on the water surface and only in a small area of the
interesting building and bridge structure. Random selection
gives again an even distribution of features and has more
features on the sky than the other two strategies (Fig. 3l).

The qualitative experiment shows that using the right
objective function for interest point selection does make a
difference—MATCHABLE points are significantly different
from points with HIGH DOG score. Reasonably high DoG
responses guarantee sufficient contrast, and thus good lo-
calization and repeatability, but very high DoG responses
merely restrict the points to high-contrast regions. But since
invariant descriptors normalize for contrast, the structure of
the local gradients is more important than their magnitude.
To further illustrate this point we look at exemplary SIFT
descriptors. Fig. 4a shows a feature on vegetation which
has a very high DoG response, but cannot be matched. Con-
versely, in Fig. 4b is a descriptor on a pillar which is match-
able, but will not be found with a stricter DoG threshold.

4.3. Quantitative Results

We go on to quantitatively compare the matching results
of different methods. Starting from all points, we find the
ones that classify as matchable, then also pick a similarly
sized set by increasing the higher DoG threshold, and pick a
set of the same size randomly. Next, we exhaustively match
all image pairs in each dataset, using all points found with
the standard DoG setting of 0.001 (independent of the clas-
sifier prediction) so as to obtain a baseline of what is possi-
ble if computation time is not a concern. The set of nearest-
neighbor assignments is then separated into four parts: (i)
TP – those which could be successfully matched and where
both the point from the source and the target image are in
the reduced point sets from the MATCHABLE, HIGH DOG, or
RANDOM methods, respectively, meaning that keeping the
points was correct; (ii) TN – those rejected by the match-
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Figure 5: (a-c) ROC curves of the three evaluated meth-
ods. (d) Confusion bars for the three datasets. MATCHABLE
(green), HIGH DOG (blue), and RANDOM (red).

ing criteria where at least one point was not in the reduced
set, meaning the rejection was correct; (iii) FP – those re-
jected although both points were in the reduced lists, mean-
ing that keeping them was incorrect; and (iv) FN – those
which could be matched although at least one of the points
was not in the reduced set, meaning that the rejection was
false. We point out that this procedure is biased against the
selection methods: typically the number of matches would
be larger, because a smaller number of image points brings
a higher chance to survive the ratio test. However, it would
also mean that the results after pruning the point sets would
no longer be subsets of the ones without pruning. In the
system-level SfM experiments (Sec. 4.4) the correct proce-
dure was used, where only the reduced point sets are fed
into the matcher.

Fig. 5 shows the statistics for 499,500 image pairs from
URBAN, 7,260 image pairs from PARK, and 255,255 im-
age pairs from NOTREDAME. Especially for very wide-
baseline pairs the vast majority of nearest neighbors do not
pass the ratio and distance tests. For that portion the per-
formance of all three methods is similar. More than 80% of
the matches which would be rejected by the ratio and dis-
tance tests anyway are pruned due to the point set reduction.
For those points which did survive the classification, higher
threshold, or random selection, respectively, the results do
show clear differences: About 60% of the matches accepted
by the ratio and distance tests have both endpoints classified
as matchable and therefore survive the reduction. The other
40% of the accepted matches are (unnecessarily) pruned—
and thus lost to the subsequent SfM computation—but we
show that this loss is still tolerable and does not impair SfM
computation (Sec. 4.4).



URBAN ALL MATCHABLE HIGH DOG

# image pairs 499,500
DoG+SIFT 1,530 s 1,530 s 990 s
build KD-trees 140 s 35 s 35 s
query KD-trees 65,240 s 18,230 s 18,230 s
classification — 80 s —
total 66,910 s 19,875 s 19,255 s

PARK ALL MATCHABLE HIGH DOG

# image pairs 7,260
DoG+SIFT 780 s 780 s 345 s
build KD-trees 215 s 35 s 35 s
query KD-trees 11,895 s 1,960 s 1,960 s
classification — 70 s —
total 12,890 s 2,845 s 2,340 s

NOTREDAME ALL MATCHABLE HIGH DOG

# image pairs 255,255
DoG+SIFT 2,820 s 2,820 s 1,740 s
build KD-trees 600 s 205 s 205 s
query KD-trees 180,755 s 74,680 s 74,680 s
classification — 205 s —
total 184,175 s 77,910 s 76,625 s

Table 1: Matching times for the three datasets.
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Figure 6: Accuracies of camera poses for URBAN, see
Fig. 5 for the color legend. Note that high position accuracy
of RANDOM is due to the small number of camera centers.

After random selection <10% of the possible matches
remain, which is natural because the reduction is indepen-
dently done for each image, such that most points end up
without a correct matching partner. The higher DoG thresh-
old performs only slightly worse than matchability predic-
tion for the URBAN dataset, which is dominated by build-
ing facades. On the other hand the higher threshold has a se-
rious impact on the PARK sequence, where there are larger
vegetation regions. The matchability classifier rejected on
average a larger portion of features for PARK than for the
other datasets, so to keep the sizes of reduced feature sets
comparable the higher DoG threshold setting was 0.01 for
URBAN, 0.03 for PARK, and 0.014 for NOTREDAME.
Feature repeatability greatly suffers on PARK from such
overly strict DoG threshold.

Next, we quantify the speed-up achieved through the
matchability prediction. Timings (C++ code on a multi-

(a) MATCHABLE (b) HIGH DOG

Figure 7: 3D point clouds of dataset PARK triangulated
from two of the examined selection methods. Notice dif-
ferent point densities on the vegetation and the pavilion.

core desktop) are given in Tab. 1. Obviously the portion
of matchable features, and hence the gain, depends on the
scene. For URBAN matching is faster by a factor of 3, while
for PARK the factor is >4. Due to the smaller number of
descriptor computations and the missing classification step
the HIGH DOG baseline is slightly faster than MATCHABLE.

4.4. Accuracy of Estimated Camera Poses

Six sets of SIFT feature points—all detected feature
points, feature points classified matchable, feature points
for the higher DoG threshold, and three random selections
from all feature points—were used in the SfM experiment
for dataset URBAN.

In each of the six independent experiments, the corre-
sponding feature point sets of all image pairs were matched
using the standard thresholds of

√
30, 000 for distance and

0.8 for the ratio test. The point coordinates were trans-
formed to virtual perspective views (horizontal field-of-
view 90◦, aspect ratio 4:3) using the known calibration,
because Bundler cannot handle fish-eye lenses. SfM com-
putation was then run with radial distortion estimation dis-
abled and fixed internal camera parameters. The resulting
six 3D models and corresponding camera poses were ex-
amined and only the best-performing of the three random
selections was kept for further evaluation.

The camera trajectories of the four remaining reconstruc-
tions were aligned with the ground truth trajectory from
GPS/IMU by fitting a 3D similarity transform to the cam-
era centers. For the HIGH DOG method, pose estimation
failed towards the end of the trajectory, so only the first
935 camera centers were used for alignment. Also, only 132
out of 1,000 images were connected into one model for the
best random selection. The trajectory computed from the
MATCHABLE points fits nicely to the one estimated from all
detected feature points (which actually has a small error in
one of the camera turns, too).



The accuracy of the different trajectories can be seen in
Fig. 6. Note that the error when using only the matchable
points is as low as when using all points.

The same experiment was run with dataset PARK, us-
ing the original perspective images and the default setting
of Bundler, with radial distortion estimation enabled. As
no ground truth is available, we compare the reconstructed
point clouds. The obtained 3D models are quite differ-
ent, see Fig. 7. The majority of triangulated 3D points for
the higher DoG threshold correspond to unstable vegeta-
tion whereas there are many more 3D points on the pavilion
and staircase in the model from the feature points classified
matchable.

5. Conclusions
We have explored whether one can predict from an in-

terest point’s descriptor alone whether that point will be
matchable, before feeding it to the actual matching proce-
dure. By learning a binary classifier for that task we were
able to reduce the set of image points to ≈ 30% of its orig-
inal size, but retain ≈ 60% of the matches accepted by
the ratio and distance tests. We have shown that by only
keeping points with a high probability of generating a valid
match it is possible to greatly speed up SfM computation
with a minimal loss of robustness and accuracy. In our
experiments the descriptor-based prediction clearly outper-
forms a baseline that uses a stricter detection threshold in
terms of correct camera pose estimation.

The idea is orthogonal to methods which speed up
matching by selecting promising image pairs. It will be
interesting to see whether synergies exist between the two
strategies, e.g. it may be possible to exploit the matchability
predictions for different images to select good pairs.
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