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Abstract

When one records a video/image sequence through a
transparent medium (e.g. glass), the image is often a su-
perposition of a transmitted layer (scene behind the medi-
um) and a reflected layer. Recovering the two layers from
such images seems to be a highly ill-posed problem since the
number of unknowns to recover is twice as many as the giv-
en measurements. In this paper, we propose a robust method
to separate these two layers from multiple images, which ex-
ploits the correlation of the transmitted layer across multi-
ple images, and the sparsity and independence of the gradi-
ent fields of the two layers. A novel Augmented Lagrangian
Multiplier based algorithm is designed to efficiently and ef-
fectively solve the decomposition problem. The experimen-
tal results on both simulated and real data demonstrate the
superior performance of the proposed method over the state
of the arts, in terms of accuracy and simplicity.

1. Introduction
As mobile imaging devices become more and more pop-

ular, we see more consumer videos or image sequences
taken under less controlled conditions. Very often people
are shooting a video through a transparent medium such as
glass. For instance, one might take a video of a busy street
through the window of his office; or we may take images
of a glass-framed painting. In such cases, the images will
contain both the scene transmitted through the medium and
some reflection. For the purpose of image enhancement,
it is often desirable to be able to separate the transmitted
component and the reflected one. Figure 1 shows one such
example: Two sample images of a glass-framed picture tak-
en by a mobile phone (a), its reflection (b) and transmitted
component (c) (the picture behind the glass) recovered by
our method.

Mathematically, we can model the captured superim-
posed image f as a linear combination of two components:
f = t + r, where t and r represent the transmitted scene
and the reflection, respectively. The goal of this paper is to

(a) (b) (c)

Figure 1. (a) Sample images with reflection, in which the region-
s of interest are bounded by blue windows. (b) and (c) are the
corresponding reflected and transmitted layers recovered by our
method, respectively.

recover the two layers from a sequence of images. Howev-
er, from this model, we see that the number of unknowns
to be recovered is twice as many as that of the given mea-
surements, which indicates that the problem is severely ill-
posed. Even with multiple observed images, the problem
remains under-determined. Therefore, to make the problem
well-posed, we need to impose additional priors on the de-
sired solution for t and r.

Reflection has always been an annoying nuisance for
high-quality imaging that professional or computational
photographers try to reduce or remove. [3] and [15] propose
to separate the reflection using two images captured by ro-
tating the polarizing lens with different angles, and then find
an optimal way to linearly combine the two images. More
polarization filter based techniques can be found in the lit-
erature [14, 8]. [1] develops a similar method to reduce the
reflection effect through employing a flash and no-flash im-
age pair. Although these approaches can effectively reduce
reflection, they require the photographer have professional
photographing skills and tools, which limits the applicabil-
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ity of such methods to typical consumers.
Levin et al. attempt to release the professional require-

ment on photographers [10, 11], and develop a user-assisted
system [9] to recover the transmitted and reflected layer-
s from a single image, in which users need to interactively
label part of the gradients as belonging to one of the two lay-
ers. Alternatively, with the assistance of a user, [20] intro-
duces an expectation-maximization algorithm with a hidden
Markov model to accomplish the task of layer decomposi-
tion from a single image. Although manually dealing with
a few images is acceptable, such methods become impracti-
cal if one has to deal with many images or a video sequence.
Automatic methods are more desired in such cases.

Given a sequence of images with reflection, the rela-
tive motion between the two components can be exploited
to decompose the two layers. A variety of schemes have
been proposed to extract multiple motions from image se-
quences, like [7, 6, 19]. However, they mostly care only
about recovering the motions, not restoring the two com-
ponents. [17] and [18] make use of the relative motion to
further restore the layers. But, they require sufficient vari-
ation in the motion and their performance may significant-
ly degrade when that condition is violated. More recently,
Béery and Yeredor [2] propose to decompose superimposed
images of two shifting layers. [4] introduces a fast algo-
rithm named sparse blind separation with spatial shifts to
achieve the goal. But both are under the assumption that the
motions are only uniform translations, and thus are not ap-
plicable to general cases. [5] gives a more general approach
to blindly separating superimposed images using image s-
tatistics, the results of which are promising. However, the
main limitation of this method is that it requires a consid-
erably large amount of memory to process. The model of
RASL [13] fits that of the reflection separation task from
the perspective of component decomposition. Since it bare-
ly considers the relationship and characteristics of the two
components, the visual quality of the recovered layers is not
guaranteed. [16] recovers the two components relying on t-
wo layer stereo matching and multiple depth estimating. As
the reflection usually occupies only a small fraction of the
image and has very low intensity, feature matching and mo-
tion estimation for the reflected layer are highly likely to be
inaccurate, if not impossible, for most practical sequences
(like the one shown in Figure 1).

Contributions. In this paper, we show how to decompose
the transmitted and reflected layers for a sequence of im-
ages by exploiting some strong structural priors in both the
transmitted layer and the reflected one. More specifical-
ly, our framework will harness three structural priors in a
unified fashion: 1) the correlation of the transmitted layer
across different image frames, 2) the sparsity of the gradien-
t fields of the two layers, and 3) the independence between

the gradient fields of the transmitted and the reflected lay-
ers. Additionally, in an image sequence, the superimposed
region can be scaled, rotated, or deformed throughout the
sequence, e.g. Figure 1. Our method will automatically
seek an optimal alignment of the region of interest in al-
l images. The only interaction required from the user is to
specify the region of interest in the very first image frame,
e.g. the blue window in the upper image of Figure 1 (a), and
the rest will be computed automatically. We propose an effi-
cient algorithm based on augmented Lagrangian multiplier
and alternating direction minimization method to solve the
associated optimization problem. We conduct extensive ex-
periments to verify the effectiveness of our method in com-
parison with the state of the art.

2. Our Method

2.1. Problem Formulation

Recall that the superimposed image (area) is a linear
combination of the transmitted layer and the reflection. For
an image sequence, the superimposed area in every image
frame satisfies ∀i ∈ [1, ..., n],f i = ti + ri. If we collect
each frame as a column of a matrix, the above relationship
can be rewritten in a matrix form as F = T +R, where the
columns of F ∈ Rm×n are the vectorized images and m
is the number of pixels. T and R represent the transmitted
and the reflected components, respectively.

Structural priors of the solution. The multiple images
of the transmitted layer ti are strongly correlated. As a re-
sult, we here introduce the correlation prior: if the trans-
mitted area is well aligned in the multiple frames, the rank
of the matrix T is low, ideally 1. It is well known that nat-
ural images are largely piecewise smooth and their gradient
fields are typically sparse. We call this the edge-sparse pri-
or: the responses of both two layers,

∑J
j=1 ∥dj ∗ ti∥0 and∑J

j=1 ∥dj ∗ ri∥0, to derivative-like filters (d1, d2,...,dJ )
are sparse. ∥ · ∥0 denotes the ℓ0 norm, and ∗ is the opera-
tor of convolution. In this work, we only employ the filters
in horizontal direction d1 and in vertical direction d2. For
brevity, we define ∥DT ∥0 ≡

∑n
i=1

∑2
j=1 ∥dj ∗ T i∥0 and

∥DR∥0 ≡
∑n

i=1

∑2
j=1 ∥dj ∗ Ri∥0. In addition, gradient

fields of the two layers should be statistically uncorrelated.
Thus, the independence prior: the two layers’ responses to
derivative filters are (approximately) independent. Further-
more, we observe that the fraction of reflection is usually
much smaller and sparser than that of the transmitted lay-
er. Of course, as real images, both the transmitted and the
reflected components have to have non-negative values.

In real cases, the region of interest is distorted differently
in different frames. We assume that the targeting region lies
on a (nearly) planar surface in the scene. Then there exist



2D homographs, say (τ1, τ2,. . . ,τn), transforming the mis-
aligned regions to well aligned f1 ◦ τ1, f2 ◦ τ2,. . . , fn ◦ τn.
Based on the priors and the constraints stated above, the de-
sired decomposition (T ,R) should minimize the following
objective:

min rank(T ) + λ1∥M∥1 + λ2∥N∥2F + λ3∥DT ∥0 +
λ4∥DR∥0 + λ5∥DT ⊙DR∥0 + λ6∥Ω−DT −DR∥2F ,
s. t. F ◦ Γ = T +M ;M = R+N ;T ≽ 0; R ≽ 0;

(1)
where ∥ · ∥1 and ∥ · ∥F stand for the ℓ1 norm and the Frobe-
nius norm respectively, ⊙ means element-wise multiplica-
tion, and Ω

.
= DF which can be computed beforehand.

λ1, λ2, λ3, λ4 , λ5 and λ6 are the coefficients controlling
the weights of different terms. Γ consists of all the transfor-
mations, say [τ1, τ2, . . . , τn]. Please notice that we utilize
M to represent the residual between the observation and
the transmitted component, which can be split into the re-
flection R and a noise term N .

In the above objective function (1), the first term enforces
the (aligned) transmitted regions to be highly correlated.
The residual M should be (approximately) sparse in its spa-
tial support as reflection R is typically sparse. The third ter-
m penalizes the Gaussian noise. The fourth and fifth terms
essentially enforce the recovered two layers to have sparse
gradient fields; and the remaining two terms enforce they
are independent of each other. Note that the non-negative
properties of the two layers are enforced as hard constraints
in the above formulation.

2.2. Optimization

As we have seen in (1), it has combined all aforemen-
tioned priors and constraints for decomposing the superim-
posed images in a unified optimization framework. Howev-
er, it is extremely difficult to directly minimize (1). There
are two main difficulties: 1) the non-convexity of the rank
function and the ℓ0 norm; and 2) the nonlinearity of the con-
straint F ◦ Γ = T +M due to domain transformations by
Γ. To overcome these obstacles, we will use convex surro-
gates for all the non-convex low rank and sparsity promot-
ing terms. To deal with the nonlinear constraints, we will
linearize them with respect to a current estimate and solve
the nonlinear problem iteratively.

Specifically, through convex relaxation, we may replace
the rank function and the ℓ0 norm with the nuclear norm
∥ · ∥∗ and the ℓ1 norm, respectively. As for the alignment
constraint, we linearize with respect to the transformation
and obtain: F ◦Γ+

∑n
i=1 J i∆Γϵiϵ

T
i = T +M , where J i

is the Jacobian of the ith region with respect to the trans-
formation parameters τi, and {ϵi} is the standard basis for
Rn. The linearization effectively approximates the original
constraints around the current estimate when the transfor-
mations change infinitesimally. With the convex relaxation

and the linearization, the (linearized) optimization problem
can be rewritten as:

min ∥T ∥∗ + λ1∥M∥1 + λ2∥N∥2F + λ3∥DT ∥1 +
λ4∥DR∥1 + λ5∥DT ⊙DR∥1 + λ6∥Ω−DT −DR∥2F ,

s. t. F ◦ Γ +
n∑

i=1

J i∆Γϵiϵ
T
i = T +M ;

M = R+N ;T ≽ 0; R ≽ 0.
(2)

With a proper initialization of Γ, we solve (2) in an iterative
fashion so as to converge to a (local) optimal solution for
the original problem.

The Augmented Lagrange Multiplier (ALM) with Al-
ternating Direction Minimizing (ADM) strategy [12] has
proven to be an efficient and effective solver of problem-
s like (2) (the inner loop). To adopt ALM-ADM to our
problem, we need to make our objective function separa-
ble. Thus we introduce three auxiliary variables, i.e. L, K
and Q, to replace T , DT , and DR in the objective func-
tion, respectively. Accordingly, L = T , K = DT and
Q = DR act as the additional constraints. The augmented
Lagrangian function of (2) is given by:

LT≽0;R≽0;(L,M ,N ,K,Q,T ,R,∆Γ)

= ∥L∥∗ + λ1∥M∥1 + λ2∥N∥2F + λ3∥K∥1
+ λ4∥Q∥1 + λ5∥K ⊙Q∥1 + λ6∥Ω−K −Q∥2F

+Φ(Z1,F ◦ Γ +
n∑

i=1

J i∆Γϵiϵ
T
i − T −M)

+ Φ(Z2,M −R−N) + Φ(Z3,L− T )

+ Φ(Z4,K −DT ) + Φ(Z5,Q−DR),

with the definition Φ(Z,C) ≡ µ
2 ∥C∥2F + ⟨Z,C⟩, where

⟨·, ·⟩ represents matrix inner product and µ is a positive
penalty scalar. Z1, Z2, Z3, Z4 and Z5 are the La-
grangian multipliers. Besides the Lagrangian multipliers,
there are eight variables to solve. The solver iteratively
updates one variable at a time by fixing the others. For-
tunately, each step has a simple closed-form solution, and
hence can be computed efficiently. For brevity, we denote
P t ≡ F ◦ Γ +

∑n
i=1 J i∆Γtϵiϵ

T
i . Below, the solutions of

the subproblems are provided:

L-subproblem: Lt+1 =

argmin
L

∥L∥∗ +Φ(Zt
3,L− T t) = US 1

µt
[Σ]V T ,

(3)
where UΣV T is the Singular Value Decomposition (SVD)
of

(
T t − Zt

3

µt

)
. {µt} is a monotonically increasing positive

sequence, and Sε>0[·] represents the shrinkage operator, the
definition of which on scalars is: Sε[x] = sgn(x)max(|x|−
ε, 0). The extension of the shrinkage operator to vectors and



matrices is simply applied element-wise.

M -subproblem: M t+1 = argmin
M

λ1∥M∥1

+Φ(Zt
1,P

t − T t −M) + Φ(Zt
2,M −Rt −N t)

= S 2λ1
µt

[
P t − T t +Rt +N t +

Zt
1 −Zt

2

µt

]
.

(4)
N -subproblem: N t+1 =

argmin
N

λ2∥N∥2F +Φ(Zt
2,M

t+1 −Rt −N)

=
Zt

2 + µt(M t+1 −Rt)

2λ2 + µt
.

(5)
K-subproblem: Kt+1 =

argmin
K

λ3∥K∥1 + λ5∥K ⊙Qt∥1

+ λ6∥Ω−Qt −K∥2F +Φ(Zt
4,K −DT t)

= Ŝλ31+λ5|Qt|
2λ6+µt

[λ6(Ω − Qt) + µtDT t/2−Zt
4/2

λ6 + µt/2

]
,

(6)
where ŜW [X] performs the shrinkage on the elements of
X with thresholds given by corresponding entries of W .

Q-subproblem: Qt+1 =

argmin
Q

λ4∥Q∥1 + λ5∥Kt+1 ⊙Q∥1

+ λ6∥Ω−Q−Kt+1∥2F +Φ(Zt
5,Q−DRt)

= Ŝλ41+λ5|Kt+1|
2λ6+µt

[λ6(Ω−Kt+1) + µtDRt/2−Zt
5/2

λ6 + µt/2

]
.

(7)
T -subproblem: T t+1 =

argmin
T

Φ(Zt
1,P

t −M t+1 − T )

+ Φ(Zt
3,L

t+1 − T ) + Φ(Zt
4,K

t+1 −DT ).

By assuming circular boundary conditions, we can apply
2D FFT on the T -subproblem, which enables us to compute
the solution fast. So, for each T i ∀i ∈ [1, ..., n], we have

T t+1
i = F−1

(
F
(
R(Oi)

)
/
(
F(D)⊙F(D) + 2

))
, (8)

where O ≡ P t −M t+1 +Lt+1 +
Zt

1+Zt
3

µt +DT (Kt+1 +
Zt

4

µt ). R(·) is to reshape the vectorized 2D information back
to its 2D form. F(·) is the 2D FFT operator, while F−1(·)
and F(·) stand for the 2D inverse FFT and the complex
conjugate of F(·), respectively. The division is conducted
component-wise.

R-subproblem: Rt+1 = argmin
R

Φ(Zt
2,M

t+1 −N t+1 −R) + Φ(Zt
5,Q

t+1 −DR).

Algorithm 1: SID: Superimposed Image Decomposition
Input: λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0, λ5 > 0, λ6 > 0.

The observation F , and the initial transformation Γ.
while not converged do

L0 = M0 = N0 = T 0 = R0 = Z0
1 = Z0

2 = Z0
3 =

0 ∈ Rm×n, ∆Γt = 0, t = 0, µ0 > 0, ρ > 1,
K0 = Q0 = Z0

4 = Z0
5 = 0 ∈ R2m×n. Compute the

warped areas F ◦ Γ and their Jacobians
J i =

∂
∂τi

F i ◦ τi.
while not converged do

Update Lt+1 via Eq. (3);
Update M t+1 via Eq. (4);
Update N t+1 via Eq. (5);
Update Kt+1 via Eq. (6);
Update Qt+1 via Eq. (7);
for i from 1 to n do

Update T t+1
i via Eq. (8);

Update Rt+1
i via Eq. (9);

end
T t+1(T t+1 < 0) = 0;Rt+1(Rt+1 < 0) = 0;
Update ∆Γt+1 via Eq. (10);
Update the multipliers via Eq. (11);
µt+1 = µtρ; t = t+ 1;

end
Γ = Γ +∆Γt;

end
Output: Optimal solution (T ∗ = T t, R∗ = Rt).

Similar to (8), for each Ri ∀i ∈ [1, ..., n], Rt+1
i =

F−1

(
F
(
R(Ei)

)
/
(
F(D)⊙F(D) + 1

))
, (9)

with E ≡ M t+1 −N t+1 +
Zt

2

µt +DT (Qt+1 +
Zt+1

5

µt ). To
guarantee T and R to be non-negative, we set the negative
elements in them to be zero after (8) and (9), respectively.

∆Γ-subproblem: ∆Γt+1 =

argmin
∆Γ

Φ(Zt
1,F ◦ Γ +

n∑
i=1

J i∆Γϵiϵ
T
i − T t+1 −M t+1)

=
n∑

i=1

J†
i (T

t+1 +M t+1 − F ◦ Γ− Zt
1

µt
)ϵiϵ

T
i ,

(10)
where J† denotes the Moore-Penrose pseudoinverse of J .

Besides, there are still five multipliers to update, which
are simply given by:

Zt+1
1 = Zt

1 + µt(P t+1 − T t+1 −M t+1);

Zt+1
2 = Zt

2 + µt(M t+1 −Rt+1 −N t+1);

Zt+1
3 = Zt

3 + µt(Lt+1 − T t+1);

Zt+1
4 = Zt

4 + µt(Kt+1 −DT t+1);

Zt+1
5 = Zt

5 + µt(Qt+1 −DRt+1). (11)



(a) (b) (c) (d)

Figure 2. The images used to synthesize the simulated data. (a) is
an image used as the transmitted layer t. (b), (c) and (d) are the
reflected layer r for different frames, respectively.

For clarity, the entire algorithm of solving the problem
(1) is summarized in Algorithm 1. The outer loop of Al-
gorithm 1 terminates when the change of objective function
value between two neighboring iterations is sufficiently s-
mall or the maximal number of iterations is reached. The
inner loop is stopped when ∥P t+1 − T t+1 − M t+1∥F ≤
δ∥F ◦ Γ∥F with δ = 10−6 or the maximal number of in-
ner iterations is reached. To give a reasonable initialization
of the transformation Γ, we employ feature matching with
RANSAC. The only user intervention is to specify the tar-
geting region in one image.

3. Experiments

In this section, we verify the efficacy of our method on
both simulated and real data, and demonstrate the advan-
tages of the proposed algorithm compared to the state of the
arts including SIUA [9], SPBS-M [5] and RASL [13]1. The
Matlab codes of these methods can be downloaded from the
authors’ websites, the parameters of which are all set as de-
fault. Unless otherwise stated, the parameters of Algorithm
1 (referred to as SID) are fixed throughout the experiments
empirically: λ1 = 0.3w, λ2 = 50w, λ3 = 1w, λ4 = 5w,
λ5 = 50w and λ6 = 50w with w = 1√

m
. For color images,

we apply the algorithms to each of the R, G and B channel,
then concatenate the three as the final results. The experi-
ments are conducted in Matlab on a PC running Windows 7
32bit operating system with Intel Core i7 3.4 GHz CPU and
4.0 GB RAM.

We first synthesize a sequence including 15 superim-
posed images (resolution: 215× 162), the picture shown in
Figure 2 (a) is used as the transmitted layer t while the oth-
ers in Figure 2 as reflections ri. The superimposition takes
the form of f i = 0.6t+ 0.4ri. Please note that, in the sim-
ulation, we focus on the decomposition performance of the
compared algorithms. The results are compared in Figure 4.
The top row is SIUA [9] vs. SID. Since SIUA requires the
interaction from the users, to guarantee that our implemen-

1Since the code of [16] is not available when this paper is prepared, we
do not compare with [16].

(a) (b) (c) (d)

Figure 3. Illustration of input to the algorithm [9]. (a) and (c) are
the gradients of the reflected and the transmitted layers, respec-
tively. (b) and (d) are the marked results on the synthesized image
according to (a) and (c), respectively.

(a) (b) (c) (d) (f)

Figure 4. Visual comparison of the decomposed results. (a) The
superimposed images. (b) The recovered reflections by the com-
petitors. (c) The reflected layers obtained by our method. (d) The
transmitted layers recovered by the competitors. (f) The transmit-
ted layers by our method. Top row: SIUA [9] vs. SID. Middle
row: SPBS-M [5] vs. SID. Bottom row: RASL [13] vs. SID.

tation is correct, we compute the Canny edges on both the
superimposed images (the leftmost image in the top row of
Figure 4) and the transmitted layer (Figure 2 (a)), instead of
labeling the gradients manually. With the Canny edges, say
cs from the mixture and ct from the ground truth transmit-
ted layer, the gradients belonging to the transmitted layer
are finally given by the intersection between cs and ct as
shown in Figure 3 (c) and (d). The intersection preserves
the gradients from the transmitted as well as eliminates the
ones overlapping with those of the reflection. While the
difference set between cs and ct is used to indicate the re-
flection as shown in Figure 3 (a) and (b). Although, as
reported by the authors of [5], their method can be applied
to multiple images, the algorithm is, in practice, not able
to handle more than three images with the original resolu-



(a) (b) (c) (d) (f)(e) (g) (h)

Figure 6. The benefit of alignment from Algorithm 1. (a) and (b) are the decomposed layers, i.e. the reflected and the transmitted, of one
superimposed image after 1st iteration. (c) and (d) are the final results corresponding to (a) and (b). (e) and (f) give the decomposition on
another superimposed image after 1st iteration, while (g) and (h) are the final converged results.

Convergence Speed of the Inner Loop of Algorithm 1

Figure 5. The convergence speed of the inner loop of Algorithm 1.

tion due to the requirement of large memory. Thus, to make
the comparison as fair as possible, we alternatively down-
sample the images to resolution 179× 135, 6 of which (the
most can be handled together on our PC) are used as the
input to [5]. Moreover, for [5], we use the gray-scale im-
ages of the mixtures to estimate the layer motion parameters
without using the color information, which is crucial for [5]
to further compute the layer gradients and reconstruct the
source layers2. Then R, G and B channels are separately
reconstructed using the same parameters to avoid the incon-
sistency of motion (please see the middle row of Figure 4).
The bottom row of Figure 4 shows the comparison between
RASL [13] and SID.

Both RASL and SID can simultaneously deal with multi-
ple images, e.g. all the 15 images in this simulation. As can
be seen from the results, SID significantly outperforms the
others in terms of quality of the recovered images. The dif-
ference is better viewed in electronic version with room-in.
The results of SIUA and SPBS-M have the problem of col-

2As the motions on different channels for the same layers should be
consistent, if we separately estimate the model parameters for the R, G, B
channels, the estimated motion parameters can be different, which lead to
color consistency issue and ghosting.

or consistency and ghosting effect. RASL achieves better
performance than SIUA and SPBS-M, but there is ghosting
effect in both the recovered transmitted and reflected lay-
ers. In terms of speed, SIUA spends about 13s for only
one image without considering the gradient labeling time
by the users. For SPBS-M, it takes almost 536s for 6 down-
sampled images, while RASL and SID cost about 4s and
30s for 15 images, respectively.

Figure 5 displays the convergence speed of the inner loop
of Algorithm 1, without loss of generality, on the R chan-
nel of the synthesized sequence, in which the stop criterion
sharply drops to the level of 10−4 with about 40− 50 itera-
tions. We also show four pairs of the decomposed layers at
10, 20, 40 and 100 iterations. We see that the results at 40
iterations is very close to those at 100.

For experiments below, we apply SID to real data. For
real images, the targeting region usually appears with var-
ious poses in different images, therefore the alignment of
the regions across different images needs to be taken into
account. Figure 6 provides the evidence about the benefit of
the alignment, in which (a) and (b) ((e) and (f)) are the de-
composed reflection and transmission components for one
superimposed image after 1st iteration of the outer loop of
Algorithm 1, while (c) and (d) ((g) and (h)) are the final re-
sults. It is easy to see that as the alignment gets better, so
does the separation, as indicated by the zoomed-in patches
in Figure 6. More comparisons are given in Figure 7. The
proposed SID algorithm obtains the most visually pleasing
results not only for the transmitted layer but also the reflect-
ed layer among all the methods.

Finally, we show a failure case in Figure 8, in which the
original superimposed image is blurred. The second pic-
ture of Figure 8 is the rectified region of interest. Notice
that the recovered reflection is largely correct but still with
some ghosting effect, as shown in the third image of Figure
8. Nevertheless, the transmitted layer has blur reduced and
is of relatively good quality thanks to the correlation from
multiple images (the rightmost image shown in Figure 8).



(a) Visual comparison between SID and SPBS-M [5].

(b) Visual comparison between SID and RASL [13].

(c) Visual comparison between SID and SIUA [9].

Figure 7. Left: the original images are displayed on the upper rows, the targeting superimposed regions are marked by blue windows,
and the rectified versions of the regions are given below the originals. Middle: the decomposed reflection by our method SID (upper)
and the competitor (lower), the highlighted patches are zoomed in and shown to the right. Right: the recovered transmitted layer by our
method SID (upper) and the competitor (lower), the highlighted patches are zoomed in and shown to the right. Specially for (c), we give
the mark-up for SIUA [9].



Figure 8. A failure case with motion blurred input images. Left: the original superimposed image. Middle Left: the rectified region of
interest. Middle Right: the recovered reflection. Right: the recovered transmitted layer.

4. Conclusion
Reflection separation from superimposed images is an

interesting, yet severely ill-posed problem. To overcome its
difficulty, this paper has shown how to harness three pri-
or structures of decomposed layers, including the correla-
tion, the sparsity, and the independence priors, to make the
problem well-defined and feasible to solve. We have formu-
lated the problem in a unified optimization framework and
proposed an efficient algorithm to find the optimal solution.
The experimental results, compared to the state of the art-
s, have demonstrated the clear advantages of the proposed
method in terms of speed, accuracy, and simplicity. In addi-
tion, both the transmitted and the reflected layers are recov-
ered with high quality by our method, which can be used
for many advanced image/video processing, rendering, or
manipulation tasks.
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