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Abstract

There has been a lot of work on face modeling, analysis,
and landmark detection, with Active Appearance Models be-
ing one of the most successful techniques. A major drawback
of these models is the large number of detailed annotated
training examples needed for learning. Therefore, we present
a transfer learning method that is able to learn from related
training data using an instance-weighted transfer technique.
Our method is derived using a generalization of importance
sampling and in contrast to previous work we explicitly try to
tackle the transfer already during learning instead of adapt-
ing the fitting process. In our studied application of face
landmark detection, we efficiently transfer facial expressions
from other human individuals and are thus able to learn
a precise face Active Appearance Model only from neutral
faces of a single individual. Our approach is evaluated on
two common face datasets and outperforms previous transfer
methods.

1. Introduction and Motivation

Since their first introduction in [3, 9, 4], Active Appear-
ance Models (AAMs) and related concepts of deformable
models (e.g., [10]) have become a vital part of the computer
vision community. In general, AAMs are statistical gen-
erative models that describe deformable objects in images
using a shape component and a shape-free texture compo-
nent. Given a set of training images with annotated landmark
positions, an AAM can easily be constructed, where, at its
heart, principal component analysis (PCA) is used to param-
eterize shape and texture. A trained model can be fitted to
new images efficiently and accurately, revealing landmark
positions, model instance parameters, et cetera. AAMs have
successfully been applied to a wide variety of scenarios, for
instance medical imaging (e.g., [15]). However, by far the
most prominent application area of AAMs is face modeling
and analysis, where it is used for tracking (e.g., [34]), face
recognition (e.g., [9]), emotion classification (e.g., [19, 21]),
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Figure 1. Overview of the proposed method and its application to
face landmark detection. (Images: c© Jeffrey Cohn, CK+ dataset)

and many other tasks.
One of the main disadvantages, as for instance stated in

[12, 5, 25, 27, 20, 30], is their weak generalization ability
when learned with only a few training examples that do
not cover the complete range of possible variations in the
data. For the face scenario, this includes cases of unseen
pose, expression, illumination, or identity, and thus has a
major impact on practical applications. As a result, numer-
ous extensions of standard AAMs have been proposed to
improve the fitting quality under such conditions. The ma-
jority of such AAM extensions can loosely be categorized
based on how they tackle the problem, with the most com-
mon strategies being: (1) improvement of the actual fitting
procedure by changing the factors involved in the optimiza-
tion (e.g., [22, 12, 13, 5]); and (2) usage of more robust
feature representations, e.g. to obtain invariance with respect
to illumination [23], occlusions [30], or non-linear shape
deformations [14].
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It is important to note that in either of the two cases, the
improved generalization ability is gained by improving the
way the model’s existing knowledge is used, and no knowl-
edge about unseen cases and variations is added to the model
itself. In this paper, we present an entirely contrary approach
towards an improved AAM generalization ability: we ex-
plicitly increase the expressiveness of an AAM by adding
new knowledge obtained from related but different train-
ing data. Considering the example of illumination changes
in face images, this means that existing approaches aim to
use illumination-invariant features of robust fitting metrics,
while our approach is to add knowledge about unseen illumi-
nation conditions to an existing AAM. In machine learning,
and specifically in classification, regression, and clustering
tasks, such a strategy can be established by transfer learning
[24], an area which has gained a lot of attention in recent
years. For AAMs, however, the advances in this field have
been largely ignored so far.

Similar to existing transfer learning scenarios, we assume
that we have a specific target AAM with low expressive-
ness and thus weak generalization ability (e.g. only one
illumination condition, no facial expressions, etc.), and a
generic source AAM with high expressiveness. As described
in [12], the high expressiveness of the source model leads
to a reduced fitting robustness. By transferring knowledge
from associated source data to the target AAM, we wish to
keep the advantages of both models and improve the fitting
performance on target-specific data. Of course, we could
simply train a new model on the union of source and target
AAM training samples (to which we refer to as “source ∪
target” in the following referring to one of the main baselines
for transfer learning [6]). However, this would completely
ignore the difference between the underlying source and
target distributions. On the contrary, our approach is based
on a probabilistic formulation of the AAM transfer prob-
lem, which allows us to define and derive a direct solution
incorporating the difference in the data distributions. As
will be shown in the experiments, this approach is generally
more favorable than the trivial solution “source ∪ target.” In
Fig. 1, the key intention of our approach is visualized for the
example of face AAMs.

After discussing related work in the following section,
we briefly present relevant parts of AAMs in Sect. 3. In
Sect. 4, we introduce our probabilistic approach for AAM
transfer, and additionally describe two heuristic baseline
AAM transfer methods. Experiments and evaluations of the
respective approaches are given in Sect. 5. Sect. 6 concludes
this paper and points out possible future work.

2. Related Work
There is a huge body of literature on transfer learning

techniques and we limit the following literature review only
to specific papers either related to our instance transfer tech-

nique or used in the context of Active Appearance Models.
Very broadly speaking, transfer learning is all about ex-

ploiting data coming from different distributions during
learning. In our case, training data from two distributions
is given: source and target examples. Following the sur-
vey of Pan and Yang [24], transfer learning methods can
be categorized into instance transfer, feature transfer, pa-
rameter transfer, and relational transfer. As will be shown
in Sect. 4, the instance transfer approach is of particular
relevance for our AAM scenario. In [16] and [17], for exam-
ple, a technique is studied based on a probabilistic problem
formulation and importance sampling for correcting sample
selection bias. The authors of [11] show how to construct
easier tasks by finding source examples similar to target ex-
amples and adding them to the target training set. After that
a feature transfer technique is utilized to learn a kernel for
the target task. In contrast, we propose a generalization of
the instance weighting technique of [16], where we allow
each source example to adaptively influence the transfer de-
pending on their distance to the target example. This avoids
hard decisions on the similarity as done in [11].

All of the previous methods have been studied only for
the case of classification and regression. In our case, we are
confronted with a structured prediction problem, because the
landmark positions we would like to estimate have a complex
dependency structure that needs to be tackled. Transfer
learning for structured prediction problems has not been
studied before [8] to the best of our knowledge with [31]
being a rare exception that solely focuses on applications
in computational biology [32]. However, several previous
methods can be extended to structured learning, with the
approach proposed in this paper being one example how to
accomplish this.

For transfer learning from an AAM-specific point of view,
a related application is the transfer of expressions between
two face model instances. In [28], this problem is solved by
finding a linear transformation between source and model
parameter space. For models which do not share similar
variation components, this may lead to under-articulated
expressions in the target space. This problem is tackled in
[7] by including a full variation transfer from source to target
into the solution.

Approaches which increase the expressiveness of an
AAM are very rare. One example is the Online Appear-
ance Model [27], where the texture component is constantly
being updated via incremental PCA during model fitting to
account for illumination changes. Similarly, Adaptive AAMs
[20] feature a generic and a subject-specific texture compo-
nent, where the latter is again being updated during fitting.
However, both methods add knowledge to the model only
at fitting time, while we wish to increase the expressiveness
of the model in a more general manner and before fitting.
Additionally, both approaches update only the texture com-



ponent, which, for instance, excludes the possibility to add
new facial expressions to existing AAMs.

Another line of research are sparse methods for single-
sample face recognition [35].

3. Active Appearance Models
This section gives a brief overview of Active Appear-

ance Models [3, 9, 4, 22] and focuses on the learning pro-
cess and its assumptions. An AAM is trained from a set
{ (In, sn) | n ∈ {1, . . . , N}} ofN annotated samples, each
consisting of an image In and L corresponding landmark
coordinates sn = (xn,1, yn,1, . . . , xn,L, yn,L) ∈ R2L. As
first step, a shape model is built by applying PCA on the ma-
trix S = (s1, . . . , sN ) ∈ R2L×N of the sample landmarks.
The resulting shape model is fully characterized by the mean
shape µ = 1

N

∑N
n=1 sn ∈ R2L, the matrix Φ ∈ R2L×K

of K ≤ rank(S) orthonormal shape basis vectors, and the
vector λ ∈ RK of corresponding eigenvalues. An arbitrary
shape sample s∗ can then be represented by

ŝ∗ = Φps∗ + µ, with ps∗ = Φ>(s∗ − µ) (1)

being the shape parameters of s∗. The second step of AAM
training consists of building a shape-free texture model.
Here, each training image In is warped from its given shape
configuration sn to the mean shape µ and vectorized to form
the texture vector tn ∈ RM . Afterwards, PCA is applied on
the matrix T = (t1, . . . , tN ) ∈ RM×N of sample textures.
As for the shape model, the resulting texture model is fully
characterized by the mean texture ν, the orthonormal texture
basis vectors Ψ and the corresponding eigenvalues κ. An
arbitrary texture sample t∗ is represented by

t̂
∗
= Ψqt∗ + ν, with qt∗ = Ψ>(t∗ − ν) (2)

being the texture parameters of t∗. An optional third step is
to combine shape and texture models using another PCA [4].
As will be shown in Sect. 4, however, we base our model
transfer on independent AAMs, where shape and texture
components are not combined [22].

To fit an existing AAM to a given input image I∗, model
parameters ps∗ and qt∗ need to be found that minimize the
error between the corresponding model instance and I∗. For
independent AAMs, the inverse compositional/project-out al-
gorithm [22] is an efficient gradient descent based approach
and is used in this work. The necessary pre-computations
for this method are based on µ, Φ, λ, ν, and Ψ only and
thus can be run as a last step of AAM training.

4. Model Transfer for AAMs
As shown in [12], the performance of AAMs heavily

depends on the variations included in the training set. In
general, performing PCA with only a few given examples,

leads to severe overfitting especially with high-dimensional
data, such as images. Therefore, we demonstrate in the fol-
lowing how to exploit training data from another but related
distribution. In particular, we describe possible approaches
to knowledge transfer from a given source AAM AS =
(µS,ΦS,λS,νS,ΨS,κS) to improve the quality of a given
target AAM AT = (µT ,ΦT ,λT ,νT ,ΨT ,κT ) in the target
domain. We denote the version of the target AAM AT after
the knowledge transfer by A∗ = (µ∗,Φ∗,λ∗,ν∗,Ψ∗,κ∗).
We begin by describing two straightforward heuristic ap-
proaches in Sect. 4.1, which—together with the trivial solu-
tions source only, target only, and source ∪ target [6]—will
serve as a baseline for our instance transfer approach pre-
sented in Sect. 4.2.

4.1. Heuristic Transfer
Full Source Variation. As discussed in [7], a straightfor-
ward attempt to transfer a source AAM AS into the target
domain is to use target AAM mean components (µT , νT )
and source AAM variation components (ΦS, λS, ΨS, κS)
for the transferred modelA∗. Because source texture vectors
use a different reference shape (namely µS) than the target
texture vectors (µT ), we need to transform the former into
the reference shape of the latter. We denote this operation
byWµS→µT (ΨS), and it can be easily performed similar to
the image warping during the AAM training step (see [22]
for details). As a result, we have

µ∗ = µT , Φ∗ = ΦS, λ∗ = λS (3a)
ν∗ = νT , Ψ∗ =WµS→µT (ΨS), κ∗ = κS. (3b)

While this transfer approach requires almost no computa-
tional effort, it implicitly assumes that the data distributions
of the source and target domain differ only in their expected
values. For the example of faces, this simple approximation
usually leads to visual artifacts in the transferred model [7].

Subspace Transfer. Inspired by [1] and [28], a second
AAM transfer method is to unite the subspaces spanned by
the source and target basis vectors. For the case of the shape
model, target and source subspaces VT , VS ⊆ R2L are given
by VT = span(ΦT ) and VS = span(ΦS). To obtain a new
set of orthonormal shape basis vectors Φ∗ which spans the
subspace V ∗ with VT , VS ∈ V ∗, we simply have to find
the QR decomposition (Q(ΦT ,ΦS),R(ΦT ,ΦS)) of the matrix
(ΦT ,ΦS). The transferred shape model of A∗ with

µ∗ = µT , Φ∗ = Q(ΦT ,ΦS),

λ∗ = diag(R(ΦT ,ΦS)) · (λ>T ,λ
>
S )
>

(4)

then contains the full variation of the target model plus the
part of the source model variation which can not be rep-
resented by the target model. The eigenvalues λ∗ of the
new model are simply the concatenated target and source



eigenvalues scaled by the length of the orthogonalized basis
vectors. All operations for the texture model are identi-
cal to the shape case, but again the reference shape of the
source texture vectors has to be transformed beforehand via
WµS→µT (ΨS).

The main disadvantage of this method is that it is solely
based on the already estimated covariance matrix of the
source model. It therefore neglects cases, when only a subset
of the source examples are related to the target domain. For
example in our face model application, it is important to
transfer information and learned variations only from similar
individuals, as will be shown in Sect. 5.

4.2. An Instance Transfer Approach

In the following, we present a new instance transfer ap-
proach for AAMs. Instead of a heuristic model, our method
is based on a probabilistic formulation of the transfer prob-
lem and a generalization of importance sampling, which
allows us to incorporate information from both source and
target samples directly. Due to the similarity between an
AAM’s shape and texture component (cf. Eq. 1 and Eq. 2),
we only present the derivation in detail for the shape com-
ponent. For the texture component, only differences to the
shape case are discussed.
Shape Component. Given NS training shape samples
s1,S, . . . , sNS,S from the source domain S and NT train-
ing samples s1,T , . . . , s1,NT from the target domain T , our
goal is to estimate the mean shape µ∗, the matrix Φ∗ of K
orthonormal shape basis vectors, and their corresponding
variances λ∗. As shown for the example of face images in
[28], the estimation of the target mean shape µT is a non-
critical operation, and gives reasonable results even for small
sample sizes NT . We therefore use the target mean µT as
estimation for µ∗, and our main focus is to find Φ∗ and, by
association, λ∗. For standard AAMs—i.e. when only train-
ing data from one domain is available—PCA is employed for
this task, as it minimizes the reconstruction error of the input
samples. To derive our transfer method, we take a step back
and study the case of an infinite number of training samples,
which allows to minimize the expected reconstruction er-
ror instead taking the whole input distribution into account.
Finding the orthonormal basis Φ∗ ∈ R2L×K with the small-
est expected reconstruction error in the target domain can be
formalized as follows:

Φ∗ = argmin
Φ:Φ>Φ=1

Es∼pT
(
‖s−ΦΦ>s‖2︸ ︷︷ ︸

ε(Φ,s)

)
(5)

with

ξ = Es∼pT
(
ε(Φ, s)

)
=

∫
ε(Φ, s) pT (s) ds. (6)

Here, s is an arbitrary mean centered sample from either
the source or the target domain, and pT is the probability

distribution of shapes in the target domain. To relate this
formulation to the source domain, we use a transformation
of the integral in Eq. 6 known from importance sampling
(e.g., [16]) and generalize it to incorporate a weight factor
0 ≤ α ≤ 1:

ξ =

∫
ε(Φ, s)

(
α+ (1− α)pS(s)

pS(s)︸ ︷︷ ︸
=1

)
pT (s) ds

=α

∫
ε(Φ, s) pT (s) ds+ (1− α)

∫
ε(Φ, s)

pT (s)

pS(s)
pS(s) ds

=αEs∼pT
(
ε(Φ, s)

)
+ (1− α)Es∼pS

(
ε(Φ, s)

pT (s)

pS(s)

)
.

This trick allows us to express the reconstruction error in
the target domain in terms of the target and the source data
distribution. The parameter α can be used to trade-off the
individual estimates. We are now able to go back to the
case of a finite number of given examples by replacing the
expected values in above equation by their respective empir-
ical counterparts. We use the target samples for the target
domain estimation and the source samples for the source
domain estimation, and finally have

Φ∗ = argmin
Φ:Φ>Φ=1

(
α

NT

NT∑
nT=1

ε(Φ, snT )

+
1− α
NS

NS∑
nS=1

ε(Φ, snS)
pT (snS)

pS(snS)︸ ︷︷ ︸
=wnS

)
. (8)

The weights wnS have an important role, because they
control the individual influence of each source example
on the estimation and thus on the transfer. If ST and
SS denote the data matrices of mean centered target and
source samples, it can be easily shown that the solution
of Eq. 8 is given by applying PCA to the new data matrix
S∗ =

(
STW

1
2

T ,SSW
1
2

S
)

with the corresponding weight
matrices

WT =
α

NT
1 and WS =

1− α
NS

diag(w1, . . . , wNS)

where 1 denotes the identity matrix. The PCA of S∗ corre-
sponds to the eigendecomposition V ΛV −1 of the weighted
combination of the weighted target and source covariance
matrices, i.e.

V ΛV −1 = S∗S∗
>
= STWTS

>
T + SSWSS

>
S . (9)

The resulting shape basis vectors and eigenvalues are Φ∗ =
V and λ∗ = diag(Λ). For the special case of w1 = . . . =
wNS = 1, this result is identical to smart PCA [33], a method
derived using the probabilistic PCA framework [29]. Con-
sequently, as for smart PCA, α ∈ [0, 1] can be interpreted



as regularization parameter which governs how much we
trust the target and source samples. For α = 1, the resulting
AAM is identical to the target AAM. Additionally, it can
easily be verified that the “full source variation” transfer
heuristic presented in Sect. 4.1 is also just a special case of
our approach for α = 0 and w1 = . . . = wNS = 1. Both
methods are unable to perform an instance-based transfer
and are thus heavily restricted.
Texture Component. Aside from the aforementioned
need to transform source texture vectors into the reference
shape of the target textures viaWµS→µT (cf. Sect. 4.1), the-
oretically all steps are identical to the shape equivalents.
Practically, however, the dimension M of the texture space
is usually much larger than the dimension 2L of the shape
space or the sample size N . For the commonly used IMM
face dataset [26], for example, we have M ≈ 30,000,
2L = 116, and N = 240. As for the texture component
of standard AAMs, it is therefore advisable to obtain the
principal components via eigendecomposition of T ∗>T ∗ in-
stead of T ∗T ∗>, where T ∗ denotes the texture counterpart
of S∗ (see [2, Sect. 4.5.3] for more details).
Estimation of Sample Weights. The estimation of the
source sample weights wnS =

pT(snS)

pS(snS)
for nS ∈

{1, . . . , NS} is a crucial step of instance transfer approaches
(see [24] for examples). Below we first derive a straightfor-
ward, theoretically oriented approximation for the case of
AAMs. Afterwards, we present a more heuristic approach
which addresses drawbacks of the former. Again, we will
only handle the shape component explicitly, as the texture
component can be treated in the very same manner.

As described in Sect. 3, for AAMs an arbitrary shape
sample s can be represented by its shape parameters ps =
Φ>(s − µ). We can model the shape space density p(s)
using the parameter space density p(ps). From the def-
inition of PCA it follows that ps is mean free with co-
variance diag(λ), and with a normal assumption we have
ps ∼ N

(
0,diag(λ)

)
. This model relates to a degenerate

normal distribution with low-rank covariance matrix for s
and is helpful to tackle high dimensional data. Taking all the
model assumptions into account, one way to approximate
the source sample weights for AAM transfer is therefore

pT (snS)

pS(snS)
=
N
(
Φ>T (snS − µT ); 0,diag(λT )

)
N
(
Φ>S (snS − µS); 0,diag(λS)

) . (10)

In practice, however, such a direct approach can have several
drawbacks [16]. First of all, the normal assumption does not
hold for typical scenarios such as face images. Secondly, it
might very well be the case that only few target samples are
given—even just one target sample is possible. In this case,
the estimation of the target density pT (snS) is an ill-posed
problem and is likely to distort the resulting sample weight
wnS.

Following the argumentation of [16], we thus propose a
heuristic alternative to Eq. 10. We interpret w1, . . . , wNS
as general weights to select favored and unfavored source
samples for the transfer. For AAMs, our notion of a useful
source sample is twofold: On the one hand we want to reward
innovation, i.e. source samples which carry information that
is not covered in the target model. On the other hand, we
want to prevent negative transfer from source samples which,
in the eyes of the target model, are very dissimilar from
what was previously seen. Both innovation and target space
dissimilarity can easily be computed in the case of AAMs:
To quantify innovation, we compute the reconstruction error
of the source sample using the target model. The larger
the error, the more information is present which can not be
represented by the model. For the dissimilarity, we use the
difference between the projection ΦTΦ

>
T (snS − µT ) + µT

of snS into the target model space and the mean shape µT
of the target model. For the final weight, both factors are
combined by dividing the innovation term with the target
space dissimilarity estimate.

The practical quality of the different weighting schemes
is analyzed in detail in the experimental section.
Applicability and Limitations. Our approach assumes
that shape and texture component of an AAM can be treated
separately, which limits its application to independent AAMs
as in [22]. However, as the fitting method presented in [22]
and its countless derivations (e.g., [30]) is probably the most
popular variant used for AAMs in the last decade, this is
not an overly restricting factor. Considering the necessary
amount of samples in the target and source domain, our ap-
proach is very flexible as will be shown in the experimental
section.

5. Experiments and Results
Because the vast majority of AAM applications is re-

lated to face analysis, we base the evaluation of the pre-
sented transfer approaches on two popular face benchmark
datasets, namely IMM [26] and CK+ [18, 21]. Both datasets
feature a multitude of different individuals, each perform-
ing a set of standardized head movements and expressions.
Ground-truth landmark positions are given for typical fa-
cial landmarks covering the eyes, mouth, jaw, etc., but are
not compatible between the datasets. Details and example
images of the utilized datasets are given in Table 1.

To assess the transfer ability in this facial expression con-
text, we constructed a test scenario where we have (i) a
single-person target AAM with very limited expressiveness,
and (ii) a generic multi-person source model covering all typ-
ical facial actions. Specifically, we assume the target model
to be trained on a very small number of samples, all of which
showing a neutral facial expression and frontal head pose.
As a result, the target AAM models are not able to detect
other face expressions, such as smiling. The source model,



Table 1. Overview of the face datasets used for our AAM transfer
experiments. We used only neutral images of one person as target
model, while the source model is trained on a large variety of
persons and variations. c© Jeffrey Cohn for images of CK+.

Dataset IMM [26] CK+ [18, 21]
Persons 40 123
Landmarks 58 68
Annotated
Images per
Person 6 2–22

Variations
Neutral, head pose, expres-
sion (smile and random),
illumination

Neutral, expression (anger,
disgust, fear, happiness,
etc.)

Typical
Target
Training
Images
Typical
Source
Training
Images

Table 2. Quantitative results of different AAM transfer methods on
the IMM [26] and CK+ [18, 21] face datasets. *: the differences are
significant.

AAM Transfer Method Median Geom. Error (px)
IMM CK+

Source only [6] 5.02 5.78
Target only [6] 4.14 5.24
Source ∪ target [6] 4.80 4.96

Full source variation [7] 3.64 4.10
Subspace transfer [1, 28] 3.05* 4.38

Ours (instance transfer) 2.93* 3.88

on the contrary, is able to handle all common expressions,
poses, and illumination conditions, while representing no
specific identity. We ensured that no image of the target
person was included in the corresponding source model. Af-
ter the transfer, we evaluate the Euclidean landmark errors
with respect to the ground truth positions (“geometric er-
ror”) for all available images of the target person. Due to
the reason that for the CK+ dataset, every second annotated
image shows a neutral expression, all neutral images were
excluded from the evaluation to prevent a bias. In the ideal
transfer case, we expect to see a resulting AAM to be good at
representing both the identity as well as expressions, poses,
and illumination conditions of the target person, and thus
should perform better than the generic source model [12].

Proof-of-Concept For a proof of concept, we tested all
presented transfer approaches (cf. Sect. 4) against the com-
monly used baseline methods “source only”, “target only”,
and “source ∪ target” [6]. Additionally, we included results
of the special case of constant source sample weights of
our instance transfer approach, which is identical to “smart
PCA” ([33], cf. Sect. 4). Results of the qualitative evaluation

for the IMM and the CK+ dataset are shown in Table 2.
First of all, it can be stated that the baseline methods

perform worst for both datasets highlighting the importance
of transfer learning techniques. The best result is obtained
by our instance transfer approach with weights calculated as
proposed in Sect. 4.2, which reduces the median geometric
error of the source ∪ target model by 40% for IMM and 20%
for the CK+ dataset. The performance of the two heuristic
transfer methods “full source variation” [7] and “subspace
transfer” (inspired by [1, 28]) lies between the baseline meth-
ods and our approach. While the former performs better on
the IMM dataset, the latter yields a smaller median error on
the CK+ dataset.

Though only trained on few neutral target samples, the
“target only” model performs best for all baseline methods.
This effect can be explained by the fact that even for unseen
expressions, poses, etc., a certain amount of landmarks can
still be explained well by the neutral model (e.g. the nose
landmarks for the “smiling” expression).

As a conclusion, we can state that it is favorable to per-
form any type of AAM transfer instead of using the baseline
methods. Secondly, there is a significant difference between
previously published heuristic transfer methods and our pro-
posed instance transfer approach (p < 0.001 checked with a
paired U-test). Exemplary qualitative results for the perfor-
mance of the described AAM transfer approaches are shown
in Fig. 2.

Source Sample Weighting Schemes The estimation of
the source sample weights wnS plays a central role for our
instance transfer approach. We presented three different
weighting schemes: a probabilistically motivated estimation,
a heuristic approach, and the special case of constant weights
which degenerates to the smart PCA method [33]. Similarly
to the evaluation in the previous section, we tested the perfor-
mance of these three weighting schemes on the IMM dataset.
Surprisingly, the probabilistic estimation yields by far the
worst results, with a median geometric error of 3.72 pixels.
This performance is comparable to the two heuristic transfer
approaches (cf. Table 2), and indicates that the density model
for the source and target distribution was not properly esti-
mated (cf. Eq. 10). For the constant weighting scheme, we
obtained a median error of 2.97 pixels, which is very close to
the one of heuristic weighting with 2.93 pixels (cf. Table 2).
We therefore conclude that the heuristic, we introduced for
the source sample weight estimation, is reasonable.

Shape and Texture Components While the general im-
portance of an AAM’s shape and texture component is dis-
cussed in [12], here we are particularly interested in finding
the contribution of each of these components to the model
transfer quality. As baseline, we use our instance transfer
approach with heuristic weights, which gives the best results
for all tested methods (cf. Table 2). For the IMM dataset,
the baseline method has a median geometric error of 2.93



(a) Target training
samples

(b) Target only (c) Source ∪ target (d) Heuristic full source
variation transfer

(e) Our approach: in-
stance transfer with
heuristic weights

Figure 2. Qualitative results for different AAM transfer approaches for two example cases of the IMM face dataset.
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Figure 3. Influence of the regularization parameter α (Sect. 4.2) on
our instance transfer approach. For α = 0 our method degenerates
to the full source variation heuristic [7]. For α = 1, the resulting
model is identical to the target AAM. Aside from the two extreme
cases, this evaluation shows that the model transfer performance is
not sensitive to the actual choice of the regularization factor.

pixels. When transferring only the shape component of the
AAM with the identical experimental setup, we get a median
error of 3.39 pixels. For the opposite case of a texture-only
transfer, the corresponding median error is 3.81 pixels.

As to be expected, both single component transfers per-
form substantially worse than the joint transfer of both com-
ponents. Their performance is comparable to the proposed
heuristic transfer approaches (cf. Table 2), which implies
that even the transfer of only one model component is su-
perior to methods that do not transfer any knowledge at all.
Interestingly, the error for shape-only transfer is comparable
to the texture-only transfer, with a small advantage for the
former. This means that the shape component is slightly
more important for the generalization ability of AAMs and
confirms similar findings of [12].

Regularization Parameter α For the derivation of our
instance transfer approach, we introduced a regularization
parameter α ∈ [0, 1] which governs how much we trust
the data from the target and source domain (Sect. 4.2). For
α = 0, no target variation knowledge is used for the trans-
fer, and (for additionally constant source sample weights, cf.
Sect. 4.2), our method degenerates to the full source vari-

ation heuristic [7]. The other extreme, α = 1, results in a
model which is identical to the target AAM. To learn how
this parameter influences the transfer of AAMs, we eval-
uated identical scenarios for different values of α. Again,
our instance transfer approach with heuristic source sample
weights and α = 0.5 serves as the baseline model, as it gave
the best results so far.

The resulting median errors are shown in Fig. 3. For the
extreme cases α = 0 and α = 1 the transfer quality quickly
decays and reaches the performance of the “full source vari-
ation” method and the “target only” model. However, for
α ∈ [0.2, 0.9], the resulting transfer quality remains almost
unchanged. We therefore conclude that for the AAM transfer,
the new variation components do not have to be excessively
prominent (e.g. in terms of large eigenvalues).

Computational Aspects We used our own C++ imple-
mentation of AAMs with the inverse compositional/project-
out fitting algorithm [22]. As times needed for the fitting
pre-computations and actual model fitting are similar for
all transfer approaches, we only state computation times
needed for the model transfer. Naturally, transfer is fastest
for the “full source variation” technique, as no major com-
putations have to be performed. On average, a time of 59 ms
was needed for the whole transfer process. Similarly, the
“subspace transfer” only has to perform vector projections
and matrix concatenations, and needed 92 ms on average.
The presented instance transfer method took about 8.8 s per
transfer, mainly because weighted covariance matrices have
to be estimated for source and target samples.

Further Analyses For further analyses of our approach,
please refer to the supplementary material provided at
http://www.inf-cv.uni-jena.de/aam-transfer.



6. Conclusions
We presented a transfer learning approach for Active Ap-

pearance Models, which generalizes as well as outperforms
previous transfer learning methods and is additionally easy to
implement and integrate into existing AAMs. Our method is
based on integrating training data from an additional source
training dataset by estimating example-specific weights that
influence the degree of transfer and selects similar but still
informative examples. We evaluated our method on two
important face datasets and studied several aspects of it and
the resulting impact on facial landmark detection accuracy.

In future work, we plan to extend our approach towards
new challenging application areas for deformable part mod-
els, such as object detection [10]. Furthermore, an important
goal will be to integrate unlabeled data for a more accurate
instance weight estimation.
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based multitask learning. KI, 2013. 2

[32] Q. Xu and Q. Yang. A survey of transfer and multitask
learning in bioinformatics. JCSE, 5(3):257–268, 2011. 2

[33] Y. Zhang. Smart PCA. In IJCAI, pages 1351–1356, 2009. 4,
6

[34] J. Zhu, S. C. H. Hoi, and M. R. Lyu. Real-time non-rigid
shape recovery via active appearance models for augmented
reality. In ECCV, pages 186–197, 2006. 1

[35] L. Zhuang, A. Y. Yang, Z. Zhou, S. S. Sastry, and Y. Ma.
Single-sample face recognition with image corruption and
misalignment via sparse illumination transfer. In CVPR, pages
3546–3553, 2013. 3


