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Abstract

We present a distance metric based upon the notion of
minimum-cost injective mappings between sets. Our func-
tion satisfies metric properties as long as the cost of the
minimum mappings is derived from a semimetric, for which
the triangle inequality is not necessarily satisfied. We show
that the Jaccard distance (alternatively biotope, Tanimoto,
or Marczewski-Steinhaus distance) may be considered the
special case for finite sets where costs are derived from the
discrete metric. Extensions that allow premetrics (not nec-
essarily symmetric), multisets (generalized to include prob-
ability distributions), and asymmetric mappings are given
that expand the versatility of the metric without sacrificing
metric properties. The function has potential applications
in pattern recognition, machine learning, and information
retrieval.

1. Introduction
Measuring distance between objects plays an important

role in various disciplines including data mining, machine
learning, and information retrieval. Often the objects con-
sidered are comprised of multiple parts or are collections of
other objects. A set or a tuple are examples of such complex
objects. Assuming that the set or tuple is ordered and can
be represented as a vector, one may easily define a distance
(such as standard Euclidean). However, often one makes an
assumption that is not always true; namely, that the i-th in-
dex of a vector x corresponds to the i-th index of a vector
y. If no such correspondence exists (or it is unknown), then
one must usually resort to some less precise measure of dis-
tance. The Hausdorff distance, named after German mathe-
matician Felix Hausdorff, is an example of such a distance
that reduces the comparison of both tuples to a comparison
of just an individual element from each. In particular, the
definition of the Hausdorff distance H(A,B) between two
sets A and B is given by [14] as

H(A,B) = sup [h(A,B), h(B,A)] , (1)

where
h(A,B) = sup inf

a∈A, b∈B
D(a, b), (2)

and D(a, b) is some metric on the elements. A Hausdorff-
like distance has also been established for fuzzy sets [4].
Unfortunately, the simplicity of its definition renders the
Hausdorff distance vulnerable to outliers and potentially
an inaccurate estimate of one’s intuitive notion of distance.
The Jaccard distance, or the more general Steinhaus dis-
tance [5], is useful for comparing two unordered sets and
is defined to be the ratio of the sets’ symmetric difference
over their union. The Jaccard distance is inflexible and does
not account for partial similarity between elements. The
Jaccard distance, though, is what served as the inspiration
for the form of our metric, and it is discussed more fully in
Section 3. Another metric, similar to what we propose, is
called the Earth Mover’s Distance (EMD) [23] (or equiva-
lently Wasserstein or Mallows [17] for sets of equal mass),
which intuitively measures the amount of one set that must
be altered to transform it into the other. Gaspard Monge laid
the groundwork for the EMD in 1781 [19], and the prob-
lem was reformulated in the mid-20th century by Leonid
Kantorovich [16] [15]. The EMD, however, is only a true
metric for sets of the same size, which provides a motiva-
tion for our metric. Figalli and Gigli [9] propose an exten-
sion to the Wasserstein metric for distributions of unequal
measure by allowing transportation to and from an external
boundary. Fujita [10] proposes a generalized metric similar
in spirit to our own that is based upon the average distance
between sets and can even be seen as an alternative general-
ization of the Jaccard and other distance metrics. Eiter and
Mannila [8] propose multiple distance functions based upon
various types of mappings between sets, but in general their
functions fail to satisfy all metric properties or are difficult,
even NP-Hard, to compute. In the most similar work to our
own [22], an optimal (effectively minimum-cost) matching
metric between sets is proposed that assigns an arbitrary
penalty to unmatched elements. A normalized form of the
metric with a unit penalty is also presented, assuming that
the metric used to compare elements is also bounded. In ad-



dition, the netflow distance is proposed that assigns integer
weights to elements and allows them to be matched multiple
times. We will show that the normalized form is a subcase
of our metric.

Our primary motivation for deriving the proposed dis-
tance metric, or the minimum mapping metric, arises from
the desire to compare unlabeled, unordered point sets (or
frames) generated by a motion capture camera system. We
wish to define a distance between sets of points that takes
into account their structure, relative cardinalities, and loca-
tions. For clarification, two identical structures in different
locations or orientations should be considered different, as
well as one point set that is simply a subset of another. In
particular, the main idea is to address the failure of metric
properties of EMD on sets of unequal size. According to
EMD, two sets may be at a large distance from each other
but a distance of zero from a common superset. We use the
Jaccard distance as a template for deriving an expression
that addresses this shortcoming. In a sense, our metric may
be considered a normalized version of EMD.

2. Preliminaries
A metricM on a spaceX is a functionM : X×X 7→ R

that satisfies certain properties. The range of a metric is
non-negative. The function is also symmetric; the order of
the given inputs has no effect on the output. The identity
property must also hold where the distance between two in-
puts is zero if and only if the inputs are the same. Finally, a
metric M must satisfy the triangle inequality,

M(x, y) ≤M(x, z) +M(y, z), (3)

where x, y and z are any three possible inputs. The Eu-
clidean distance is a metric. We define the term semimetric
to indicate satisfaction of all of the preceding properties ex-
cept for the triangle inequality. An example of a semimetric
is the squared Euclidean distance, and a simple example of
it failing the triangle inequality may be noted with the points
x = (0, 0), y = (0, 1), and z = (0, 2) as elements of R2,
for which the pair-wise distances are 1, 1, and 4.

A measure µ is a function on a set that generalizes the no-
tion of area, volume, or length. The measure of a subset is
less than or equal to that of its superset, i.e. µ(A) ≤ µ(B) if
A ⊆ B. Measures also possess countable additivity, i.e. the
measure of N disjoint sets is the sum of their measures. We
assume that we are dealing with finite, non-negative mea-
surable sets for the remainder of the paper. A measure space
(X,µ) is a space X paired with a measure µ. Cardinality is
sometimes referred to as the counting measure.

Concerning notation, we will be using |A| to denote the
cardinality of set A. We will use the term discrete metric
to refer to the 0-1 distance, where d(x, y) = 0 if x = y
and d(x, y) = 1 otherwise. Discrete measure will refer to
cardinality.

3. Proposed Distance Metric
In this section we define the minimum mapping metric

and show that the Jaccard distance and normalized metric of
Ramon and Bruynooghe are special cases of it. In essence,
given two sets and a function that describes the cost of map-
ping two elements, we find a minimum-cost injective map-
ping from the smaller to the larger set. Similar to the EMD,
this mapping may be thought of as the cost of transforming
one set into the other. Unlike the EMD, however, each set
may possess its own “point-of-view” (with restrictions) for
how costly the mapping is.

The minimum mapping metric is based upon a specific
interpretation of frames, namely that they are sets in the
sense of set theory as opposed to geometric constructs.
Consequently, it is natural to base our distance function
upon the Jaccard index between two sets A and B:

J(A,B) =
|A ∩B|
|A ∪B|

, (4)

which is equal to the cardinality of the intersection ofA and
B over the cardinality of their union. Of particular impor-
tance is the fact that a distance metric JD can be defined on
the complement of J(A,B) [18],

JD(A,B) = 1− J(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
. (5)

The generalized version of the Jaccard distance, defined for
arbitrary measure µ, is the Steinhaus distance SD and can
be expressed analagously to Equation 5, e.g.

SD(A,B) =
µ(A ∪B)− µ(A ∩B)

µ(A ∪B)
. (6)

The primary obstacle that inhibits us from directly ap-
plying the Jaccard distance to frames is the fact that it is de-
fined in terms of binary set membership and element iden-
tity; an element is either in a set or not, and two elements
are either completely equal or not at all. Ideally, especially
considering potential noise and error in measurements, we
wish to allow a degree of uncertainty in element identity.
More formally, the Jaccard distance uses a discrete metric
for element comparison, and we wish to allow other metrics.
Brouwer [2] discusses an extension of the Jaccard index to
fuzzy sets, thereby addressing the binary set membership is-
sue. However, there does not appear to be much discussion
concerning whether the fuzzy Jaccard distance defined as
the complement of the fuzzy Jaccard index satisfies metric
properties.

We will first introduce subsidiary terms of the min-
imum mapping metric. We assume that we have been
given a measure space (X,µ) along with a semimetric
mD : X ×X 7→ R. We will call mD the ground distance.
In addition we assume that we have been given a function,



ν : F(X) 7→ R, where F(X) is the family of all subsets
of X with non-negative, finite measure, such that for any
A and B, ν(A) ≤ ν(B) if A ⊆ B. For example, ν could
be set diameter, constant, or even µ. Given two measur-
able sets A and B and assuming µ(A) ≤ µ(B), we seek a
minimum-cost injective mapping Ψ∗ from A to B such that
µ(Ψ∗(A)) = µ(A), i.e. the mapping preserves measure. In
particular, the cost function we wish to minimize is

Ψ∗ = arg inf
Ψ:A 7→B

[δA(Ψ) + δB(Ψ) + δAB(Ψ)] , (7)

where

δA(Ψ) =

∫
A

min

[
1,
mD(a,Ψ(a))

ν(A)

]
dµ(a), (8)

δB(Ψ) =

∫
A

min

[
1,
mD(a,Ψ(a))

ν(B)

]
dµ(a), (9)

δAB(Ψ) =

∫
A

min

[
1,
mD(a,Ψ(a))

ν(A ∪B)

]
dµ(a) . (10)

Let
δZ = δZ(Ψ∗), (11)

where Z stands for A, B, or AB. Let us also define

µ(A,B) = max [µ(A), µ(B)] , (12)

µ′(A,B) = min [µ(A), µ(B)] . (13)

We are now ready to define the minimum mapping metric.

DEFINITION 1. Given a measure space (X,µ) and a semi-
metric mD : X×X 7→ R, define F (X) to be the family of
all subsets of X with non-negative, finite measure and the
minimum mapping metric M : F (X)×F (X) 7→ R to be

M(A,B) =
µ(A,B) + δA + δB − µ′(A,B)

µ(A,B) + δA + δB − δAB
(14)

where A,B ∈ F (X).

EXAMPLE 1. The Jaccard distance is the special case
where µ is the discrete measure, the ground distance is the
discrete metric and ν(X) ≤ 1. The Steinhaus distance is the
general Jaccard distance for any measure with the discrete
metric and ν(X) ≤ 1.

EXAMPLE 2. The normalized form of the metric proposed
in [22] is the special case of the minimum mapping metric
where µ is the discrete measure, the ground distance is a
normalized metric with range [0, 1], and ν is constant.

An upper bound and lower bound for M(A,B) may be
easily computed given two sets A and B, and are presented
here without proof.

THEOREM 1. Given two setsA andB with µ(A) ≤ µ(B),
then

µ(B)− µ(A)

µ(B)
≤M(A,B) ≤ µ(A ∪B)− µ(A ∩B)

µ(A ∪B)
.

(15)

One may note that the upper bound is the Steinhaus dis-
tance. Of particular importance is the fact that M(A,B), in
all of its possible forms, is a metric:

THEOREM 2. The function M(A,B) as defined by Equa-
tion 14 is a metric.

The entire proof (mostly concerned with the triangle in-
equality) is too long to present here, so a short sketch is
provided instead. Since the sets and measures are not nec-
essarily discrete or countable, we use a variant of contin-
uous mathematical induction [3]. The induction is indexed
by a real variable k over the interval [0, 1], progressing in in-
finitesimal steps of size dk from 0 to 1. In essence, we start
with a combination of sets for which we know the triangle
inequality is satisfied. We then make small modifications
to one of the sets such that we produce the cases for which
we wish to prove the triangle inequality. An example of a
case considered is that of three sets A, B, and C where A
is a subset of C and µ(B) ≤ µ(C). The initial step for this
example is that of three sets A, B, and C with A ∪B ⊆ C,
where at each step of the induction, we move part of C out
of B \A.

The costs for each mapping should have the same physi-
cal interpretation as that of EMD with the exception that we
allow it to be more costly to move the earth one way than
the other. The relative difference of areas represents whole-
sale creation of new earth. Physically, ν may represent a
variety of things, e.g. the elements of one set are “heavier”
than the other’s. The restrictions on nu() are those that allow
triangle inequality satisfaction. Thresholding represents the
point where it would be cheaper to just create earth at the
destination rather than move from the source.

We tried to be as general as possible in the definition
of the minimum mapping metric, including non-geometric
spaces for which rotation and translation are not defined.
We assume that rotation, translation, or any other such pre-
processing or normalization is applied prior to the distance.

3.1. Extensions

The following extensions may be used to expand the ver-
satility of the metric without any loss of metric properties.
In short, these extensions expand the definition to allow pre-
metrics (defined below), multisets, and asymmetric map-
pings. These extensions are not mutually exclusive and may
be combined if desired.



3.1.1 Premetrics

Define a premetric to be a function p : X × X 7→ R that
satisfies only the non-negativity and identity properties of a
metric. We interpret p(a, b) and p(b, a) to be, respectively,
the distance from a to b and b to a. An example of a premet-
ric is the directed Hausdorff distance from Equation 2. The
minimum mapping metric may be modified to accept pre-
metric ground distances by altering the definitions of δB(Ψ)
and δAB(Ψ):

δB(Ψ) =

∫
A

min

[
1,
mD(Ψ(a), a)

ν(B)

]
dµ(a), (16)

δAB(Ψ) =

∫
A

min

[
1,
mD(a,Ψ(a))

ν(A ∪B)
,
mD(Ψ(a), a)

ν(A ∪B)

]
dµ(a),

(17)
or possibly

δAB(Ψ) = min

[∫
A

min

[
1,
mD(a,Ψ(a))

ν(A ∪B)

]
dµ(a) ,∫

A

min

[
1,
mD(Ψ(a), a)

ν(A ∪B)

]
dµ(a)

]
. (18)

Note that we have simply reversed the arguments of
mD(a,Ψ(a)) in a few locations. One may note that any
expression for δAB(Ψ) is possible so long as it remains less
than or equal to δA and δB .

Note that we cannot relax the identity constraint on
the ground distance without also relaxing it for M(A,B).
However, if one were able to collapse all identical ele-
ments into a single entity via an equivalence relation on
mD(x, y) = 0, then one could use the following extension
to multisets as a form of relaxed identity. Physically, a pre-
metric may represent the difference between moving earth
up versus downhill.

3.1.2 Multisets

A multiset is traditionally a set containing multiple copies
of the same element. The multiplicity of an element x is a
positive integer indicating how many copies of x are con-
tained in a given multiset X . In the following discussion,
we will generalize the definition of a multiset to include
any set containing at least one measurable subset with non-
unitary membership, where the membership is a positive
real number indicating an element’s or subset’s multiplic-
ity. With this definition, we may also include probability
distributions and other continuous functions. In fact, we
open the possibility for weighted elements. Let g(a) be the
mass density (or multiplicity or distribution) function of the
multiset A and h(b) be the density function of the multiset

B for a ∈ A and b ∈ B. For a multiset X with distribution
function D(x),

µ(X) =

∫
X

D(x) dµ(x) . (19)

Note that for a standard set X (i.e. not multiset), D(x) = 1
for all x ∈ X . For any element x not contained in X ,
D(x) = 0. The membership of an element x ∈ X is con-
tingent upon D(x) > 0. The density function completely
defines a multiset. We will generalize the definition of a
subset A ⊆ B in the space X to be such that g(x) ≤ h(x)
for all x ∈ X . The density function I(x) for the intersection
of two multisets A ∩B is defined as

I(x) = min [g(x), h(x)] , (20)

and the union U(x) is defined in a similar manner:

U(x) = max [g(x), h(x)] . (21)

Assuming µ(A) ≤ µ(B), we seek the optimal transport
plan or flow that injectively maps the mass of A into B. In
particular, let f(a, b) denote the flow of mass from a ∈ A
to b ∈ B, subject to the following constraints:

f(a, b) ≥ 0, (22)∫
B

f(a, b) dµ(b) = g(a), (23)∫
A

f(a, b) dµ(a) ≤ h(b), (24)∫
A

∫
B

f(a, b) dµ(b) dµ(a) = µ(A). (25)

Let Φ be an arbitrary flow from A to B. We may now ex-
press the δ terms for multisets.

δA(Φ) =

∫
A

∫
B

Φ(a, b) min

[
1,
mD(a, b)

ν(A)

]
dµ(b) dµ(a),

(26)

δB(Φ) =

∫
A

∫
B

Φ(a, b) min

[
1,
mD(a, b)

ν(B)

]
dµ(b) dµ(a),

(27)

δAB(Φ) =

∫
A

∫
B

Φ(a, b) min

[
1,
mD(a, b)

ν(A ∪B)

]
dµ(b) dµ(a) .

(28)
The optimal flow Φ∗ is defined by

Φ∗ = arg inf
Φ:A×B 7→R

[δA(Φ) + δB(Φ) + δAB(Φ)] . (29)

Note that our mapping Ψ∗ may be expressed as a discrete
flow where Ψ∗(a, b) = 1 if Ψ∗(a) = b and Ψ∗(a, b) = 0
otherwise.



3.1.3 Asymmetric Mappings

We may also allow multiple minimum-cost maps to be de-
fined, one for each δ term. In other words, we allow a
minimum-cost mapping from A to B and vice versa; each
δ term is minimized independently. If we let M ′(A,B) de-
note the metric with an independent mapping for each of
δA, δB , and δAB , we may note that M ′(A,B) ≤ M(A,B)
(each independent δ term is less than or equal to its depen-
dent counterpart). That is,

δ′A = δA(Ψ∗1), δ′B = δB(Ψ∗2), δ′AB =δAB(Ψ∗3), (30)

where
Ψ∗1 = arg inf

Ψ:A 7→B
δA(Ψ), (31)

Ψ∗2 = arg inf
Ψ:A 7→B

δB(Ψ), (32)

Ψ∗3 = arg inf
Ψ:A7→B

δAB(Ψ). (33)

We may now formally define the multiple minimum map-
ping metric.

DEFINITION 2. Given a measure space (X,µ) and a semi-
metric mD : X×X 7→ R, define F (X) to be the family of
all subsets with non-negative, finite measure of X and the
multiple minimum mapping metricM ′ : F (X)×F (X) 7→
R to be

M ′(A,B) =
µ(A,B) + δ′A + δ′B − µ′(A,B)

µ(A,B) + δ′A + δ′B − δ′AB

(34)

where A,B ∈ F (X).

The multiple minimum mapping metric would be espe-
cially appropriate for use with a premetric.

3.2. Computation

Computation of the minimum mapping metric is primar-
ily limited by computation of the optimal mapping, assum-
ing one exists. Generally, though, one should use the exact
same algorithms that one would use for EMD. In the case
of a discrete measure, the globally optimal mapping always
exists and may be found in O(n3) time, where n is the car-
dinality of the larger set. The algorithm given by Edmonds
and Karp [7] for the assignment problem can be used to
find the optimal mapping between two sets A and B with
arbitrary non-negative symmetric costs. Let c be the cost
function used to define the separation between elements of
A and B, where c(x, y) denotes the cost to map two items
x and y. In the context of M(A,B),

c(x, y) = min

[
1,
mD(x, y)

ν(A)

]
+ min

[
1,
mD(x, y)

ν(B)

]
+ min

[
1,
mD(x, y)

ν(A ∪B)

]
. (35)

For multisets, one must instead solve the discrete trans-
portation problem, which has an O(n3 log(n)) solu-
tion [20]. Since our costs are thresholded, however, it may
be faster in practice to use the algorithm of Pele and Wer-
man [21]. In the case of a continuous measure, the solution
is less clear and depends upon the choice ofmD. In general,
techniques associated with solving the Monge-Kantorovich
transportation problem would need to be used [11], includ-
ing potentially finding numerical solutions to ordinary and
partial differential equations. Computation with general
continuous measures is beyond the scope of this paper.

The Hausdorff and average distance may be naively
computed in O(n2) time, which offers one advantage in
their consideration. The Hausdorff distance may be com-
puted in linear time for various computer vision applica-
tions [1] [24].

4. Application
We compared the minimum mapping metric to the Haus-

dorff distance, EMD, and normalized matching metric for
a nearest neighbor search and classification scheme among
frames. The k-Nearest Neighbor Graph (kNNG) generation
scheme of Dong et al. [6] was used due to the relative effi-
ciency of its generation and unbiased nature towards generic
metrics. The kNNG search of Hajebi et al. [12] was then
used to retrieve the nearest neighbor. We would like to point
out that these are approximate nearest neighbor algorithms
used in the interest of reduced time and space complexity, as
one might desire in a practical application. Note that for this
application, X = R3 and µ is the discrete measure. Note
also that this test is not designed to show that any one metric
is necessarily better than another, but rather that our metric
and its variations are competitive alternatives to traditional
functions.

4.1. Dataset

The dataset is comprised of 5 static gestures (hand poses)
captured for 12 users using a Vicon motion capture camera
system and a glove with attached infrared markers on cer-
tain joints. A rigid pattern on the back of the glove was used
to establish a translation and rotation invariant local coordi-
nate system. The five gestures captured were fist, point-
ing with one finger, pointing with two fingers, stop (hand
flat), and grab (fingers curled) (Figure 1). Several hundred
instances of each gesture were captured as part of streams
where the user held the gesture for a short time. Instances
were preprocessed by removing all markers more than 200
mm from the origin and transforming to local coordinates.

4.2. Methodology

Given that each user’s gestures were generally captured
as parts of streams of data, a given instance is likely to have
a near-duplicate in its user’s dataset separated by a small



Figure 1. The glove used to capture data along with a sample from
each class of static gesture projected onto the local XY plane. The
classes are fist (1), stop (2), point with one finger (3), point with
two fingers (4), and grab (5).

time-interval. Therefore, we adopted a leave-one out ap-
proach where one user was taken as the test set and the
kNNG was built upon the remaining 11 users. This pro-
cedure thus measures the generalization of the system to
new users. A random 5% of the instances from each user
(≈ 4000 total instances) were selected during preprocessing
and used to build each kNNG and test the classifications.
Since random samples are used to initiate graph construc-
tion and neighbor search, an arbitrarily set random seed was
used to ensure identical choices when possible across the
various metrics. The kNNG was built with k = 12, and
classification of a query frame was determined by a ma-
jority vote by its 6 nearest neighbors (with a tie broken by
closest average distances). Eight metrics were chosen, in-
cluding the Hausdorff, EMD, a variant of the average set
distance [10], and two variants (scaled Manhattan and Eu-
clidean) of the normalized matching metric of Ramon and
Bruynooghe [22]. The average distance chosen was the av-
erage minimum distance from each point in one set to the
other, based on the given generalization to power means.
In a sense, this average distance reflects a minimum cost
surjective mapping from each set onto any subset of the
other. Variants of the minimum mapping metric (including
the normalized matching metric) are denoted by the form
M3(mD, ν) with E and M for Euclidean and Manhattan
ground distance and C and D for constant and set diameter
ν. A constant of 200 mm was chosen so that thresholding
of the ground distance could be mostly avoided. One semi-
metric ground distance E2, the square Euclidean distance,
was explored.

4.3. Results

Results are presented in two forms, an information cov-
erage plot [13] (Figure 2) and an accuracy scale (Figure
3). An information coverage plot is grounded in informa-
tion theory and provides an easy to visualize comparison
of multi-class classifiers similar to an ROC curve according
to certain entropy measures of the confusion matrix. Ba-
sically, the horizontal and vertical axes respectively mea-
sure the amount of false or true information captured, and
the overall score of the classifier is equal to the Manhat-

Figure 2. An information coverage plot for comparing the perfor-
mance of each metric. Similar to an ROC curve, the top-left of
the plot is preferred for a good evaluation. Variants of our metric,
denoted by M3, performed better than the alternatives.

Figure 3. The average accuracy of each metric with standard devi-
ations. Refer to the legend in Figure 2.

tan distance from the perfect score (0, 1) (lower scores are
better). Considering two classifiers with the same accuracy,
the one with false positives spread among fewer classes will
achieve a lower score. Visually similar to an ROC curve, the
closer the plot is to the top-left, the better our evaluation of
the classifier. The diagonal lines correspond to 0.1-interval
steps in score.

As can be seen, variants of the minimum mapping metric
performed better than the alternatives (with one exception).
The average distance performed quite well, the closest in
performance to the minimum mapping metric. We may also
note that the square Euclidean semi-metric, for which there
was no particularly compelling reason to use with this data
in the first place, performed relatively poorly compared to
the remaining metrics. Whether this indicates that a met-
ric ground distance is preferable to semi-metric in the gen-
eral case is unknown. Hausdorff and EMD performed quite
similarly, likely due to the removal of most outliers during
preprocessing. The minimum mapping metrics with set di-
ameter marginally outperformed their constant alternatives
(Ramon-Bruynooghe metrics). The diameters of most ex-
perimental sets should not have varied by more than a factor



of two or so, possibly accounting for the minimal improve-
ment. Together, these metrics significantly outperformed
the traditional EMD and Hausdorff. In the absence of par-
tial matches, however, we would not expect much of a dif-
ference from EMD. Increasing k for a more strongly con-
nected kNNG would likely result in improvements for all
metrics.

5. Conclusions and Future Work
We have introduced a new parameterizable metric that

measures the distance between unordered sets of different
sizes with non-negative, finite measure. We also presented
extensions of the metric that allow the use of premetrics,
multisets, and multiple minimum-cost mappings from each
set’s perspective. Comparison to existing methods demon-
strated certain cases of our metric to be competitive. The
metric space induced by the minimum mapping metric has
not been completely characterized with respect to topolog-
ical properties such as completeness. We also have rea-
son to believe that the current constraints on ν and its us-
age do not completely characterize the possible functions
that could be employed while retaining metric properties.
Though our function addresses the discrete comparison of
elements present in the classical Jaccard distance, it does
not necessarily address binary set membership. An exten-
sion to fuzzy sets could likely be performed through some
manipulation of the ground distance and/or use of multisets,
but a more rigorously researched method may be worth in-
vestigating.
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