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Abstract

The subspace segmentation problem is addressed in this
paper by effectively constructing an exactly block-diagonal
sample affinity matrix. The block-diagonal structure is
heavily desired for accurate sample clustering but is rather
difficult to obtain. Most current state-of-the-art subspace
segmentation methods (such as SSC [4] and LRR [12]) re-
sort to alternative structural priors (such as sparseness and
low-rankness) to construct the affinity matrix. In this work,
we directly pursue the block-diagonal structure by propos-
ing a graph Laplacian constraint based formulation, and
then develop an efficient stochastic subgradient algorithm
for optimization. Moreover, two new subspace segmenta-
tion methods, the block-diagonal SSC and LRR, are devised
in this work. To the best of our knowledge, this is the first
research attempt to explicitly pursue such a block-diagonal
structure. Extensive experiments on face clustering, motion
segmentation and graph construction for semi-supervised
learning clearly demonstrate the superiority of our novelly
proposed subspace segmentation methods.

1. Introduction

High-dimensional vision data, such as face images and
rigid object motion trajectories, are generally distributed in
a union of multiple low-dimensional subspaces [8, 21, 25].
To find such a low-dimensional structure, we usually need
to cluster the data into multiple groups and meanwhile fit
each group by a subspace. This introduces the important
subspace segmentation problem defined as follows.

Definition 1 (Subspace Segmentation [22]). Given a set of
sample vectors X = [X1, . . . , Xk] = [x1, . . . , xn] ∈ Rd×n
drawn from a union of k subspaces {Si}ki=1. Let Xi be a
collection of ni samples drawn from the subspace Si, n =∑k
i=1 ni. The task of subspace segmentation is to segment
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Figure 1. An illustrative comparison on the constructed sample
affinity matrices for synthetic noisy samples from 4 subspaces, us-
ing different priors: (a) sparse, (b) low-rank, and (c) our proposed
block-diagonal. The block-diagonal affinity matrix characterizes
the sample clusters and subspace segmentation more accurately.

the samples according to the underlying subspaces they are
drawn from.

Recently, many spectral clustering based solutions to the
subspace segmentation problem have been proposed [4, 12,
13]. These methods use local or global information around
each sample to build a sample affinity matrix. The segmen-
tation of the samples is then obtained by applying spectral
clustering [15] on the affinity matrix.

In particular, Sparse Subspace Clustering (SSC) [4] and
Low-Rank Representation (LRR) [12], as two examples of
the state-of-the-art subspace segmentation methods, con-
struct the affinity matrix through finding a sparse or low-
rank linear representation of each sample with respect to
the whole sample collection. The obtained representation
coefficients are then used directly to build the affinity ma-
trix. These methods are able to generate a block-diagonal
affinity matrix under restrictive conditions. However, the
block-diagonal structure obtained by those methods is frag-
ile and will be destroyed when the signal noise ratio is
small, the different subspaces are too close, or the subspaces
are not independent. Hence the subspace segmentation per-
formance may be degraded severely [19].

In this work, we propose to explicitly pursue such a
block-diagonal structured affinity matrix for subspace seg-
mentation. We impose an explicit fixed rank constraint on
the graph Laplacian, which can equivalently constrain the
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number of connected components in the constructed affin-
ity matrix. Thus a block-diagonal affinity matrix can be
effectively obtained, even under the adversarial scenarios,
such as small signal noise ratio, improper localization of
different subspaces, etc. An illustrative example is given
in Figure 1. It demonstrates that compared with sparse and
low-rank prior, our proposed method yields more accurate
affinity matrices. To solve the induced optimization prob-
lem efficiently, we propose a stochastic sub-gradient de-
scent method along with a projection operation to guarantee
the affinity matrix is block-diagonal in the iteration.

We take the state-of-the-art subspace segmentation tech-
niques, SSC and LRR, as illustrating examples for our pro-
posed method. We specifically show how the proposed
method is able to generate an exactly block-diagonal affin-
ity matrix for them and improve their performances on sub-
space segmentation tasks. It is worth noting that our pro-
posed method is by no means restricted to these two cases.
In fact, the proposed method is quite general and can be ap-
plied for other affinity matrix construction methods straight-
forwardly. To verify the effectiveness of the proposed
method, extensive subspace segmentation experiments are
conducted, including synthetic data clustering, face images
clustering and motion trajectories segmentation. We also
perform semi-supervised learning experiments for digit and
face recognition to further demonstrate the superiority of
the proposed method, compared with other popular graph
construction methods.

2. Related Work
During the past decades, a number of subspace segmen-

tation or grouping methods have been developed [17, 4, 12,
23, 13, 5]. Since in this work we focus on the spectral clus-
tering based methods, in the following we will review the
related work along this direction in details. For other meth-
ods, a good review can be found in [22].

Sparse Subspace Clustering (SSC) [4] expresses each
sample as a linear combination of all other samples in
the collection, where the combination coefficients are re-
quired to be sparse. Afterwards, Liu et al. [12] propose
the Low Rank Representation (LRR) for subspace segmen-
tation. LRR enforces the constructed affinity matrix to be
low-rank, which captures the global prior that the union
of the underlying subspaces is still low-dimensional. This
prior endows LRR with strong robustness to gross corrup-
tions in the samples. Another block-diagonal inducing prior
is introduced by Wang et al. in [23]. However they prove
that only under the condition that the subspaces are orthogo-
nal to each other, the sample affinity matrix is exactly block-
diagonal. This condition is rather restrictive and does not
apply to realistic data. Recently, Lu et al. [13] propose a
least square regression based method for the affinity ma-
trix construction. It is claimed that grouping effect brought

by least square regression for the samples from the same
subspace is able to improve the performance of subspace
segmentation.

Though the existing methods have achieved great suc-
cess for the subspace segmentation tasks, none of them is
able to produce an exactly block-diagonal matrix for real-
istic samples. Thus their performances are sensitive to the
noise, corruption and improper localization of the underly-
ing subspaces.

3. Problem Formulation

In this work, we focus on applying spectral clustering
on an affinity matrix, which is constructed based on global
information, for subspace segmentation. For affinity ma-
trix construction, each sample xi ∈ Rd is approximated by
a linear combination of the reference samples Xzi. Here
X = [x1, . . . ,xn] ∈ Rd×n is the collection of the refer-
ence samples. The absolute value of the element |zi(j)| in
the coefficient vector zi is then directly used as the affin-
ity value between xi and the j-th reference sample xj in
X . Denote S(zi) as the index set of related samples for
zi: S(zi) = {j|zi(j) 6= 0,∀j = 1, . . . , n}. To accurately
segment the samples into the corresponding subspaces, it is
required that S(zi)∩S(zk) = ∅ if the i-th and k-th samples
are from different subspaces. Namely, for any two sam-
ples from different subspaces, their affinity values should
be zero. Thus, after proper row/column permutation of the
symmetric affinity matrix W = (|Z| + |Z>|)/2, where
Z = [z1, . . . , zn] ∈ Rn×n and |Z| takes absolute values of
the elements in Z, we obtain the following block-diagonal
matrix:

W̃ = blockdiag (W1,W2, . . . ,Wk) .

Each block Wi in the above block-diagonal affinity matrix
W̃ corresponds to a single subspace Si. The sample seg-
mentation can be obtained immediately. Though several
existing subspace segmentation methods are able to obtain
such block-diagonal affinity matrices, the required condi-
tions are too restrictive for realistic data, as discussed pre-
viously. For example, when the signal noise ratio is small,
the samples will be perturbed by the noise and deviate from
their corresponding subspaces. A certain sample may be
closer to one sample from a different subspace and the affin-
ity value between these two samples is non-zero. Such an
incorrect affinity may affect the following spectral cluster-
ing process and thus degrade the performance of subspace
segmentation. In contrast, if a block-diagonal prior is im-
posed, such an incorrect affinity may be corrected by the
requirement of building an exactly block-diagonal matrix.
The performance of the spectral clustering for subspace seg-
mentation will be improved.



3.1. Laplacian Constraint for block-diagonality

Before introducing the proposed Laplacian constraint for
block-diagonal matrix pursuit, we first recall the definition
of the Laplacian matrix and the relationship between the
spectral property of the Laplacian matrix and the structure
of the affinity matrix.

Definition 2 (Laplacian Matirx). Consider an affinity ma-
trix W ∈ Rn×n of n samples with weights W (j, j′). The
Laplacian matrix LW ∈ Rn×n is defined as: LW (j, j′) =
−W (j, j′), if j 6= j′;

∑
` 6=jW (j, `) otherwise.

The following well known theorem [14] relates the rank
of the Laplacian matrix to the number of blocks in the cor-
responding affinity matrix.

Theorem 1 ([14]). Let W be an affinity matrix. Then
the multiplicity k of the eigenvalue 0 of the corresponding
Laplacian LW equals the number of connected components
(blocks) in W .

Based on the above theorem, we can enforce a general
square matrix to be k-block-diagonal by imposing the fol-
lowing Laplacian Constraint (LC): rank(LW ) = n − k.
Then we can define a set of k-block-diagonal matrix (k-
BDMS) as:

K =

{
Z|rank(LW ) = n− k,W =

1

2

(
|Z|+ |Z>|

)}
.

In the above constraint set, the parameter k is the required
number of clusters in the subspace segmentation problems
(see Definition 1). After building k block diagonal affinity
matrix, the samples are readily segmented into k clusters.
The value of k is usually specified by users.

3.2. LC for block-diagonal SSC

Sparse Subspace Clustering (SSC) solves the subspace
segmentation problem through pursuing a sparse represen-
tation coefficient matrix [4]. Its objective function is:

min
Z
‖Z‖1 +

λ

2
‖X −XZ‖2F , s.t. diag(Z) = 0.

After obtaining the coefficient matrix Z, a similarity ma-
trix can be constructed as W = (|Z| + |Z>|)/2. Under
certain conditions, e.g., noiseless data, SSC only selects the
samples from the same subspace as the target sample in its
linear representation. And thus the resultant similarity ma-
trix is block-diagonal. However, for the realistic data, it
is difficult to satisfy the conditions. In order to obtain a
block-diagonal affinity matrix, we impose the LC for SSC
and propose the following block-diagonal SSC (BD-SSC)
objective function:

min
Z
f1(Z) = ‖Z‖1 +

λ

2
‖X −XZ‖2F ,

s.t. diag(Z) = 0, Z ∈ K. (1)

As explained above, Z ∈ K enforces the obtained matrix Z
to form a block-diagonal affinity matrix.

3.3. LC for block-diagonal LRR

Low-Rank Representation (LRR) seeks a low-rank rep-
resentation coefficient matrix of a given set of samples,
w.r.t. the basis composed by the samples themselves [12].
The rationale of the low-rank regularization is utilizing the
global prior information that the union of the underlying
low-dimensional subspaces is still low-dimensional. For-
mally, LRR solves the following optimization problem1:

min
Z
‖Z‖∗ +

λ

2
‖X −XZ‖2F .

Under the conditions that the samples are sufficient, noise-
less and the subspaces are independent, the obtained simi-
larity matrix will be exactly block-diagonal. However, for
realistic data, such as face images or images of other ob-
jects, such requirements are too restrictive. The obtained
matrix W is usually not block-diagonal, which deteriorates
the performance of subspace segmentation. To enforce a k-
block-diagonal structure on the obtained similarity matrix
W , we also introduce the aforementioned LC constraint to
LRR and propose the following block-diagonal LRR (BD-
LRR):

min
Z,E

f∗(Z) = ‖Z‖∗ +
λ

2
‖X −XZ‖2F , s.t. Z ∈ K. (2)

The optimization problems for SSC and LRR, as shown in
Eqn. (1) and Eqn. (2) respectively, are different and gener-
ally different optimization methods are proposed to solve
them individually. In this work, we aim to develop a gen-
eral optimization method to solve these two problems in a
unified framework. The details of the optimization are pro-
vided in the following section.

4. Optimization with Laplacian Constraint
We employ the efficient stochastic sub-gradient descent

(SSGD) method to solve the optimization problems in
Eqn. (1) and Eqn. (2), which both involve a highly non-
convex k-BDMS constraint. In each iteration, the affinity
matrix Z moves along the negative sub-gradient direction
to decrease the construction residue. Then Z is instantly
projected back onto the constraint set K via ΠK(·), to en-
sure it preserves the block-diagonal structure.

The sub-gradients are calculated as follows. For the
objective function f1(Z) in Eqn. (1), the sub-gradient
is G(f1(Z)) = λX>X(Z − I) + ∂‖Z‖1/∂Z. Here

1In the original LRR, `2,1-norm of the residual is minimized. However,
for most cases, we find minimizing a Frobenius norm of the residual also
works well in practice, which is much more efficient than minimizing the
`2,1-norm.



∂‖Z‖1/∂Zij = sign(Zij) if Zij 6= 0 and θ ∈ [−1, 1] oth-
erwise. Since the diagonal elements of the affinity matrix
Z are not necessarily to be updated, we manually fix the di-
agonal elements of G(f1(Z)) to be zeros. For the objective
function f∗(Z) in Eqn. (2), the sub-gradient is G(f∗(Z)) =
λX>X(Z − I) + ∂‖Z‖∗/∂Z. Here let UΣV > be a com-
pact SVD of Z, and then ∂‖Z‖∗/∂Z = UV > + H2 [24],
where H is a set as zero matrix in this work. The details of
the SSGD algorithm are given in Alg. 1, and the details of
computing the projection ΠK(·) are given in Alg. 2.

Algorithm 1: Basic SSGD
input : Data matrix X , objective function f , number

of blocks k, maximal iteration number T ,
trade-off parameter λ.

1 Initialize Z(0) = 0, t = 0, p = rank(X).
2 Stepsize η = 1.5

√
np/(1.5λn‖XX>‖2 +

√
p)
√
T

3 while t ≤ T do
4 Generate an n× p probing matrix Y by randomly

selecting p column vectors from
{
√
ne1, . . . ,

√
nen};

5 Calculate sub-gradient: g(t) ← G(f(Z(t)))Y Y >;
6 Projection: Z(t+1) ← ΠK(Z(t) − ηg(t)) via

Alg. 2;
7 t← t+ 1;
8 end

output: Coefficient matrix Z.

4.1. Unbiased Sub-gradient Estimation

One of the most important ingredients for SSGD to be
convergent and effective is an unbiased estimator for a sub-
gradient of the objective function. g̃(t) is called as an un-
biased estimator of the sub-gradient g(t) if E(g̃(t)) = g(t).
In this work, we adopt the following randomized sparsifi-
cation method to obtain an unbiased estimator of the sub-
gradient and meanwhile reduce the cost of computing the
sub-gradient [7]. In particular, we use a probing matrix to
sparsify the sub-gradient estimation. A probing matrix is
defined as follows.

Definition 3 (Probing Matrix [7]). A random n× p matrix
Y with p < n is a probing matrix if E[Y Y >] = In×n where
In×n is the n×n identity matrix and the expectation is over
the choice of Y .

In this work, we randomly sample p vectors from the
scaled standard basis {

√
ne1, . . . ,

√
nen} to form the prob-

ing matrix: Y = [
√
ne(1), . . . ,

√
ne(p)]/

√
p. It is easy to

verify that E[Y Y >] = I . Then the sub-gradient in each de-
scent step is calculated as g(t) = G(f(Z(t)))Y Y >, where
G(·) is the sub-gradient defined as above.

2H should satisfy: U>H = 0, HV = 0, ‖H‖2 ≤ 1.

To see how this technique reduces the computation cost,
we take BD-LRR as an example (the explanation also ap-
plies for BD-SSC). In Step 5 of Alg. 1, the gradient is
G(f(Z))Y Y >, where computing G(f(Z)) contains calcu-
lating XX>Z plus an SVD on Z. For the XX>Z part, af-
ter multiplying with Y Y >, it becomesXX>(ZY )Y >. ZY
actually samples p out of n columns of Z. The size of Z is
reduced from n2 to np. The complexity of computations
involving Z is thus reduced. The multiplication with Y >

is padding the left matrix with zeros and quite fast. As for
SVD of Z, we use the implementation in Lemma 2.4 of [7].
The computational cost is reduced fromO(n2r) toO(npr).
Here r = rank(Z). This technique reduces the complexity
from O(n3) to O(pn2) in the sub-gradient calculation. If
p� n, the efficiency enhancement is significant.

4.2. Solving Projection to k-BDMS

After a step of sub-gradient descent, the variable ma-
trix Z may move out of the constraint set and no longer
possesses a k-block-diagonal structure. Thus, we need to
project the matrix Z back to the k-BDMS constraint set.
The projection operator for a matrix Z0 is defined as:

ΠK(Z0) = arg min
Z∈K
‖Z − Z0‖2F . (3)

The projection essentially finds a matrix in the set K which
is closest to Z0 in terms of the Euclidean distance. The
involved optimization problem can be explicitly written as:

min
Z

1

2
‖Z − Z0‖2F , s.t. Z ∈ K.

The above optimization problem is severely complicated by
the two imposed constraints (recall definition of K), both of
which contain complicated transformation on the variable
Z. However, after inspecting the problem, we find that if
the two constraints are decoupled thus we do not need to
simultaneously deal with the two constraints, the problem
will be significantly simplified. Therefore, we introduce an
auxiliary variable Z̃ to replace the Laplacian matrix LW .
Then the objective function can be written equivalently as:

min
Z,Z̃

1

2
‖Z − Z0‖2F ,

s.t. rank(Z̃) = n− k,W =
1

2

(
|Z|+ |Z>|

)
, Z̃ = LW .

We further rewrite the constraint Z̃ = LW as a penalty term
via Augmented Lagrangian Multiplier (ALM) [11]:

min
Z,Z̃

1

2
‖Z − Z0‖2F + 〈J, Z̃ − LW 〉+

β

2
‖Z̃ − LW ‖2F ,

s.t. rank(Z̃) = n− k,W =
1

2
(|Z|+ |Z>|).



Here J is the Lagrangian multiplier and β is an increasing
weight parameter for the term of enforcing Z̃ = LW . Now
the two constraints are decoupled and we can alternatively
optimize Z and Z̃. In particular, each optimization problem
only involves one constraint.

Algorithm 2: Projection to k-BDMS
input : Target matrix Z0, number of blocks k
output: A block-diagonal matrix Z.

1 Initialization: Z(0) = Z0; t = 0; ρ = 1.1;
β(0) = 1× 10−4

2 while Not converged do
3 Update Z(t+1) by solving the problem in (4);
4 Update Z̃(t+1) by solving the problem in (5);
5 Update Y (t+1) = Y (t) + β(t)(Z̃ − LW );
6 Update β(t+1) = ρβ(t);
7 t← t+ 1.
8 end

Fixing the variable Z̃ and multiplier J and removing the
term not containing Z, we have the following problem to
solve Z:

min
Z

1

2
‖Z − Z0‖2F − 〈J, LW 〉+

β

2
‖Z̃ − LW ‖2F ,

s.t. W =
1

2
(|Z|+ |Z>|). (4)

Note that except for the term ‖Z − Z0‖2F , all other terms
in the above problem only contain the absolute value of Z.
Thus the elements of the solutionZ must have the same sign
as the ones inZ0. Otherwise, we can always change the sign
of Z’s elements, decreasing the value of ‖Z − Z0‖2F while
not changing the values of other terms. Therefore, based on
this observation, the solution can be written as Z = Ẑ ⊗
sign(Z0), where⊗ denotes the element-wise multiplication
and Ẑ is the solution to the following problem,

min
Ẑ

1

2
‖Ẑ − |Z0|‖2F − 〈J, LW 〉+

β

2
‖Z̃ − LW ‖2F ,

s.t. W =
1

2
(Ẑ + Ẑ>), Ẑ ≥ 0.

The above objective function can be efficiently solved by
any off-the-shelf quadratic programming solver. After solv-
ing out Ẑ, we can recover the solution Z = Ẑ ⊗ sign(Z0).

Now we turn to solving Z̃. Similarly, fixing the variable
Z and multiplier J , we update Z̃ via solving:

min
Z̃
〈J, Z̃〉+

β

2
‖Z̃ − LW ‖2F , s.t. rank(Z̃) = n− k. (5)

It is equivalent to:

min
Z̃
‖Z̃ − (LW − 1/βJ)‖2F , s.t. rank(Z̃) = n− k.

This problem admits a closed-form solution according to
the Eckart-Young theorem [3]. More specifically, the
closed-form solution can be obtained by performing SVD
on LW − 1

βJ = UΣV > and selecting the top n − k sin-

gular vectors: Z̃ = U1:(n−k)[Σ]1:(n−k)V
>
1:(n−k). The de-

tails of optimizing Z and Z̃ are presented in Alg. 2. In
the implementation, when ‖Z̃(t) − LW (t)‖ < 1 × 10−6 or
β(t) max(‖Z̃(t+1) − Z̃(t)‖, ‖Z(t+1) − Z(t)‖) < 1× 10−4,
the optimization is stopped.

4.3. Notes on the Convergence

The optimization problems in Eqn. (1) and Eqn. (2) are
heavily non-convex due to the k-BDMS constraint. Fortu-
nately, we can prove the solution of Alg. 1 converges to the
global optimum. Here we briefly explain it theoretically and
the experimental validation is deferred to the next section.
The convergence argument for Alg. 1 is built on the results
in [1]. In particular, for affine problems with non-convex
constraint, gradient descent with projection will converge
to the global optimum if the Scalable Restricted Isometry
Property (SRIP) holds. As for the problem (3) (which Alg. 2
solves), though it is not convex, we can also obtain the op-
timum. In practice, we only need Z(t+1) to be the optimum
to (3) when Z0 = Z(t) − ηg(t). To this end, we control η to
be small. Then Z(t) must be close to projection of Z0 in K.
We start the ALM iteration from Z(t), and ALM converges
to its KKT point Z(t+1) [11], which must be thes optimum
since Z(t) is close to Z0.

5. Experiments

5.1. Synthetic Data

Data generation We generate 5 sets of synthetic sam-
ples under different noise levels. The samples are generated
following the scheme in [12]. We construct k = 4 indepen-
dent subspaces of 3 dimensional, whose ambient dimension
is equal to 30, i.e., {Si}4i=1 ⊂ R30. From each subspace Si,
50 samples are drawn. Then 30% of the samples are ran-
domly chosen and corrupted by adding Gaussian noise with
zero mean and variance σ‖x‖2. Here ‖x‖2 denotes the `2-
norm of the corresponding sample, and σ can be seen as
the signal-noise ratio. We evaluate the performance of SSC,
LRR, BD-SSC and BD-LRR under 5 different signal-noise
ratios of σ ∈ {0, 0.1, 0.2, 0.3, 0.4} respectively. Here σ = 0
means there is no noise corrupting the samples. The sym-
metric affinity matrix is obtained as W = (|Z| + |Z>|)/2,
where matrix Z is the output of the above methods.

Implementation details For both BD-SSC and BD-
LRR, the trade-off parameter λ is fixed as 10 and the maxi-
mal iteration number is set as T = 600. The variable Z in
Alg. 1 is initialized as an all-zero matrix throughout the ex-
periments. For SVD, we conduct partial SVD on Lw−Y/β



in (5) up to k smallest singular values UkΣkVk and take
Z̃ = Lw − Y/β − UkΣkVk (amount to top n − k singular
values). Since usually k � n − k, this method reduces the
cost of computing the partial SVD greatly. BD-SSC takes
around 20 seconds to build an affinity matrix for 2, 000 sam-
ples on the MATLAB platform on a PC with Quad CPU of
2.83GHz and 8GB RAM, and BD-LRR costs more time,
around 70 seconds, due to computing SVD. In comparison,
SSC and LRR only costs 5.5 and 2.3 seconds respectively.
Computational cost is a bottleneck of the proposed algo-
rithm for large-scale applications. We will also investigate
how to scale the algorithm to large scale applications in
future. A promising speeding up technique is the divide-
and-conquer distributed optimization, considering its suc-
cess in accelerating LRR in [20]. We experimentally find
the optimization converges though the problem is highly
non-convex. In particular, we plot the objective value con-
vergence curves for BD-SSC and BD-LRR in the supple-
mentary material.

Results Figure 2 and Figure 3 show the obtained affinity
matrices, whose rows and columns are permuted accord-
ing to the ground-truth labels of the samples. The corre-
sponding segmentation accuracies are also shown in the fig-
ures. We can observe that for both SSC and LRR, when
the noise level σ ≥ 0.1, some samples are selecting the
samples from other subspaces in the representation. The
block-diagonal structure of the affinity matrix is destroyed,
and the segmentation accuracy decreases severely. For ex-
ample, for the noiseless case (σ = 0), all of the methods
can achieve perfect segmentation with an accuracy equal
to 1. However, when the noise level σ increases to 0.2,
the accuracy of SSC and LRR dramatically drops to 0.79
and 0.83 respectively. Due to the introduced block-diagonal
constraint, BD-SSC and BD-LRR methods are able to pro-
duce the block-diagonal affinity matrix and the accuracy re-
mains 1. The results well demonstrate that the proposed
method has enhanced the robustness to noises and is able to
achieve much better segmentation performance, compared
with state-of-the-art SSC and LRR. Note that the sample
noise introduces some errors into the affinity matrices from
BD-SSC and BD-LRR, but the obtained affinity matrix is
exactly block-diagonal if shown after proper permutation.

5.2. Face Clustering

We evaluate the performance of the proposed method, as
well as other state-of-the-art methods, for face clustering on
the Extended Yale Database B [6]. The dataset contains face
images for 38 subjects. For each subject, 64 frontal face im-
ages are taken under different illuminations. In this exper-
iment, we use the first c = {2, 3, 5, 8, 10} subject classes
for face clustering. To reduce the computational cost and
the memory requirements of all the methods, each image is
resized from 192×168 pixels to 48×42 pixels. The formed

(a) SSC Results

(b) BD-SSC Results

Figure 2. The affinity matrix obtained from SSC and BD-SSC un-
der different noise levels, with k = 4 subspaces and 50 sam-
ples from each subspace. From left to right, the noise level is
σ = 0, 0.1, 0.2, 0.3, 0.4 respectively. The segmentation accuracy
is shown on the top of each sub-figure.

(a) LRR Results

(b) BD-LRR Results

Figure 3. The affinity matrix obtained from LRR and BD-LRR
under different noise levels, with k = 4 subspaces and 50 sam-
ples from each subspace. From left to right, the noise level is
σ = 0, 0.1, 0.2, 0.3, 0.4 respectively. The sample segmentation
accuracy is shown on the top of each sub-figure.

2, 016-dimensional vectorized images are further projected
to 9 × c-dimensional subspace via standard PCA. Here 9-
dimension for each subject is obtained through observing
the singular value curve of the matrix of its face image
vectors. For SSC and LRR, we use the default parameter
settings as provided by the authors. Namely, λ = 20 for
SSC and λ = 0.18 for LRR. For BD-SSC and BD-LRR
we set the value of the trade-off parameter λ the same as
SSC and LRR respectively. The iteration number is set as
T = 1, 000 and parameter β in the learning rate estima-
tion is set as β = 1. Thus the learning rate for BD-SSC is
η = 7.6× 10−4 and for BD-LRR η = 3.4× 10−6.

Note that for the SSC subspace segmentation, the authors
provide an additional heuristic thresholding operation as
post processing to sparsify the obtained affinity matrix [4]
for better results. For LRR, there is also a heuristic post



Table 1. Face clustering error (%) on Extended Yale dataset B. The
results for 2, 3, 5, 8, 10 subject classes are shown.

# Classes SSC BD-SSC LRR BD-LRR
2 9.37 3.90 8.59 3.91
3 20.13 17.70 13.54 10.02
5 30.00 27.50 15.00 12.97
8 36.33 33.20 31.64 27.70
10 43.59 39.53 35.16 30.84

processing to scale the obtained affinity matrix [12]. In this
experiment, we do not adopt such additional post process-
ing so that other factors can be prevented from damaging
the fairness of the comparison. Table 1 lists the face clus-
tering error rate of each method. From the results, we can
observe that the proposed methods, BD-SSC and BD-LRR,
both outperform their counterpart methods with a margin of
3 to 6 percentages. This demonstrates that the introduced
block-diagonal constraint significantly enhances the accu-
racy and robustness during the affinity matrix construction.

5.3. Motion Segmentation

Motion segmentation refers to clustering the motion tra-
jectories of multiple rigidly moving objects into spatialtem-
poral regions such that each region corresponds to a sin-
gle moving object [21]. The coordinates of the points in
trajectories of one moving object form a low dimensional
subspace. Thus the motion segmentation problem can be
solved via performing subspace segmentation on the tra-
jectory spatial coordinates. We use the benchmark dataset
Hopkins155 [21] for evaluation. The dataset consists of 156
video sequences of two and three motions, which are di-
vided into three categories: checkerboard, traffic, and artic-
ulated sequences. The trajectories are extracted automati-
cally with a tracker, and outliers are manually removed.

The segmentation error rates including their maximal,
mean, median and the standard deviation values, for SSC,
LRR, BD-SSC and BD-LRR, are shown in Table 2. For
all the methods, no pre-/post-processing is performed on
the data. From the results, we can observe that BD-SSC
and BD-LRR can reduce 0.21% and 1.48% segmentation
error rates over SSC and LRR respectively. It is worth not-
ing that the segmentation error rates achieved by SSC and
LRR are already quite low, and such improvement is indeed
significant. As shown in [4] and [12], the heuristic post-
processing for SSC and LRR can improve the motion seg-
mentation performance significantly. In Table 3, we present
the results obtained by also applying the thresholding post-
processing [4] to SSC and BD-SSC and the scaling post-
processing [12] to LRR and BD-LRR. From the results, it
can be seen that the proposed method is able to further re-
duce the segmentation error for SSC and LRR by 0.31% and
0.77% respectively. To the best of our knowledge, our pro-
posed BD-LRR achieves the best performance, 0.97% error
rate, for the total 156 sequences on this dataset [4]. Pham et

Table 2. Segmentation errors (%) on Hopkins 155 dataset. The
max value (Max), mean value (Mean), median value (Med) and
the standard deviation (Std) of the error rates are reported on the
total 156 motion sequences.

SSC BD-SSC LRR BD-LRR
Max 42.34 42.34 41.18 38.97
Mean 3.11 2.90 4.83 3.35
Med 0 0 0.52 0.37
Std 7.78 7.48 9.35 8.84

Table 3. Segmentation errors (%) on Hopkins 155 dataset, with
post processing. The max value (Max), mean value (Mean), me-
dian value (Med) and the standard deviation (Std) of the error rates
are reported on the total 156 motion sequences.

SSC BD-SSC LRR BD-LRR
Max 47.20 43.07 43.38 14.93
Mean 1.99 1.68 1.74 0.97
Med 0 0 0 0
Std 6.97 5.97 5.51 2.46

al. [16] have reported 0.13% error rate on this dataset. How-
ever, their method relies on extra spatial information [16].
In contrast, our method does not need such information.

5.4. Application for Semi-supervised Learning

The proposed BD-SSC and BD-LRR can be directly ap-
plied in semi-supervised learning tasks, being used to con-
struct the affinity graph for the (labeled and unlabeled)
training samples. Note that graph based semi-supervised
learning methods [26] generally include two steps: graph
construction and label propagation on the graph. This work
focuses on the first step. We mainly compare with other
graph construction methods and fix the label propagation
method used in the second step in the experiments. Super-
vised learning methods do not utilize the unlabeled training
data and thus may perform worse, thus we do not report
their performance here.

In the experiments, two datasets are used for evaluation.
One is the USPS handwritten digit dataset [9], which in-
cludes 10 classes of digits (0-9) and 11, 000 samples in to-
tal. Following the experimental setting in [2], we randomly
select 200 samples for each digit character in the experi-
ments, namely 2, 000 samples in total. The other dataset
is the Extended Yale Database B as introduced in the pre-
vious subsection. Here all the face images of 38 subjects
are used. After constructing the affinity matrix, we ap-
ply the algorithm of random walk [10] to propagate the
class labels from labeled samples to unlabeled samples. On
each dataset, four types of popular affinity matrices/graphs
are constructed as baselines, including the LLE-graph [18],
kNN-graph, `1-graph constructed using SSC [2] and LRR-
graph [12]. For LLE-graph and kNN graph construction,
the neighbor size is set as 1% of the total number of samples
considering a sparse graph usually achieves better perfor-
mance [2]. For the `1-graph construction, the regularization
parameter λ is set as 5× 10−3 and 3× 10−2 for Yale-B and



Table 4. USPS digit recognition error rate (%) of semi-supervised
learning methods on different graphs, using different numbers of
labeled samples per class.

# Labeled LLE kNN `1 BD-SSC LRR BD-LRR
10 35.8 21.4 16.1 12.4 13.4 11.2
20 24.8 17.0 11.4 8.9 11.8 9.4
30 18.0 15.2 11.5 10.1 11.2 10.7
40 15.7 11.5 8.2 6.4 10.9 6.9

Table 5. Face recognition error rate (%) on Extended Yale dataset
B of semi-supervised learning methods on different graphs, using
different numbers of labeled samples per class.

# Labeled LLE kNN `1 BD-SSC LRR BD-LRR
5 28.1 76.5 26.8 17.1 28.2 15.1
10 15.0 66.3 14.7 7.6 24.6 8.2
20 11.0 60.2 12.6 4.2 19.4 5.1
30 10.5 59.4 10.8 2.6 16.1 4.7

USPS datasets respectively. For LRR-graph, λ is fixed as
0.2 on the both datasets. The results on the two datasets are
shown in Table 4 and Table 5 respectively.

From the results, it can be seen that `1-graph outper-
forms LLE-graph and kNN-graph significantly on USPS
dataset benefitting from the sparsity prior. And on the Yale-
B dataset, both `1-graph and LLE-graph perform quite well
since LLE-graph utilizes the correlation of face images. On
the both datasets, BD-SSC graph reduces the recognition
error rates over the `1-graph by around 3% and 8% respec-
tively. And BD-LRR graph reduces the recognition error
for LRR-graph more significantly. Such improvement is
mainly brought by the imposed block-diagonal constraint
on the sample affinity matrix, which gives more accurate
sample clustering. Since the face images are contaminated
by the noises more seriously than the digit images, the per-
formance improvement brought by BD-SSC and BD-LRR
on theYale-B dataset is more significant than on the USPS
dataset. This demonstrates that the proposed block-diagonal
based graph achieves strong robustness to noises.

6. Conclusions

In this work, we proposed a graph Laplacian constraint
based formulation to construct exactly block-diagonal affin-
ity matrices. Two new subspace segmentation methods,
i.e., BD-SSC and BD-LRR, were devised based on the pro-
posed formulation. Comprehensive experiments were con-
ducted on segmenting synthetic subspaces, realistic faces
and motion trajectories. And the proposed methods showed
significantly better performance than current state-of-the-
art methods. Moreover, BD-SSC and BD-LRR were also
applied to construct the block-diagonal `1-graph and LRR
graph for semi-supervised learning and achieved quite en-
couraging performance for face and digit recognition tasks.
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