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Abstract

As a convex relaxation of the low rank matrix factoriza-
tion problem, the nuclear norm minimization has been at-
tracting significant research interest in recent years. The
standard nuclear norm minimization regularizes each sin-
gular value equally to pursue the convexity of the objective
function. However, this greatly restricts its capability and
flexibility in dealing with many practical problems (e.g.,
denoising), where the singular values have clear physical
meanings and should be treated differently. In this paper
we study the weighted nuclear norm minimization (WNNM)
problem, where the singular values are assigned different
weights. The solutions of the WNNM problem are analyzed
under different weighting conditions. We then apply the
proposed WNNM algorithm to image denoising by exploit-
ing the image nonlocal self-similarity. Experimental results
clearly show that the proposed WNNM algorithm outper-
forms many state-of-the-art denoising algorithms such as
BM3D in terms of both quantitative measure and visual per-
ception quality.

1. Introduction
Low rank matrix approximation, which aims to recover

the underlying low rank matrix from its degraded observa-
tion, has a wide range of applications in computer vision
and machine learning. For instance, the low rank nature of
matrix formed by human facial images allows us to recon-
struct the occluded/corrupted faces [8, 20, 30]. The Net-
flix customer data matrix is believed to be low rank due
to the fact that the customers’ choices are mostly affected
by a few common factors [24]. The video clip captured
by a static camera has a clear low rank property, based on
which background modeling and foreground extraction can
be conducted [27, 23]. It is also shown that the matrix
formed by nonlocal similar patches in a natural image is of
low rank, which can be exploited for high performance im-
age restoration tasks [26]. Owe to the rapid development of

convex and non-convex optimization techniques, in recent
years there are a flurry of studies in low rank matrix approx-
imation, and many important models and algorithms have
been reported [25, 2, 16, 13, 14, 4, 27, 3, 20, 19, 21, 11].

Low rank matrix approximation methods can be gener-
ally categorized into two categories: the low rank matrix
factorization (LRMF) methods [25, 2, 16, 13] and the nu-
clear norm minimization (NNM) methods [14, 4, 27, 3, 20,
19, 21, 11]. Given a matrix Y, LRMF aims to find a matrix
X, which is as close to Y as possible under certain data fi-
delity functions, while being able to be factorized into the
product of two low rank matrices. A variety of LRMF meth-
ods have been proposed, ranging from the classical singular
value decomposition (SVD) to the many L1-norm robust
LRMF algorithms [25, 2, 16, 13].

The LRMF problem is basically a nonconvex optimiza-
tion problem. Another line of research for low rank matrix
approximation is NNM. The nuclear norm of a matrix X, de-
noted by ‖X‖∗, is defined as the sum of its singular values,
i.e., ‖X‖∗ =

∑
i |σi(X)|1, where σi(X) means the i-th sin-

gular value of X. NNM aims to approximate Y by X, while
minimizing the nuclear norm of X. One distinct advantage
of NNM lies in that it is the tightest convex relaxation to the
non-convex LRMF problem with certain data fidelity term,
and hence it has been attracting great research interest in
recent years. On one side, Candes and Recht [6] proved
that most low rank matrices can be perfectly recovered by
solving an NNM problem; on the other side, Cai et al. [3]
proved that the NNM based low rank matrix approximation
problem with F-norm data fidelity can be easily solved by a
soft-thresholding operation on the singular values of obser-
vation matrix. That is, the solution of

X̂ = argminX ‖Y − X‖2F + λ‖X‖∗, (1)

where λ is a positive constant, can be obtained by

X̂ = USλ(Σ)VT , (2)

where Y = UΣVT is the SVD of Y and Sλ(Σ) is the soft-
thresholding function on diagonal matrix Σ with parameter
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λ. For each diagonal element Σii in Σ , there is

Sλ(Σ)ii = max(Σii − λ, 0). (3)

The above singular value soft-thresholding method has been
widely adopted to solve many NNM based problems, such
as matrix completion [6, 5, 3], robust principle component
analyze (RPCA) [4, 27], low rank textures [29] and low rank
representation (LRR) for subspace clustering [20].

Although NNM has been widely used for low rank ma-
trix approximation, it still has some problems. In order
to pursue the convex property, the standard nuclear norm
treats each singular value equally, and as a result, the soft-
thresholding operator in (3) shrinks each singular value with
the same amount λ . This, however, ignores the prior knowl-
edge we often have on the matrix singular values. For in-
stance, the column (or row) vectors in the matrix often lie
in a low dimensional subspace; the larger singular values
are generally associated with the major projection orien-
tations, and thus they’d better be shrunk less to preserve
the major data components. Clearly, NNM and its corre-
sponding soft-thresholding operator fail to take advantage
of such prior knowledge. Though the model in (1) is con-
vex, it is not flexible enough to deal with many real prob-
lems. Zhang et al. proposed a Truncated Nuclear Norm
Regularization (TNNR) method [28]. However, TNNR is
not flexible enough since it makes a binary decision that
whether to regularize a specific singular value or not.

To improve the flexibility of nuclear norm, we propose
the weighted nuclear norm and study its minimization. The
weighted nuclear norm of a matrix X is defined as

‖X‖w,∗ =
∑
i |wiσi(X)|1, (4)

where w = [w1, . . . , wn] and wi ≥ 0 is a non-negative
weight assigned to σi(X). The weighted nuclear norm min-
imization (WNNM) is not convex in general case, and it
is more difficult to solve than NNM. So far little work has
been reported on the WNNM problem.

In this paper, we study in detail the WNNM problem
with F-norm data fidelity. The solutions under different
weight conditions are analyzed, and the proposed algorithm
of WNNM is as efficient as that of the NNM problem.
WNNM generalizes NNM, and it greatly improves the flex-
ibility of NNM. Different weights or weighting rules can be
introduced based on the prior knowledge and understanding
of the problem, and WNNM will benefit the estimation of
the latent data in return.

As an important application, we adopt the proposed
WNNM algorithm to image denoising. The goal of im-
age denoising is to estimate the latent clean image from its
noisy observation. As a classical and fundamental prob-
lem in low level vision, image denoising has been exten-
sively studied for many years; however, it is still an active

research topic because denoising is an ideal test bed to in-
vestigate and evaluate the statistical image modeling tech-
niques. In recent years, the exploitation of image nonlo-
cal self-similarity (NSS) has boosted significantly the im-
age denoising performance [1, 7, 10, 22, 12, 9]. The NSS
prior refers to the fact that for a given local patch in a natu-
ral image, one can find many similar patches to it across the
image. The benchmark BM3D [7] algorithm and the state-
of-the-art algorithms such as LSSC [22] and NCSR [10] are
all based on the NSS prior. Intuitively, by stacking the non-
local similar patch vector into a matrix, this matrix should
be a low rank matrix and has sparse singular values. This
assumption is validated by Wang et al. in [26], where they
called it the nonlocal spectral prior. Therefore, the low rank
matrix approximation method can be used to design denois-
ing algorithms. The NNM method was adopted in [15] for
video denoising. In [9], Dong et al. combined NNM and
L2,1-norm group sparsity for image restoration, and demon-
strated very competitive results.

The contribution of this paper is two-fold. First, we ana-
lyze in detail the WNNM optimization problem and provide
the solutions under different weight conditions. Second, we
adopt the proposed WNNM algorithm to image denoising
to demonstrate its great potentials in low level vision appli-
cations. The experimental results showed that WNNM out-
performs state-of-the-art denoising algorithms not only in
PSNR index, but also in local structure preservation, lead-
ing to visually more pleasant denoising outputs.

2. Low-Rank Minimization with Weighted Nu-
clear Norm

2.1. The Problem

As reviewed in Section 1, low rank matrix approxima-
tion can be achieved by low rank matrix factorization and
nuclear norm minimization (NNM), while the latter can be
a convex optimization problem. NNM is getting increas-
ingly popular in recent years because it is proved in [6] that
most low rank matrices can be well recovered by NNM, and
it is shown in [3] that NNM can be efficiently solved. More
specifically, by using the F-norm to measure the difference
between observed data matrix Y and the latent data matrix
X, the NNM model in (1) has an analytical solution (re-
fer to (2)) via the soft-thresholding of singular values (refer
to (3)). NNM penalizes the singular values of X equally.
Thus, the same soft-threshold (i.e., λ) will be applied to all
the singular values, as shown in (3). This is not very rea-
sonable since different singular values may have different
importance and hence they should be treated differently. To
this end, we use the weighted nuclear norm defined in (4)
to regularize X, and propose the following weighted nuclear
norm minimization (WNNM) problem

minX ‖Y − X‖2F + ‖X‖w,∗. (5)
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The WNNM problem, however, is much more difficult
to optimize than NNM since the objective function in (5)
is not convex in general. In [3], the sub-gradient method
is employed to derive the solution of NNM; unfortunately,
similar derivation cannot be applied to WNNM since the
sub-gradient conditions are no longer satisfied. In subsec-
tion 2.2, we will discuss the solution of WNNM in detail.
Obviously, NNM is a special case of WNNM when all the
weights wi=1...n are the same. Our solution will cover the
solution of NNM in [3], while our derivation is much sim-
pler than the complex sub-gradient based derivation in [3].

2.2. Optimization

Before analyzing the optimization of WNNM, we first
give following three lemmas.

Lemma 1. ∀A,B ∈ <m×n that satisfy ATB = 0, we have

(1)‖A + B‖w,∗ ≥ ‖A‖w,∗;

(2)‖A + B‖F ≥ ‖A‖F .

Lemma 2. ∀M =

[
A B
C D

]
with A ∈ <m×m and D ∈

<n×n, if the weights satisfy w1 ≥ · · · ≥ wm+n ≥ 0, we
have

‖M‖w,∗ ≥ ‖A‖w1,∗ + ‖D‖w2,∗,

where w = [w1, . . . , wm+n], w1 = [w1, . . . , wm] and w2 =
[wm+1, . . . , wm+n].

Lemma 3. ∀A ∈ <n×n and a diagonal non-negative ma-
trix W ∈ <n×n with non-ascending ordered diagonal ele-
ments, let A = XΦYT be the SVD of A, we have∑

i

σi(A)σi(W) = max
UT U=I,VT V=I

tr[WUTAV],

where I is the identity matrix, σi(A) and σi(W) are the i-
th singular values of matrices A and W, respectively. When
U = X and V = Y, tr[WUTAV] reaches its maximum value.

The proofs of the above lemmas can be found in the sup-
plementary material. We then have the following theorem,
which guarantees that the column and row spaces of the so-
lution to the WNNM problem in (5) still lie in the corre-
sponding spaces of the observation data matrix Y.

Theorem 1. ∀Y ∈ <m×n, denote by Y = UΣVT the SVD
of it. For the WNNM problem in (5) with non-negative
weight vector w , its solution X̂ can be written as X̂ =
UB̂VT , where B̂ is the solution of the following optimiza-
tion problem

B̂ = argminB ‖Σ − B‖2F + ‖B‖w,∗. (6)

Proof. Denote by U⊥ the set of orthogonal bases of the
complementary space of U, we can write X as X = UA1 +

U⊥A2, where A1 and A2 are the components of X in sub-
spaces U and U⊥, respectively. Then we have

f(X) =‖Y − X‖2F + ‖X‖w,∗

=‖UΣVT − UA1 − U⊥A2‖2F + ‖UA1 + U⊥A2‖w,∗

≥‖UΣVT − UA1‖2F + ‖UA1‖w,∗ (Lemma 1).

Similarly, for the row space bases V, we have

f(X) ≥ ‖UΣVT − UBVT ‖2F + λ‖UBVT ‖w,∗.

Orthonormal matrices U and V will not change the F-norm
and weighted nuclear norm, and thus we have

f(X) ≥ ‖Σ − B‖2F + λ‖B‖w,∗.

Therefore, if we have the solution of the minimization prob-
lem in (6), the solution of the original WNNM problem in
(5) can be obtained as X̂ = UB̂VT .

Based on the above lemmas and theorem, we discuss the
solution of the WNNM problem under three situations: the
weights wi=1···n are in a non-ascending order, in an arbi-
trary order, and in a non-descending order, respectively.

2.2.1 The weights are in a non-ascending order

Based on Theorem 1, we have the globally optimal solution
of the WNNM problem in (5) in the case that w1 ≥ · · · ≥
wn ≥ 0 . We have the following theorem.

Theorem 2. If weights satisfy w1 ≥ · · · ≥ wn ≥ 0 , the
WNNM problem in (5) has a globally optimal solution

X̂ = USw(Σ)VT,

where Y = UΣVT is the SVD of Y, and Sw(Σ) is the gen-
eralized soft-thresholding operator with weight vector w

Sw(Σ)ii = max(Σii − wi, 0).

Proof. Considering the optimization problem in (6), and as-
suming that ΛB is a diagonal matrix which has the same
diagonal elements as matrix B, we have

‖Σ − B‖2F + λ‖B‖w,∗

=‖Σ −ΛB − (B−ΛB)‖2F + ‖ΛB + (B−ΛB)‖w,∗

≥|Σ −ΛB‖2F + ‖ΛB‖w,∗ (Lemma 2).

Thus, in such a weight condition, the optimal solution of (6)
has a diagonal form ΛB. Both Σ and ΛB are diagonal ma-
trices, and the solution can be obtained by soft-thresholding
operation on each element. Based on the conclusion in The-
orem 1, the optimal solution of (5) is X̂ = USw(Σ)VT .
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Theorem 2 greatly extends the Theorem 2.1 in [3] (which
is described by (1)-(3) in this paper). We show that if the
weights wi=1...n are in a non-ascending order, not neces-
sarily have the same value, the WNNM problem is still
convex and the optimal solution can still be obtained by
soft-thresholding on the singular values but with different
thresholds. The Theorem 2.1 given by Cai et al. in [3] is a
special case of our Theorem 2. Compared with the complex
sub-gradient based proof in [3], however, our proof is much
more concise.

2.2.2 The weights are in an arbitrary order

In the case that weights wi=1···n are not in a non-ascending
order but in an arbitrary order, the WNNM problem in (5)
is non-convex, and thus we cannot have a global minimum
of it. We propose an iterative algorithm to solve it.

In Theorem 1, we have proved that the solution of (5) can
be obtained by solving (6). Let B = PΛQT be the SVD of
B. We solve the following optimization problem iteratively

(P̂, Λ̂, Q̂) = arg min
P,Λ,Q

‖PΛQT −Σ‖2F + ‖PΛQT ‖w,∗,

s.t.PTP = I,QTQ = I
(7)

where I is the identity matrix.
Step1: Given non-negative diagonal matrix Λ, we solve

(P̂, Q̂) = argminP,Q ‖PΛQT −Σ‖2F .

Based on the definition of Frobenius norm, we have

minP,Q ‖PΛQT −Σ‖2F
=minP,Q tr[(PΛQT −Σ)(PΛQT −Σ)T ]

=tr[ΛΛ+ΣΣ]− 2maxP,Q tr[PΛQTΣT ]

=tr[ΛΛ+ΣΣ]− 2
∑
i σi(Σ)σi(Λ) (Lemma 3)

and the optimal solution of P and Q are the column and row
bases of the SVD of matrix Λ. As Λ is already a diagonal
matrix, P and Q are permutation matrices which make the
diagonal matrix PΛQT have non-ascending ordered diago-
nal elements.

Step2: Given orthogonal matrices P and Q, we solve

Λ̂ = argminΛ ‖PΛQT −Σ‖2F + ‖PΛQT ‖w,∗.

Since PΛQT is a diagonal matrix which has non-ascending
ordered elements, we have

Λ̂ = argminΛ
∑
i ‖(PΛQT )ii−Σii‖22+|wi ·(PΛQT )ii|1.

The soft-thresholding operation can be performed on each
element of diagonal matrix PΛQT . Because P and Q are
permutation matrices which only change the positions of
diagonal elements, we have

Λ̂ = PTSw(Σ)Q.

By iterating between the above two steps, (6) can be
solved iteratively via sorting the diagonal elements and
shrinking the singular values:{

(PT(k+1),Φ,Q
T
(k+1)) = SV D(Λ(k));

Λ(k+1) = PT(k+1)Sw(Σ)Q(k+1).
(8)

Based on the conclusion of Theorem 1, the final estimation
of X̂ can be obtained by

X̂ = UP̂
TSw(Σ)Q̂VT .

2.2.3 The weights are in a non-descending order

At last, we consider another special but very useful case,
i.e., the weights wi,...,n are in a non-descending order.
Based on the iterative algorithm proposed in subsection
2.2.2, we have the following corollary.

Corollary 1. If the weights satisfy 0 ≤ w1 ≤ . . . ≤ wn, the
iterative algorithm described in subsection 2.2.2 will have
a fixed point X̂ = USw(Σ)VT .

Proof. In (8), by initializing Λ(0) as any diagonal matrix
with non-ascending ordered diagonal elements, we have{

(P(1) = I,Φ = Λ(0),Q(1) = I) = SV D(Λ(0));

Λ(1) = ISw(Σ)I = Sw(Σ).

Consequently, ∀0 < i < j ≤ n, we have Σii ≥ Σjj and
wi ≤ wj . After soft-thresholding operation, Λ(1) = Sw(Σ)
still satisfies the non-ascending order. Thus in the next it-
eration, P and Q are still identity matrices, and the opti-
mization of (7) reaches a fix point. Based on the conclu-
sion of Theorem 1, we obtain a fix point estimation of X by
X̂ = USw(Σ)VT .

The conclusion in Corollary 1 is very important and use-
ful. The singular values of a matrix are always sorted in a
non-ascending order, and the larger singular values usually
correspond to the subspaces of more important components
of the data matrix. Therefore, we’d better shrink the larger
singular values less, that is, assigning smaller weights to the
larger singular values in the weighted nuclear norm. In such
a case, Corollary 1 guarantees that our proposed iterative
algorithm has a fixed point. Furthermore, this fixed point
has an analytical form (i.e., X̂ = USw(Σ)VT ). Hence, in
practice we do not need to really iterate, but directly get
the desired solution in a single step, which makes the pro-
posed method very efficient. As we will see in the follow-
ing Section 3, Corollary 1 offers us an effective denoising
algorithm, which shows superior denoising performance to
almost all state-of-the-art denoising algorithms we can find.
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3. WNNM for Image Denoising
Image denoising aims to reconstruct the original image x

from its noisy observation y = x+n, where n is assumed to
be additive Gaussian white noise with zero mean and vari-
ance σ2

n. Denoising is not only an important pre-processing
step for many vision applications, but also an ideal test
bed for evaluating statistical image modeling methods. The
seminal work of nonlocal means [1] triggers the wide study
of nonlocal self-similarity (NSS) based methods for image
denoising. NSS refers to the fact that there are many re-
peated local patterns across a natural image, and those non-
local similar patches to a given patch can help much the
reconstruction of it. The NSS based image denoising algo-
rithms such as BM3D [7], LSSC [22] and NCSR [10] have
achieved state-of-the-art denoising results.

For a local patch yj in image y, we can search for its non-
local similar patches across the image (in practice, in a large
enough local window) by methods such as block matching
[7]. By stacking those nonlocal similar patches into a ma-
trix, denote by Yj , we have Yj = Xj + Nj , where Xj and
Nj are the patch matrices of original image and noise, re-
spectively. Intuitively, Xj should be a low rank matrix, and
the low rank matrix approximation methods can be used
to estimate Xj from Yj . By aggregating all the denoised
patches, the whole image can be estimated. Indeed, the
NNM method has been adopted in [15] for video denoising.
We apply the proposed WNNM model to Yj to estimate Xj
for image denoising. By using the noise variance σ2

n to nor-
malize the F-norm data fidelity term ‖Yj −Xj‖2F , we have
the following energy function:

X̂j = argminXj

1
σ2
n
‖Yj − Xj‖2F + ‖Xj‖w,∗. (9)

Obviously, the key issue now is the determination of the
weight vector w. For natural images, we have the general
prior knowledge that the larger singular values of Xj are
more important than the smaller ones since they represent
the energy of the major components of Xj . In the appli-
cation of denoising, the larger the singular values, the less
they should be shrunk. Therefore, a natural idea is that the
weight assigned to σi(Xj), the i-th singular value of Xj ,
should be inversely proportional to σi(Xj). We let

wi = c
√
n
/
(σi(Xj) + ε), (10)

where c > 0 is a constant, n is the number of similar patches
in Yj and ε = 10−16 is to avoid dividing by zero.

With the above defined weights, the proposed WNNM
algorithm in subsection 2.2.3 can be directly used to solve
the model in (9). However, there is still one problem re-
maining, that is, the singular values σi(Xj) are not avail-
able. We assume that the noise energy is evenly distributed
over each subspace spanned by the basis pair of U and V,

and then the initial σi(Xj) can be estimated as

σ̂i(Xj) =
√

max(σ2
i (Yj)− nσ2

n, 0),

where σi(Yj) is the i-th singular value of Yj . Note that
the obtained weights wi=1,...,n are guaranteed to be in a
non-descending order since σ̂i(Xj) are always sorted in a
non-ascending order. By applying the above procedures to
each patch and aggregating all patches together, the image x
can be reconstructed. In practice, we can run several more
rounds of those procedures to enhance the denoising out-
puts. The whole denoising algorithm is summarized in Al-
gorithm 1.

Algorithm 1 Image Denoising by WNNM
Input: Noisy image y

1: Initialize x̂(0) = y, y(0) = y
2: for k=1:K do
3: Iterative regularization y(k) = x̂(k−1) + δ(y− ŷ(k−1))
4: for each patch yj in y(k) do
5: Find similar patch group Yj

6: Estimate weight vector w
7: Singular value decomposition [U,Σ,V] = SV D(Yj)
8: Get the estimation: X̂j = USw(Σ)VT

9: end for
10: Aggregate Xj to form the clean image x̂(k)

11: end for
Output: Clean image x̂(K)

4. Experiments
We compare the proposed WNNM based image denois-

ing algorithm with several state-of-the-art denoising meth-
ods, including BM3D [7], EPLL [31], LSSC [22], NCSR
[10] and SAIST [9]. The baseline NNM algorithm is also
compared. All the competing methods exploit the image
nonlocal redundancies. In subsection 4.1, we discuss the pa-
rameter settings in the WNNM denoising algorithm; in sub-
section 4.2, we evaluate WNNM and its competing methods
on 20 widely used test images.

4.1. Parameter Setting

There are several parameters (δ, c, K and patch size) in
the proposed algorithm. For all noise levels, the iterative
regularization parameter δ and the parameter c are fixed to
0.1 and 2.8, respectively. Iteration numberK and patch size
are set based on noise level. For higher noise level, we need
to choose bigger patches and run more times the iteration.
By experience, we set patch size to 6 × 6, 7 × 7, 8 × 8
and 9 × 9 for σn ≤ 20, 20 < σn ≤ 40, 40 < σn ≤ 60
and 60 < σn, respectively. K is set to 8, 12, 14, and 14
respectively, on these noise levels.

For NNM, we use the same parameters as WNNM ex-
cept for the uniform weight

√
nσn. The source codes of the
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(a) Ground truth (b) Noise image (c) Result of BM3D (d) Result of EPLL 

    
(e) Result of LSSC (f) Result of NCSR (g) Result of SAIST (h) Result of WNNM 

Fig. 4 denoising results by different method in the noise level Sigma=50 

 

 

 

 

 

 

          

          

          

 

 

 

 

 

 

 

 

        

       

       

 

          

          
 Figure 1. The 20 test images.

competing methods are obtained from the original authors,
and we use the default parameters.

4.2. Experimental Results on 20 Test Images

We evaluate the competing methods on 20 widely used
test images, whose scenes are shown in Fig. 1. Zero mean
additive white Gaussian noises with variance σ2

n are added
to those test images to generate the noisy observations. Due
to page limit, we show the results on four noise levels, rang-
ing from low noise level σn = 10, to medium noise levels
σn = 30 and 50, and to strong noise level σn = 100. Re-
sults on more noise levels can be found in the supplemen-
tary material. The PSNR results by the competing denoising
methods are shown in Table 1. The highest PSNR result for
each image and on each noise level is highlighted in bold.
We have the following observations. First, the proposed
WNNM achieves the highest PSNR in almost every case.
It achieves 1.3dB-2dB improvement over the NNM method
in average and outperforms the benchmark BM3D method
by 0.3dB-0.45dB in average (up to 1.16dB on image Leaves
with noise level σn = 10) consistently on all the four noise
levels. Such an improvement is notable since few methods
can surpass BM3D more than 0.3dB in average [18, 17].
Second, some methods such as LSSC and NCSR can out-
perform BM3D a little when the noise level is low, but their
PSNR indices become almost the same as, or lower than,
those of BM3D with the increase of noise level. This shows
that the proposed WNNM method is more robust to noise
strength than other methods.

In Fig. 2 and Fig. 3, we compare the visual quality of
the denoised images by the competing algorithms (more vi-
sual comparison results can be found in the supplementary
material). Fig. 2 demonstrates that the proposed WNNM
reconstructs more image details from the noisy observation.
Compared with WNNM, methods LSSC, NCSR and SAIST
over-smooth more the textures in the sands area of image
Boats, and methods BM3D and EPLL generate more arti-
facts. More interestingly, as can be seen in the highlighted
window, the proposed WNNM can still well reconstruct the
tiny masts of the boat, while the masts are almost disap-
peared in the reconstructed images by other methods. Fig.
3 shows an example with strong noise. It is obvious that
WNNM generates much less artifacts and preserves much
better the image edge structures than other competing meth-
ods. In summary, WNNM shows strong denoising capabil-
ity, producing visually much more pleasant denoising out-
puts while having higher PSNR indices.

5. Conclusion
As a significant extension of the nuclear norm mini-

mization problem, the weighted nuclear norm minimization
(WNNM) was studied in this paper. We showed that, when
the weights are in a non-ascending order, WNNM is still
convex and we presented the analytical optimal solution;
when the weights are in an arbitrary order, we presented
an iterative algorithm to solve it; when the weights are in
a non-descending order, we proved that the iterative algo-
rithm can result in an analytical fixed point solution, which
can be efficiently computed. We then applied the proposed
WNNM algorithm to image denoising. The experimental
results showed that WNNM can not only lead to visible
PSNR improvements over state-of-the-art methods such as
BM3D, but also preserve much better the image local struc-
tures and generate much less visual artifacts. It can be ex-
pected that WNNM will have more successful applications
in computer vision problems.
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Figure 2. Denoising results on image Boats by different methods (noise level σn = 50).
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Figure 3. Denoising results on image Monarch by different methods (noise level σn = 100).
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