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Abstract

Sparse coding is a widely involved technique in com-
puter vision. However, the expensive computational cost
can hamper its applications, typically when the codebook
size must be limited due to concerns on running time. In
this paper, we study a special case of sparse coding in which
the codebook is a Cartesian product of two subcodebooks.
We present algorithms to decompose this sparse coding
problem into smaller subproblems, which can be separately
solved. Our solution, named as Product Sparse Coding
(PSC), reduces the time complexity from O(K) to O(

√
K)

in the codebook size K. In practice, this can be 20-100×
faster than standard sparse coding. In experiments we
demonstrate the efficiency and quality of this method on the
applications of image classification and image retrieval.

1. Introduction
Sparse Coding (SC) [23] is a broadly studied and suc-

cessful technique in computer vision. It represents a given
vector as a sparse linear combination of the elements in a
codebook. Its applications involve image denoising [1], im-
age super-resolution [31], image segmentation [21], image
classification [32], face recognition [29], etc.

However, sparse coding is computationally expensive.
The state-of-the-arts solutions, such as the Least Angle Re-
gression (LARS) [6] and the Feature Sign algorithm [19],
present a time complexity ofO(K) in the codebook sizeK.
This computational cost is still demanding when the code-
book is large and a considerable set of vectors have to be en-
coded, e.g., as in the scenario of image classification [32].
As a result, the sparse-coding-based methods may retreat
to use smaller codebooks (e.g., K=1000 in [32]) for prac-
tical running time, but the smaller codebooks may hamper
the representing ability and the quality. Thus the sparse-
coding-based methods can appear less competitive due to
the limited codebook size, typically when the accuracy of
other encoding methods can be improved by simply enlarg-
ing the codebook (before over-fitting) [4].
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Closely related to sparse coding, Vector Quantization
(VQ) [12] is another widely used technique in computer
vision. Vector quantization finds the nearest codeword to
encode a vector (Fig. 1(a)). Although this seems a simple
computation, it turns out to be nontrivial if exponentially
large codebooks are used, e.g., in the case of data compres-
sion [12] and nearest neighbor search [14, 3]. The Product
Quantization (PQ) [12, 14] is an efficient solution to expo-
nentially large codebooks. The basic idea is to decompose
the vector space into the Cartesian product of subspaces
and separately quantize each subspace by a subcodebook
(Fig. 1(b)). With m small subcodebooks of a size k, the
effective codebook size in the full space is K=km, while
the complexity is O( m

√
K). The product quantization tech-

niques have witnessed great success in large scale problems,
including nearest neighbor search [14, 3, 9, 10, 22, 30] and
large scale learning [25, 27].

Driven by PQ, in this work we present a method called
Product Sparse Coding (PSC). It shares the same encoding
model as sparse coding, but requires the codebook to be a
Cartesian product of smaller subcodebooks. The relation
of SC vs. PSC is analogous to the relation of VQ vs. PQ
(Fig. 1). If we can separately solve smaller subproblems in
each subspace, we can reduce the linear time complexity of
sparse coding.

But unlike PQ, the PSC problem is not readily separable
because the subproblems are mutually dependent. In this
paper we investigate the case of two subspaces. We find the
dependency of the two subspaces can be determined by a
single unknown variable. We propose a binary search solu-
tion to compute this variable. Then we can separately solve
smaller subproblems. Under some conditions, we theoret-
ically prove this solution to the PSC problem is globally
optimal. We further present an approximate solution that is
more efficient and works well in practice.

For a codebook of the size K, PSC has a time complex-
ity of O(

√
K). So it is a very efficient solution to large

codebooks that are infeasible for sparse coding methods.
For example, it can increase the speed by 20-100× when
K > 104. The gain in speed is at the price of constraining
the codebook to be a product of subcodebooks (Fig. 1(d)).
So our solution is a trade-off between speed and quality.
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Figure 1: The illustrations of Vector Quantization (VQ), Product Quantization (PQ), Sparse Coding (SC), and Product Sparse
Coding (PSC). A green circle denotes a codeword, and a red triangle denotes a vector to be encoded. An arrow indicates a
codeword that contributes a non-zero coefficient. An axis represents a subspace in which a subcodebook lies. The subspaces
can be high-dimensional. In this illustration, each subcodebook in PQ/PSC has 4 subcodewords, while the effective number
of codewords in the full space is 16.

This trade-off can be worthwhile or even necessary, typi-
cally when the high computational cost prohibits the usage
of large codebooks for sparse coding. This will be demon-
strated in the applications of image classification [32] and
image retrieval [15]. We will show PSC has competitive
accuracy among various state-of-the-art methods for these
applications, while is very efficient.

How does PSC work? Consider a “color” subcode-
book that consists of 4 elements {red, yellow, green, blue},
and another “shape” subcodebook that consists of {circle,
square, triangle, ellipse}. The Cartesian product of these
two subcodebooks involves 16 distinct elements (Fig. 1(d)).
To encode a new item, we need not explicitly enumerate all
16 elements, but instead only need to visit 4 elements in
each of the two subcodebooks.

2. Formulations
2.1. Background: from Vector Quantization to

Product Quantization

Let x ∈ Rd be a vector to be encoded. Suppose the
codebook is given. The encoding problem of VQ [12] can
be formulated as:

min
y
‖x−Ay‖2, (1)

s.t. ‖y‖0 = 1, |y| = 1,y � 0.

Here A is a d-by-K matrix called a codebook, y is a K-
by-1 vector called a code, ‖ · ‖ is the l2 norm, ‖ · ‖0 is the
zero norm (number of non-zero entries), and | · | are the
l1 norm. The codebook A has K codewords as its columns.
The constraint means y has one and only one non-zero entry
whose value is 1. Minimizing (1) is equivalent to finding the
nearest codeword. See Fig. 1 (a).

The Product Quantization (PQ) [12, 14] can be consid-
ered as a special case of VQ when the codebook is the
Cartesian product of subcodebooks. In the case of two

subcodebooks, the encoding problem of PQ can be written
as [9, 10]:

min
y
‖x−Ay‖2, (2)

s.t. ‖y‖0 = 1, |y| = 1,y � 0

and A = A1 ×A2.

where “×” denotes the Cartesian product. A1 and A2 are
two subcodebooks of a size d

2 -by-k. Any codeword in A is
the concatenation of a subcodeword in A1 and a subcode-
word in A2. So A is a d-by-K matrix with K = k2 (if there
are m subspaces, then K = km). See Fig. 1 (b).

The PQ problem in (2) can be separated into smaller in-
dependent subproblems. Each subproblem is simply apply-
ing VQ in the subspaces with the subcodebook. The cost
of each subproblem is merely O(

√
K), whereas the cost of

directly applying VQ on (2) would be O(K).

2.2. From Sparse Coding to Product Sparse Coding

SC is closely related to VQ [32, 5]. In this paper we
consider the SC problem in this form:

min
y
‖x−Ay‖2 + λ|y|, (3)

s.t. y � 0

where A is a d-by-K codebook and λ is a regularization
parameter. The constraint y � 0 means all entries in the
code are non-negative. An illustration is in Fig. 1 (c).

It can be time-consuming to solve (3). The state-of-the-
art methods have a time complexity linear in K and also in
other nontrivial factors (more details are in Sec. 3.5).

Motivated by the relation between VQ and PQ, we
propose a new formulation called Product Sparse Coding



(PSC). We only consider the case of two subspaces:

min
y
‖x−Ay‖2 + λ|y|, (4)

s.t. y � 0

and A = A1 ×A2.

Here A1 and A2 are subcodebooks of a size d
2 -by-k, and A

is their Cartesian product and is d-by-K withK = k2. This
is illustrated in Fig. 1 (d).

If we can separate this problem into two subproblems as
in PQ, the time complexity of each subproblem can become
linear in

√
K. However, this problem is not readily sepa-

rable due to the regularization λ|y|. In the following we
propose solutions to this issue.

3. Algorithms
3.1. Separate the Problem

In the case of two subspaces, we denote x =

[
x1

x2

]
where

x1 and x2 are the first and second subvector of x (that is,
the first/second half of its entries). Further, any codeword in

A can be represented as
[
a1,i
a2,j

]
where a1,i is the i-th code-

word in A1 and a2,j the j-th in A2, for i, j = 1, ..., k. We
denote the coefficient of this codeword as yij (note y is still
a vector). Then the objective function in (4) becomes:

‖
[
x1

x2

]
−
∑
i,j

[
a1,i
a2,j

]
yij‖2 + λ|y|. (5)

The first term can be expanded as:

‖x1−
∑
i

(a1,i
∑
j

yij)‖2+‖x2−
∑
j

(a2,j
∑
i

yij)‖2. (6)

We introduce two vectors u1 and u2 of the size k-by-1,
whose entries are:

u1,i =
∑
j

yij , u2,j =
∑
i

yij . (7)

Note u1 and u2 are two marginal sums. Then (6) becomes:

‖x1 −A1u1‖2 + ‖x2 −A2u2‖2. (8)

This gives a separate representation of the first term in (5).
This is also a way of separating the PQ problem in (2).

Because y � 0, so the vectors u1 and u2 are subject
to the constraint

∑
i,j |yij | =

∑
i |u1,i| =

∑
j |u2,j |, or

equivalently:
|y| = |u1| = |u2|. (9)

To give a separate form of |y|, we introduce a parameter λ1
to be determined (0 < λ1 < λ). Denoting λ2 = λ− λ1, we

can rewrite the PSC problem (4) as:

min
u1,u2

‖x1 −A1u1‖2 + λ1|u1|+ ‖x2 −A2u2‖2 + λ2|u2|

s.t. u1 � 0,u2 � 0 (10)
and |u1| = |u2|.

If we ignore the constraint |u1| = |u2|, we can have two
separate subproblems:

min
u1

‖x1 −A1u1‖2 + λ1|u1|,

s.t. u1 � 0. (11)

min
u2

‖x2 −A2u2‖2 + λ2|u2|,

s.t. u2 � 0.

Each is a SC problem as in (3). But the codebooks A1 and
A2 are much smaller. Solving these two subproblems can
be much faster.

Suppose λ1 has been set to a “special” value λ∗1 that the
two subproblems will produce a pair of solutions u1 and u2

satisfying |u1| = |u2|. Given u1 and u2, the solution y is
not unique because only two of its marginal sums are given.
We show the following y is a solution that satisfies (7):

yij = u1,iu2,j/
√
|u1||u2|, (12)

or equivalently:

y =
vec(u1u

T
2)√

|u1||u2|
(13)

where vec(·) rearrange the matrix u1u
T
2 into a vector.

If such a value λ∗1 exists, then we can proof the solution
y in (13) is a global optimum of the PSC problem (4) (see
Theorem A.1). If we can find the value λ∗1, then we can
obtain a solution to the PSC problem (4) simply from the
solutions to the subproblems (11).

Before we introduce an algorithm to find λ∗1, we should
note λ∗1 does not always exist (explained later). In case it
does not exist, the global optimal solution to (4) can not be
obtained through the subproblems.

3.2. An Iterative Algorithm

Next we describe an algorithm to compute λ∗1 if it exists.
Consider the solutions u1 and u2 to the separated subprob-
lems in (11). We can proof if λ1 increases, then |u1| is non-
increasing. Intuitively, the increased λ1 will penalize |u1|
more, so |u1| will not increase. A formal proof is in Theo-
rem A.2. So |u1| is a monotonically decreasing function in
λ1. Similarly, because λ2 = λ− λ1, so |u2| is a monotoni-
cally increasing function in λ1. See Fig. 2 (left). If the two
monotonically curves intersect in the range of (0, λ), then
λ∗1 exists.

The monotonicity leads to a simple binary search (half-
interval search) algorithm of finding λ∗1. Consider an initial
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Figure 2: Left: |u1| (blue) and |u2| (red) are monotonic
functions in λ1. The unit of the x-axis is λ. If λ∗1 exists, it
is at the intersection of the curves. Right: If the two mono-
tonic curves do not intersect, then λ∗1 does not exist.

value of λ1, like λ/2. We use this value to solve the separate
subproblems in (11). If |u1| = |u2|, then we have found the
expected value. If not, without loss of generality, we con-
sider |u1| < |u2|. Because of the monotonicity, it is easy to
show any λ1 ∈ [λ/2, λ) will also leads to |u1| < |u2| (see
Fig. 2 left). So the search range of λ1 can be halved and
becomes (0, λ/2).

We can iterate this procedure. After each iteration, the
search range is halved, and the true λ∗1 can only be found
in this range. The iteration stops when |u1| = |u2| or
the search range is sufficiently narrow. This solution is de-
scribed in Algorithm 1. This algorithm always converges to
the solution |u1| = |u2| if λ∗1 exists. We called it Iterative
Product Sparse Coding (IPSC). Fig. 1 shows the behavior of
IPSC in 100 randomly sampled SIFT vectors. We see that
after 10 iterations (the search range spans λ/1024) the gap
between |u1| and |u2| is ignorable.

But there are cases that λ∗1 does not exist. Fig. 2 (right)
shows an example - the two monotonic curves do not inter-
sect. If this happens, the PSC problem (4) is not separable in
our way. Fig. 2 (right) also indicates this will happen when
λ1 → 0 gives |u1| < |u2|, or λ1 → λ gives |u1| > |u2|.
This suggests the magnitudes of the two subvectors x1 and
x2 are very imbalanced. In our experiments, these cases are
in a few number. In a set of one million randomly sampled
SIFT vectors, there are about 1% of such cases. In case it
happens, IPSC stops at the max iteration and can still out-
put y using (13), but the global optimality is lost. In the
pooling-based applications [32], we find there is no observ-
able impact in practice.

3.3. An Approximate Algorithm

Next we describe a non-iterative approximate solution
that works well in practice. In our PSC problem in (4), the
task is to find the code y. If we ignore the constraint |u1| =
|u2|, then any pair of u1 and u2 can still produce a vector y

Algorithm 1 Iterative Product Sparse Coding (IPSC)

Input: A1, A2, λ, x.
Output: y

1: Initialize λmin
1 = 0, λmax

1 = λ.
2: repeat
3: Set λ1 = (λmin

1 + λmax
1 )/2.

4: Set λ2 = λ− λ1.
5: Solve (11) for u1 and u2.
6: if |u1| < |u2| then
7: Set λmax

1 = λ1.
8: else
9: Set λmin

1 = λ1.
10: end if
11: until |u1| = |u2| or max iterations reached.
12: Set y = vec(u1u

T
2)/
√
|u1||u2|
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Figure 3: The convergence of Iterative Product Sparse Cod-
ing (IPSC). The x-axis is the number of iterations. The y-
axis is the value of |u1| − |u2|. Here the results of 100
randomly sampled 128-D SIFT vectors are shown, each by
a curve. The subcodebook size is k = 64.

through (13). So we can simply use a heuristic λ1, like λ/2,
to separate the problem.

Formally, the Approximate Product Sparse Coding
(APSC) has these steps: (i) set λ1 = λ2 = λ/2, (ii) solve
the two subproblems in (11), and (iii) compute y using (13).

In experiments we find the simple APSC is a reasonable
approximation of the global optimum achieved by IPSC (if
λ∗1 exists). Table 1 shows the objective function values in
(4) computed using the resulting y given by IPSC/APSC.
The values are averaged over 105 randomly sampled SIFT
vectors (in which λ∗1 exists). We see the relative error is
smaller than 1%. A possible explanation is that the two
subspaces of the SIFT vectors are about balanced, and λ∗1
might be not far from λ/2.

As an approximate algorithm, APSC need not consider
the existence of λ∗1. We find APSC works well in the appli-



IPSC APSC relative error
0.590 0.594 7e-3

Table 1: The values of the objective function averaged over
105 randomly sampled SIFT vectors.

cations (Sec. 4).

3.4. Codebook Training

Next we describe the codebook training. Note, however,
the above derivations are true for any codebook satisfying
A = A1 ×A2, not necessarily trained in the way below.

Given a sample set {xs}, we optimize:

min
A1,A2,{ys}

∑
s

(
‖xs −Ays‖2 + λ|ys|

)
, (14)

s.t. ys � 0, ∀s
A = A1 ×A2,

and ‖a1,i‖2 = ‖a2,j‖2 = 1/2, i, j = 1, ..., k

where ys is the code of a sample xs. Here a1,i and a2,j
are the subcodewords in the subcodebooks A1 and A2.
‖a1,i‖2 = ‖a2,j‖2 = 1

2 guarantees that the l2-norm of any
codeword in A is 1.

We use an EM-alike solution to optimize (14) just like
traditional VQ/SC. With A1,A2 fixed, we solve each ys

using IPSC or APSC. With {ys} fixed, we first compute
{us

1,u
s
2} using (7). Then we compute A1 and A2 through

separately minimizing two subproblems given by (8), each
of which can be solved by [19]. This process is iterated.

In the entire procedure we never need to express the
product matrix A. If the APSC is used to solve for ys, then
the algorithm is equivalent to separately training A1 and A2

in the two subspaces. The training using APSC is very effi-
cient. For example, it takes less than one minute to train the
codebooks using 105 SIFT when K=16384 (k=128).

3.5. Complexity

The PSC is a special case of sparse coding when a prod-
uct codebook is used. Because PSC only need to solve
smaller subproblems, its complexity is low even the product
codebook is large.

We adopt a state-of-the-art SC solver - the Feature Sign
(FS) algorithm [19]. For a general (non-product) codebook
A of a size d-by-K, the time complexity of FS is roughly
O(Kd)+O(KS) per vector, where S is the “sparsity” of
the code (number of non-zero entries). Here O(Kd) is con-
tributed by projecting x onto the codebook, and O(KS) is
due to the feature sign steps.

Now consider a product codebook A. If the sparsity in
each of u1 or u2 is s, then the sparsity of the code y in (13)
is S = s2. We use the FS algorithm to solve the two sub-
problems. Then the APSC algorithm has a time complexity

O(2k d
2 )+O(2ks)=O(

√
Kd)+O(2

√
KS). The complexity

is much smaller than SC mainly due to the square root.
Our algorithm also has a smaller memory complex-

ity. Throughout the encoding/training algorithms, we never
need to explicitly compute or store the matrix A. All the
computation can be done by A1 and A2. We consider the
case of encoding a large set of vectors, e.g., as in image
classification [32]. One way of efficiently applying FS is to
pre-compute the K-by-K Gram matrix (ATA) [32]. This
matrix consumes O(K2) memory. In PSC we only need
to pre-compute two smaller k-by-k Gram matrices (AT

1A1

and AT
2A2). Their memory cost is O(2k2) = O(2K). This

is a significantly smaller consumption. For example, the
Gram matrix of SC takes 2.14GB memory when K=16384,
whereas the two smaller Gram matrices of PSC take only
262KB (k=128). Further, it is time-consuming to access a
large Gram matrix. So the memory issue also impacts run-
ning time.

We should remark the above time/memory gain is the re-
sult of using a product codebook A = A1×A2. Because the
SC method does not have this constraint, it can use a better
codebook. So there is a trade-off between the time/memory
gain and quality loss. We will demonstrate this trade-off by
experiments.

4. Experiments
In all the experiments we use the APSC algorithm unless

specified, because we find the improvement of using IPSC
is ignorable compared with APSC.

4.1. Computational Efficiency

We randomly sample 2×105 SIFT vectors (d=128)
[20] extracted from the Caltech101 image set [8]. We
train a codebook A of the size d-by-K for SC, and two
subcodebooks A1 and A2 of the size d

2 -by-
√
K for PSC.

We use 105 vectors to train. The remaining 105 vectors are
to be encoded. All experiments are on a workstation with
an Intel Xeon 2.67GHz CPU using a single thread. The im-
plementation of all methods is in C++. Table 2 shows the
total encoding time of SC and PSC for 105 vectors when
K=16384. The parameter λ is set 0.3, as we will use for
image classification1 (Sec. 4.2).

In Table 2, SC-FS is the Feature Sign variant that com-
putes the Gram matrix before encoding all the vectors. The
APSC also uses this Feature Sign algorithm to solve the two
subproblems in (11). We see APSC is faster than SC-FS by
104×. This is consistent with the complexity estimation:
from O(K) to O(

√
K).

We also evaluate two more variants of SC solvers based
on FS. In the variant SC-FS-OTF, the full Gram matrix is

1For SC/PSC, we normalize the SIFT vectors so the l2 norms are 1.
The value of λ corresponds to this implementation.



method time (s) vs. APSC
SC-FS 490 104×

SC-FS-OTF 634 135×
SC-FS-NN 114 24×

IPSC 14 3×
APSC 4.7 -

Table 2: Computational time of encoding 105 SIFT vectors.
The codebook size isK=16384. The running time are given
in seconds. The column “vs. APSC” shows the multiples of
the APSC running time.

not computed; instead, a smaller Gram matrix is computed
“on-the-fly” (OTF) in the feature sign iterations. This is as
originally described in [19]. Though this is more economic
for encoding a single vector, it is not the case for encoding
a large set of vectors with the same codebook. It is slower
than SC-FS for encoding 105 vectors.

The variant SC-FS-NN is used in the public code in [32].
It finds the n nearest codewords to the vector, and solves
a smaller SC problem that consists of these n codewords.
Its time complexity is O(Kd) + O(nS) per vector. Note
O(Kd) is because of the nearest neighbor search. Here we
use n=200 as in [32]. We see this solution is faster than
SC-FS, but is still slower than PSC by 24×. This is because
O(Kd) still contributes substantially to the running time.

We also evaluate the running time of IPSC using 10 iter-
ations. Its running time is 3× of the APSC. It is not linear
on the iteration number because some intermediate results
can be reused in the IPSC iterations.

4.2. For Image Classification

Our first application of PSC is image classification [32,
4, 5]. The experiment settings follow those in the bench-
mark paper [4] and its public code. We evaluate on the Cal-
tech101 dataset [8]. It contains about 9K images in 102 cat-
egories (one background). For each image we extract 128-D
SIFT vectors at four scales and a step size 4. These SIFT
vectors are encoded using SC, PSC, or other methods. The
codes y are pooled to generate the image representation. We
use the spatial pyramid pooling (SPM) [18] in three levels:
1×1, 2×2, and 4×4 for a total of 21 regions. We use max
pooling for SC and PSC. The pooled image representations
are used to train a linear SVM [7]. We use 30 images per
category for training and the rest for testing. The perfor-
mance is evaluated by the average classification accuracy.
The implementation is in Matlab, except the encoding steps
are in mex. The SC-FS-NN is used as solver for SC.

Table 3 shows the performance of SC and PSC. We use
K=4096, 8100, and 16384, corresponding to k=64, 90, 128.
We use λ=0.3 for both SC and PSC. We see our method is
slightly worse than SC at the same K. This is as expected,
because our codebook is not as accurate as SC due to the

accuracy (%) encoding time (s)
K SC PSC SC PSC

4096 (642) 77.91 76.71 10.5 0.45
8100 (902) 78.40 77.45 12.2 0.54

16384 (1282) 78.55 78.02 14.6 0.65

Table 3: The comparisons between SC/PSC in Caltech101.
The mean accuracy is shown in percentage. The encoding
time (in seconds) is the average per image, not including
SIFT extraction. The SC is using SC-FS-NN.

product constraint.
Despite the small accuracy loss, we see the speed gain is

large. Table 3 shows the average time spent on encoding an
image (not including SIFT extraction). We see PSC is much
faster. In our implementation based on [4], the total running
time of encoding the 9K images (including SIFT extraction)
is less than 15 minutes using 8 cores when K = 4096. As
a comparison, in the same setting SC takes over 4 hours to
encode when K = 4096.

In Table 4 we further compare with other methods for
classification [4]. The VQ method, implemented in [4], is
the bag-of-words method [26] using SPM [18]. It is slower
than PSC and is not as accurate. The Locality-constrained
Linear Coding (LLC) [28] encodes a vector by finding the
n nearest codewords and solves a least square problem on
them. The implementation in [4] sets n as 5. The main cost
is in the nearest neighbor search. The Fisher Vector (FV)
[24] is based on a Gaussian-Mixture-Model (GMM) as the
codebook. It can generate high-dimensional (e.g., 40960-d)
codes using a small codebook (e.g.,K=256). Table 4 shows
PSC performs at least comparably good as LLC and FV, but
is faster than these methods.

Table 4 also shows SC is a competitive method given
sufficiently large codebooks. So its power is mostly limited
by the intolerable running time in practice.

We also evaluate different ways of subspace decomposi-
tion in PSC. In the case of PQ, the decomposition is impor-
tant for the quality [14, 9, 10, 22]. In our experiments, the
vector x is arranged as the so-called “natural” order [14] of
SIFT. So PSC decomposes the spatial bins of a SIFT vector
into upper/lower parts (horizontal split). Alternatively, we
can decompose the spatial bins into left/right parts (vertical
split). We also test the “structural” order [14] that decom-
poses the orientation bins of a SIFT vector. Table 5 shows
the result of PSC usingK=4096. We see the the two natural
orders performs similarly, and the structural order is slightly
worse. In the other part of this paper we use the horizonal
natural order.

4.3. For Image Retrieval

Image retrieval [15] is a scenario related to image classi-
fication but has different concerns. Image retrieval focuses



method dimensionality accuracy (%) time (s)
SC 4096 77.91 10.5
SC 16384 78.55 14.6

PSC 4096 76.71 0.45
PSC 16384 78.02 0.65

VQ [4] 4000 74.41 1.94
VQ [4] 8000 74.23 2.18

LLC [28] 4000 76.15 2.41
LLC [28] 8000 76.95 2.65
FV [24] 40960 77.78 2.12

Table 4: The comparisons of various methods in Cal-
tech101. The dimensionality is the size of a code. The
Fisher Vector (FV) uses K=256 codebook, but the dimen-
sionality of its code is 2Kd where d=80 due to PCA. All
the methods here use linear kernels expect VQ uses Chi-
squared kernels [4]. The time (in seconds) is the average
encoding time per image, not including SIFT extraction.

natural (hor) natural (ver) structural
76.71 76.58 76.04

Table 5: The mean accuracy in Caltech101 of different sub-
space decompositions in PSC. K=4096.

more on the encoding speed and the representation size. In
this paper we compare our method with the improved Vec-
tor of Locally Aggregated Descriptors (VLAD) [17] and the
Sparse-Coded features for image retrieval [11].

We evaluate on the Holiday dataset [13]. We resize the
images beforehand to no larger than 640×480, and extract
SIFT vectors at three scales and a step size 5. We find the
dense features improve the accuracy for both VLAD and
our method. We use the square root of each component of
a SIFT vector, known as RootSIFT [2]. In our method, the
SIFT vectors are encoded using PSC and max-pooled over
the entire image. We set λ=0.3. No SPM is used. In VLAD,
a SIFT vector finds the nearest codeword and gives a resid-
ual vector. All the residual vectors are aggregated. The ag-
gregated representation is power-normalized [17] and then
l2 normalized. Both the PSC and VLAD representations
are compressed into 128-D using PCA-whitening [16] (we
find PCA is poorer). The images are ranked using the l2
distances and mean Average Precision (mAP) is evaluated.
Table 6 and 7 show the results. We see the PSC is slower
than VLAD, but is more accurate.

We also show the performance of SC in Table 6 and 7.
VLAD and SC are two strategies of addressing the “loss
of quantization”. Our experiments show that SC can be a
superior solution for quality. The PSC slightly sacrifices
the quality of SC, but is practically fast.

mAP (%) in Holiday
dimensionality VLAD PSC SC

4K 67.89 68.34 71.37
8K 69.20 70.76 72.80
16K 71.36 74.49 74.75

Table 6: The mAP in the Holiday set. The dimensionality
is the size of a code before PCA-whitening. For VLAD, the
codebook size K is 32, 64, and 128, and its code size is Kd
(d=128). The mAP are evaluated after PCA-whitening that
compresses the representations into 128-D.

encoding time in Holiday
dimensionality VLAD PSC SC

4K 0.42 0.87 22.8
8K 0.60 1.27 27.6
16K 1.08 1.60 30.2

Table 7: The encoding time (in seconds) per image in the
Holiday set. The time excludes the SIFT extraction.

5. Limitations and Future Work

As discussed, the quality of PSC depends on the sub-
space decomposition. In the case of PQ, recent studies
[22, 9, 10] have shown the decomposition can be optimized
as an orthogonal projection. However, it is more challeng-
ing to optimize the decomposition of PSC, because the l1
term is not invariant to orthogonal projections. This can be
a future topic.

In this paper we only consider the case of two subspaces.
It has already provided good speed up by reducing the com-
plexity from O(K) to O(

√
K). But it would be interesting

to study the case of more subspaces (m > 2). Though the
APSC algorithm can be simply generalized by using λ/m
in each subproblem, the IPSC algorithm is not applicable
for m > 2. We will study this in the future.

We have proved that the IPSC algorithm can produce a
globally optimal solution if λ∗1 exists. In case λ∗1 does not
exist, the global optimum cannot be simply achieved from
the two separable problems. Although we have not seen any
observable impact in the experiments in this paper, it is still
an open question for future studies.

The applications studied in this paper all involve the
pooling operations. Our method may benefit from this sce-
nario, because in this case the statistical accuracy is con-
cerned. In other applications when the individual accuracy
is of particular importance (e.g., image super-resolution
[31]), the quality of our method needs further verifications.

The essence of PSC is the O(
√
K) complexity. This is

in contrast to any O(K) SC algorithm. Nevertheless, PSC
needs to solve two smaller sparse coding subproblems, each
of which is still based on SC algorithms. The future ad-



vance of the fast SC algorithms could further improve the
subproblem speed of PSC.
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A. Appendix
Theorem A.1. If λ∗1 exists, then y in (13) gives a globally
optimal solution to the PSC problem in (4).

Proof. Assume there were a solution y′ that leads to a
smaller objective value in (4). We can compute its marginal
sums u′1 and u′2 as in (7). Substituting u′1 and u′2 into (10)
with the given λ1 = λ∗1, if the assumption were true, we
have ‖x1−A1u

′
1‖2 +λ1|u′1|+ ‖x2−A2u

′
2‖2 +λ2|u′2| <

‖x1 − A1u1‖2 + λ1|u1| + ‖x2 − A2u2‖2 + λ2|u2|. On
the other hand, because u1 and u2 are the minimizers to the
two separate subproblems in (11), then the right-hand side
of the above inequality is no greater than the left-hand side,
a contradiction.

Theorem A.2. Assume u = minu�0 ‖x − Au‖2 + λ|u|
and u′ = minu′�0 ‖x − Au′‖2 + λ′|u′|. If λ′ > λ, then
|u′| ≤ |u|.

Proof. Assume |u′| > |u|. Denote ∆λ = λ′−λ > 0. Then
‖x−Au′‖2+λ′|u′| = ‖x−Au′‖2+λ|u′|+∆λ|u′| ≥ ‖x−
Au‖2+λ|u|+∆λ|u′| > ‖x−Au‖2+λ′|u|. So u is a better
minimizer than u′ in the λ′-problem, a contradiction.


