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Abstract

Attributes are widely used as mid-level descriptors of ob-
ject properties in object recognition and retrieval. Mostly,
such attributes are manually pre-defined based on domain
knowledge, and their number is fixed. However, pre-defined
attributes may fail to adapt to the properties of the data at
hand, may not necessarily be discriminative, and/or may
not generalize well. In this work, we propose a dictionary
learning framework that flexibly adapts to the complexity of
the given data set and reliably discovers the inherent dis-
criminative middle-level binary features in the data. We
use sample relatedness information to improve the gener-
alization of the learned dictionary. We demonstrate that
our framework is applicable to both object recognition and
complex image retrieval tasks even with few training exam-
ples. Moreover, the learned dictionary also help classify
novel object categories. Experimental results on the Ani-
mals with Attributes, ILSVRC2010 and PASCAL VOC2007
datasets indicate that using relatedness information leads to
significant performance gains over established baselines.

1. Introduction
We often classify or search for images with complex

contents, such as an image containing multiple objects. In
addition, several practical scenarios demand to recognize
novel objects. Such tasks can pose great challenges to cur-
rent learning methods for image classification and/or re-
trieval, whose performance heavily depends on the suffi-
ciency of training samples. In recent years, evidence has
emerged that a promising solution to these problems may
be approaches based on middle-level representations such
as attributes [18, 36]. Attributes are mid-level descriptors
of observable object properties such as furry, striped and
four-legged for animals. Such attributes occur across dif-
ferent (related) categories [7] and can therefore greatly help
recognize previously unseen objects, whose attributes are
shared with related objects.

Most of the numerous methods that have been proposed

Pug Dog Samoyed Dog Cat 
Input features 

Attributes 

Classifiers 

Related Samples Negative Samples 

Pug dog 

Samoyed dog Cat 

+ 
+ 

+ 

- 
- 

- 

Positive Samples 

… … 

Figure 1. Illustration of the proposed dictionary learning method.
It uses three types of samples for training: positive samples, sam-
ples related to the positive class and negative samples. “Attributes”
of related samples (pug dog and samoyed dog) are encouraged to
be shared, but the “attributes” of unrelated samples (pug dog and
cat) may be different. The binary feature representations indicat-
ing existence of attributes are the input for classifiers. Note related
samples are still classified to be negative.

for learning with attributes use a fixed-size attribute vo-
cabulary and require it to be manually pre-defined [7, 18].
Such requirements for supervision come with three main
drawbacks. (1) Scalability. Many approaches need the
training data to be completely annotated with semantic at-
tributes. This limits scalability and number of attributes that
can be practically learned. Moreover, fixing the number
of attributes in advance fails to adapt to varying complex-
ity across different data sets. (2) Discriminativeness. Pre-
defined attributes can be redundant and are not necessarily
discriminative for similar object categories. For instance,
the attribute four-legged cannot help distinguish dog from
cat. (3) Generalization. Pre-defined attributes may not cap-
ture the common properties of different samples and thus
may not generalize to novel samples. These limitations in-
evitably damage the performance of attribute-based object
recognition and/or retrieval methods in practice. Although
several methods have been proposed to remedy a specific
one of the above limitations [18, 8, 27, 1], none of them
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overcomes all these limitations simultaneously.
Here, we propose a new dictionary learning method

which encodes the image visual features into binary ones,
and more importantly it effectively alleviates the above lim-
itations. Our approach is motivated by the fact that humans
flexibly adapt the number and nature of the attributes they
use to the relatedness and variety of the observed objects,
and to the complexity of the task. For example, from the
great number of possible attributes to describe a set of ani-
mals, such as furry, four-legged and can swim, humans ef-
fectively only use a limited number. The principle to select
attributes is simple: the chosen attributes should provide
sufficient information to reflect shared and discriminative
properties. Our method follows this principle and combines
three main ingredients.

First, our model discovers binary features by factorizing
low-level features of training images into a dictionary of ar-
bitrary (infinite) size – the actual visual patterns present in
the data form the dictionary, which adapts to the complexity
of the data. Such ideas are captured by priors like the Indian
Buffet Process (IBP) [11] or Beta Process (BP) [21]. We use
an asymptotic limit of an IBP feature model that allows for
fast inference [2]. The resulting AdaptiveDictionary algo-
rithm (whose details are given in Algorithm 1) is practical
even for large data sets.

Second, we use the AdaptiveDictionary algorithm in a
discriminative framework that not only strives for good rep-
resentations (with small reconstruction residue), but also bi-
ases towards learning dictionary which provides discrimina-
tive binary features. In the model, the dictionary, binary rep-
resentations of training samples and classifiers are learned
jointly in a max-margin framework [30].

Third, to enhance the generalization ability of dictionary,
we utilize the knowledge about sample relatedness to guide
the learned binary features to capture the relational structure
between samples. In particular, we encourage closely re-
lated samples to have more similar binary features than less
related ones. Hence, the dictionary generalizes by exploit-
ing related examples while still being discriminative. Fig-
ure 1 shows a graphical illustration of our proposed method.

The comprehensive experiments in Section 5 suggest
that the resulting learned dictionary is indeed discrimina-
tive and generalizes well. In short, our approach has the
following benefits: (1) The size of learned dictionary au-
tomatically adapts to the complexity of the training data.
Thus we need not bother to determine an appropriate num-
ber of basis in the dictionary – our regularization parame-
ter works across a variety of data sets. (2) We also need
not pre-define an attribute vocabulary and tediously anno-
tate the attributes for the training samples. (3) The model
can incorporate arbitrary levels of sample relatedness from
a variety of sources. In this way, the structure captured by
the learned dictionary and features can be tailored to spe-

cific needs and data.

2. Related Work
Farhadi et al. [7] are among the first to propose to use

visual attributes to identify familiar objects, and to describe
unfamiliar objects when new images are provided. Lampert
et al. [18] showed that attributes can also be used to rec-
ognize object categories without any training image. Fol-
lowing these seminal works, many attribute-based object
recognition methods have been proposed [36, 31]. Re-
cently, Parikh et al. [23] introduced the concept of relative
attributes that capture relations instead of being absolute bi-
nary. Kovashka et al. [16] integrated relative attributes into
user feedback for retrieval. These works require manually
labeled samples to learn the attribute classifiers. Moreover,
their predefined attributes may not be discriminative.

Recent work moves towards automating the attribute
learning process. Parikh et al. [22] involved humans to
identify the discriminative attributes in an active learning
framework. Berg et al. [1] proposed to automatically dis-
cover attributes by mining images and associated text from
the Internet. Rastegari et al. [27] learned discriminative at-
tributes by maximizing the separation of different classes. A
similar idea was used to automatically design discriminative
category-level attributes [8]. All of these works consider
attributes as outputs of a classifier on low-level features,
and the number of attributes is prespecified. IBP priors
have been used to learn representations of data with a flex-
ible, adaptive number of attributes [3, 12]. By themselves,
they are however not necessarily discriminative. Hence,
Quadrianto et al. [25] show a supervised IBP method to dis-
cover attributes that preserve the neighborhood structure of
training data. This method is orthogonal to our approach
in that it needs extensive relative ranking annotations of
samples. Metric learning [32, 34, 4] and discriminative dic-
tionary learning [15, 20] are conceptually close to attribute
learning, but use linear projections and therefore do not gen-
erate efficient binary representations.

Semantic relatedness is exploited in several recent works
to solve the problem of recognizing a large number of ob-
ject categories. Most of the existing works only use rela-
tions at the level of categories [5, 13]. Yang et al. [35] used
sample relatedness to help detect complicated events. They
associate related but negative samples with soft continuous
labels and reduce the classification problem to reduced.

3. Background
3.1. Binary Representation for Images

Given a set of training images {Ii}Ni=1, which are repre-
sented in RD by low-level feature vectors {xi}Ni=1, we aim
to learn a dictionary of basic visual patterns (“attributes”)
{ak}Kk=1 in RD whose linear combinations can represent



the image features, i.e., xi ≈
∑K
k=1 zi,kak. Here, zi,k ∈

{0, 1} is a binary indicator of whether the image xi has
the visual pattern ak or not. We will use the collection
zi = [zi,1, . . . , zi,K ]> of the indicators for the K basic vi-
sual patterns as the binary representation of the image xi
for image classification and retrieval tasks. The above fea-
ture factorization of all the N images over K basis can be
compactly written as X ≈ AZ. The matrices X ∈ RD×N ,
A ∈ RD×K and Z ∈ RK×N contain the features xi, dic-
tionary of patterns ak and binary representations zi, respec-
tively.

Instead of learning the binary features as the output of
classifiers (as done in recent work [7, 29]), we strive for
a good reconstruction. The binary representation of a new
image x will be z = arg minẑ∈{0,1}K ‖x−Aẑ‖22 1.

Sample relatedness measures the probability of two sam-
ples sharing common properties. As a key component, it is
utilized to regularize the above binary representations in this
work and thus regularize the dictionary, in order to discover
basic patterns of good generalization ability. The details are
given in Section 4.

As opposed to manual definitions of attributes [18, 7] and
fixed-size attribute discovery methods [1, 27], we do not
bound the size of our dictionary. Formally, from an infinite
number of basis, K+ basis are realized in the training data;
i.e., K+ depends on the complexity of the data. Our model
is derived from the Indian Buffet Process, described next.

3.2. IBP for Learning Flexible Dictionary

The Indian Buffet Process (IBP) [11] is a nonparametric
prior for describing an infinite latent feature model. That
means, we assume there are infinitely many latent dictio-
nary basis (basic patterns), and we have the IBP prior on
the distribution of these basis. Each image can have mul-
tiple basic patterns, and the number of basis in N images
is almost surely finite [11]. Before specifying the prior, we
turn to the other distributions – the prior on A and the like-
lihood. Both are often assumed to be Gaussian [11, 2, 25]:

p(A|0, σ2
A) =

K∏
k=1

D∏
d=1

N (ad,k; 0, σ2
A). (1)

p(X|Z,A, σ2
X) =

N∏
i=1

N (xi;Azi, σ
2
XI). (2)

Here, σ2
A and σ2

X denote the variances. The likelihood
in Eqn. (2) says that the observed feature xi concentrates
around the combination of its constituent basis Azi, with a
deviation σ2

X caused by noises.

1If we were to restrict our basis to be orthogonal, i.e., a>
i aj = 0,∀i 6=

j, then we had linear transformations zi = ATxi as in [7, 29]. However,
it is easy to show that with binary coefficients z, orthogonal attributes have
insufficient representational power.

Remark 1 (On the Gaussian assumption). Note that in our
experiments, the extracted image features are mostly his-
tograms (in R+ space) and the above Gaussian assumptions
(over R space) may be a bit simplistic. However, theoreti-
cally, our model can integrate a wider range of exponential
family distributions (see [14]). As to the current work, even
though the true distributions are most likely not Gaussian,
the model performs well. We would expect it to perform
even better with more accurate assumptions and we leave
this investigation in our future work.

The IBP prior distribution for the binary indicator zik
is a Bernoulli distribution Bernoulli(πk), whose parameter
πk is sampled from a Beta distribution Beta(α/K, 1), pa-
rameterized by a hyperparameter α and the number of basis
K [11]. Thus,

p(Z|α) =

K∏
k=1

α
KΓ(mk + α

K )Γ(N −mk + 1)

Γ(N + 1 + α
K )

,

where mk =
∑N
i=1 zk,i denotes the total number of times

the kth basis occurs in N samples. Taking K → ∞, we
obtain the final prior on the binary representations [11]:

lim
K→∞

p(Z|α) =
αK+

K+!
e−αHN

K+∏
k=1

(N −mk)!(mk − 1)!

N !
.

(3)
Here HN =

∑N
i=1 1/i is the N th harmonic number, and

K+ < ∞ denotes the finite number of discovered basic
patterns in the observations X .

Learning such models, however, can be computation-
ally challenging and usually requires sampling or varia-
tional methods [11, 28]. As an alternative, Broderick et al.
[2] derive the limit of the joint distribution P (X,A,Z) as
σX → 0. In this case, each feature xi is deterministically
assigned to the set of basis that generate the best represen-
tation for it. The complexity of the model (number of basis)
is indirectly controlled by a parameter λ that is connected to
the hyperparameter α as α = exp(−λ2/2σ2

X). In the end,
asymptotically the joint probability becomes [2]:

− log p(X,A,Z) ∼ ‖X −AZ‖2F + λ2K+ (4)

up to constant terms. That means, MAP inference in the
limit is equivalent to minimizing ‖X−AZ‖2F +λ2K+ w.r.t.
A,Z,K+, where K+ is the number of basis in the dictio-
nary A. This is the objective we will work with.

4. Scalable Discriminative Dictionary
4.1. Learning Discriminative Dictionary in IBP

Let {X,y} be the training feature vectors and labels.
Each element yi in y ∈ RN is the category label of xi
and takes one value from a set C = {1, . . . , C} indexing



C categories. For the cth category, we train a separate lin-
ear classifier wc ∈ RK+ that uses the binary representations
Z. That is, a test sample x with basis assignments z is clas-
sified as y = arg maxy′∈C w

>
y′z. We collect all classifiers

in W = [w1, . . . ,wC ].
To learn dictionary that are useful for the ultimate task of

classification, we simultaneously integrate representational
(reconstruction of X from dictionary basis) and discrimina-
tive (labels and classifiers W ) aspects in our model:

p(X,y, A, Z,W ) = p(W )p(A)p(Z)p(y|Z,W )p(X|A,Z).

This model is in the spirit of [19] with an equality prior on
the generative and discriminative parameters. The prior on
A is Gaussian (Eqn. (1)), while for the representational part
p(A)p(Z)p(X|A,Z) = p(A,Z,X), we take the asymp-
totic model in Eqn. (4):

−log (p(A)p(Z)p(X|A,Z)) ∝ ‖X−AZ‖2F +λ2K+. (5)

For W , we use p(W ) = exp{−‖W‖2F }. The conditional
distribution of the classes is discriminative [17]:

− log (p(y|Z,W )p(W ))

∝
∑
i

f(yi;W, zi) + β
∑
i,j

g(zi, zj) + ‖W‖2F . (6)

In particular, the first term f(·) represents a multi-class
classification loss on the labeled samples. We define f(·)
as [30]:

f(yi;W, zi) = max
ȳi∈C\yi

w>ȳizi −w>yizi, (7)

where ȳi denotes the incorrect class label for the sample xi.
Minimizing this loss will encourage the attribute represen-
tations from different categories to be separated with a large
margin. The second term g(·, ·) encourages related samples
to have similar attribute representations:

g(zi, zj) = sij‖zi − zj‖22. (8)

The coefficient sij is the strength of relatedness between
the samples xi and xj . For more closely related samples,
the value of sij is larger and hence g(·, ·) enforces them
to share more basis. As a result, the dictionary basis will
describe properties that are shared between related samples.
There are various ways to set the values of sij , for instance,
using the semantic similarity of category labels, appearance
similarity, or user feedback.

4.2. Attribute Learning Algorithm

Combining the probabilities in Eqn. (5) and Eqn. (6), and
maximizing the obtained joint probability yield the follow-

ing optimization problem:

min
W,A,Z,K+

∑
i

{
max
ȳi∈C\yi

w>ȳizi

}
−w>yizi + ‖W‖2F

+β
∑
i,j

sij‖zi − zj‖22 + ‖X −AZ‖2F + λ2K+. (9)

We alternatingly optimize the objective function with re-
spect to W and A,Z as follows. Fixing the dictionary A,
we obtain the representation Z for X in terms of A. Us-
ing the representations Z, we learn the classifiersW . Given
the new W , we modify A and Z to reduce the classifica-
tion loss. This process is repeated until convergence. Algo-
rithm 1 summarizes the optimization procedure.

Algorithm 1: AdaptiveDictionary
Initialize K+ = 1, A = [

∑
i xi/N ].

while Objective function decreasing do
for i = 1, . . . , N do

for k = 1, . . . ,K+ do
Set zi,k ∈ {0, 1} to minimize the objective
in Eqn. (9) greedily;

end
end
A← XZ>(ZZ>)−1;
Sample new basis aK++1 with probabilities
P(aK++1 = xi) ∝ ‖xi −Azi‖22;
A← [A,aK++1], K+ ← K+ + 1.
Update classifiers W (Linear SVM).

end

The AdaptiveDictionary algorithm starts by assigning
every sample to the first basis, and consequently infers that
the first basis is the average of all sample points. As the al-
gorithm proceeds, it computes the squared loss ‖x − Az‖2
for each sample, and selects a new candidate basis via im-
portance sampling: point x becomes a new basis with prob-
ability proportional to its residual. We may stop adding the
basis early if the number of attributes reaches a pre-defined
value, or run the algorithm until convergence. In our exper-
iments, we found the proposed algorithm to converge fast
(see supplementary material).

4.3. Other Applications

Our framework does not only apply to classification; it
is equally suitable for learning discriminative binary fea-
tures for image retrieval [6] or the detection of complex
events [35], considering the obtained representations are
compact binary vectors and efficient for storage and cal-
culating similarities. In these tasks, we replace the multi-
class classification in Eqn. (7) by regression: f(yi;w, zi) =
|w>zi − yi|2. Here, the yi’s are annotated ranking scores



(for retrieval) or confidence scores (for event detection) of
the ith sample. The ranking or confidence score of a new
sample is predicted as w>z.

5. Experiments
5.1. Classification on the AwA Dataset

First, we address the classification of known object cat-
egories and investigate the effectiveness of using sample
relatedness. We then extend the problem to recognizing
novel categories. Finally, we look at the adaptivity and vi-
sual properties of learned dictionary. All the experiments
in this subsection use the Animals with Attributes (AwA)
dataset introduced in [18]. The dataset contains 30, 475
images from 50 animal categories, and 85 manually de-
fined attributes for those animals, such as black, big, strong.
Each category is labeled with respect to the 85 attributes.
We follow the experimental protocol of [18] and use the
provided sample split: 40 categories as known (24, 295
images) and 10 categories as novel (6, 180 images). We
use the provided pre-computed low-level features, includ-
ing RGB color histogram, SIFT, rgSIFT, PHOG, SURF and
local self-similarity histograms. All the features are first
normalized individually and then concatenated into a single
10, 940-dimensional vector. We then apply PCA to reduce
the dimension of the feature vectors to 700 for the imple-
mentation efficiency.

We define the sample relatedness sij of two training im-
ages in Eqn. (8) via the semantic similarity of their (lowest)
categories in the WordNet [9] hierarchy:

sij =
depth(Pij)

0.5× length(i, j) + depth(Pij)
. (10)

Here, Pij denotes the nearest common ancestor of the sam-
ples xi and xj , depth(·) denotes the depth in the hierarchy
and length(·, ·) gives the path length between two nodes.

5.1.1 Classifying Known Categories

The first experiment studies the discriminative ability of
the learned dictionary and binary features to classify the
40 known categories on the AwA dataset. Following the
experimental setup in [8], we select different numbers of
images per category for training (15, 20, 25, 30, 50 respec-
tively), 25 images per category for testing and 10 images
per category for validation. The values of parameters are
tuned on the validation set and then fixed as λ = 1 × 10−3

and β = 0.1. When training on 2, 000 images (50 images
per category), Algorithm 1 converges after around 150 it-
erations. We plot the convergence curve of the objective
value in the supplementary material. It takes about 167 sec-
onds to learn 204 basis from the 2,000 training images on
a Matlab platform on a PC with 2.83 GHz Quad CPU. We
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Figure 2. Average classification accuracy over 40 known cate-
gories. Left: comparison between our method and baselines with
a fixed number of 85 attributes (basis). Right: accuracy of our
method with varying numbers of attributes (basis).

compare our framework with four other types of attributes:
(1) the category-level attribute annotations provided in the
AwA dataset [18]; (2) random category-level attributes [7];
(3) the category-level discriminative attributes of [8]; (4)
learning discriminative binary codes for each image [27].
For a fair comparison, the number of attributes for all the
compared methods is fixed to 85. That means we stop our
algorithm after having discovered 85 attributes. The clas-
sification accuracy for varying sizes of the training set is
shown in Figure 2 (left).

The results suggest two observations. First and not
surprisingly, all discriminative attribute learning methods
(Yu [8], Rastegari [27] and ours) outperform manually and
random attributes in classification. This implies the util-
ity of learning attributes tuned for the ultimate task. Sec-
ond, our method consistently outperforms all the compared
methods for different training set sizes. Hence, it is ben-
eficial for classification of known categories to shape the
structure of the dictionary basis, via the reconstruction term
and the regularization from sample relatedness.

Figure 2 (right) shows the performance of our adaptive
dictionary learning for different (fixed) numbers of basis
(85, 204 and 400). The number 204 is automatically deter-
mined by the algorithm. The 400 attributes are obtained via
continuing to apply Algorithm 1 after achieving the stopped
criterion. We see that increasing the number of attributes
indeed helps the classifiers, but the gains diminish at some
point: the automatically chosen number of 204 basis is ba-
sically as good as doubling this number. On the other hand,
for a small training set, smaller dictionary is sufficient. This
makes sense, as the complexity of the data mildly grows
with the size of the training set. However, the size of the
useful attribute representation (vocabulary) is clearly sub-
linear in the number of training samples, and levels off
quickly (see also Section 5.1.4). Moreover, the limited size
of dictionary imposed by our approach has an additional
regularizing effect (smaller shattering coefficient).

5.1.2 Effectiveness of Using Sample Relatedness

Next, we investigate the effect of using related samples to
enhance the classification performance when the training



Table 1. Classification accuracy (%) with different values of the
weight β of using sample relatedness.

# labeled β = 0 β = 0.1 β = 0.5
15 19.25 24.25 24.51
20 20.86 26.25 26.49
25 23.74 29.38 29.27
30 28.24 32.13 32.29
50 30.49 33.00 32.67

images are insufficient. We tune the value of the parame-
ter β of the related sample term in Eqn. (9) to control the
contribution of the related samples, and select three differ-
ent values of β = {0, 0.1, 0.5}. Setting β = 0 is equiva-
lent to not using the sample relatedness. We run the evalua-
tions over 5 different splits of the training samples. Table 1
displays the performance (accuracy averaged over multiple
splits) of classifying the 40 known categories for different
training set sizes. The results imply that when the number
of training samples is small (e.g., 15, 20 training images per
category), the performance gain induced by the related sam-
ples is significant (around 6%). This clearly demonstrates
that when the training data are not sufficient for learning
discriminative features and good classifiers, related samples
can transfer useful common knowledge via the learned dic-
tionary. However, when the training samples are sufficiently
informative, the gain from related samples is reduced: if 50
training samples per category are provided, the related sam-
ples improves performance only by about 2%.

5.1.3 Classifying Novel Categories

Here, we test how the learned dictionary generalizes to the
10 novel categories (6, 180 images in total) that are not
present in the above dictionary learning. The images are
split into the training set (50 images per category), the test
set (200 images per category) and the validation set (the re-
maining images). We use the dictionary A learned from
the 40 known animal categories in Section 5.1.1. The bi-
nary representation of any image x from novel categories is
z = arg minz∈{0,1}K ‖x − Az‖2. The category prediction
on novel samples in the test set is via clustering (without us-
ing the training set) or linear classifiers (learned on the train-
ing set) as in [8]. Here we do not adopt the method of clas-
sifying novel categories in [18] as it relies on category-level
attribute labels. We compare with five baseline methods: (1)
using manually [18] and (2) randomly [7] defined attributes,
(3) using low-level features provided in the dataset [18], (4)
using classemes [29] and (5) the method proposed in [8].
The comparison results are plotted in the left panel of Fig-
ure 3. The results confirm that our method consistently out-
performs the previous methods under varying numbers of
training samples (including no training samples from the
novel category). Here our approach benefits from using
sample relatedness, which guides it to learn attributes cap-
turing the shared knowledge. As a result, the learned at-
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Figure 3. Average classification accuracy over 10 novel categories.
Left: comparison with baselines with fixed numbers of basis.
Right: results of our method with varying numbers of basis. When
the number of training samples is zero, classification is achieved
via clustering the test samples.

tributes help generalization. We also investigate the perfor-
mance for different sizes of the dictionary. The results are
shown in Figure 3 (right). Here, 204 is the dictionary size
determined by our method. As with known categories, we
observe diminishing gains with respect to the number of ba-
sis: increasing from 30 to 85 basis boosts the performance
significantly, while further increasing the number of basis
does not improve the performance much.

5.1.4 Properties of The Learned Dictionary

To gain insight beyond the quantitative experiments above,
we explore other properties of our learned dictionary.

Adaptivity. First, as a proof of concept, we learn dictio-
nary on (1) a very homogeneous data set (Set I) with im-
ages from three categories that have many common proper-
ties: Dalmatian, German Shepherd and Chihuahua; and (2)
a very diverse data set (Set II) with images drawn from three
very different categories: Antelope, Beaver and Dalmatian.
One would expect that the diverse Set II requires more basis
to be described than the homogeneous Set I. Figure 4 shows
results with 50 images per category (β = 0.01 and λ = 1).
Indeed, the model automatically learns more attributes for
Set II, which has a wider variety of data. For both data sets,
the number of attributes grows automatically with the size
of the data.

Dictionary Visualization. As a second part of investigat-
ing properties of the learned dictionary, Figure 5 visualizes
the dictionary basis via exemplar images2. The parameter
setting for attribute learning was identical to the one in Sec-
tion 5.1.1. Each row in Figure 5 shows 5 example images
whose features are closest to a basis a (a column vector in
the learned A). The exemplars suggest that the learned ba-
sis capture certain common properties across multiple cate-
gories. For example, the basis in row (a) may be described
by the texture pattern of furry, and row (b) may be viewed
close to the concepts of dotted and striped patterns.

2Use the example images provided in the dataset
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Figure 4. Size of learned dictionary vs. dataset size and complex-
ity. The red (resp. blue) curve shows the number of learned dictio-
nary basis from 3 dog categories (resp. mixture of 3 quite different
animal categories). Example images of the two image sets are
shown at the neighbor of the corresponding curve.

(a) 

(b) 

(c) 

Figure 5. Visualization of learned dictionary. Each row shows the
top 5 closest images to a certain basis, in terms of the Euclidean
distance between their features.

5.1.5 Component-wise Model Evaluation

In the supplementary material, we provide further experi-
ments evaluating the effect of the individual components of
our model, i.e., the discriminative (Eqn. (6)) and the gener-
ative part (Eqn. (5)), on image classification results.

5.2. Classification on ILSVRC2010

In addition to AwA, we learn adaptive dictionary on
the large ILSVRC2010 dataset and use them to classify
novel categories. ILSVRC2010 contains 1.2 million images
from 1, 000 diverse categories. Following the experimen-
tal setting in [8, 10], 950 categories are randomly chosen
as known categories for dictionary learning (1,192,481 im-
ages). We evaluate the classification performance on the
remaining 50 disjoint categories (68,925 images) using the
learned dictionary. The 4, 096-dimensional Fisher vectors
in [10] are extracted to represent images. Considering the
large number of training samples, we use a small weight
β = 10−5 on the sample relatedness regularization. We
also control the size of dictionary to be relatively small
(λ2 = 103) for fair comparison with baselines. The sam-
ple relatedness is computed on the ImageNet hierarchy by
Eqn. (10). We randomly sample 100, 000 training images to
learn the dictionary. The dictionary learning takes around

Table 2. Image classification accuracy on 50 classes from
ILSVRC2010. The numbers in parentheses indicate # attributes.

# training 1% 5% 10% 50% 100%
Low-level feature 33.15 50.50 55.12 64.31 66.70
Classemes (950) 36.46 49.82 54.07 62.22 64.55
Yu [8] (2,000) 40.06 53.14 57.30 63.54 66.91
Ours (1,554) 44.23 58.68 64.38 69.71 71.24

3 hours on a server with 32 GB RAM and 8 CPU cores of
3.00 GHz and discovers 1, 554 attributes. For classification,
we again use a linear SVM. We use 80% of the novel cat-
egory samples for training (55, 140 images), 10% for test-
ing (6, 893 images), and 10% for validation (6, 892 images).
Table 2 shows the resulting multi-class classification accu-
racy, using different numbers of training images from the
training set of novel categories. Even though it uses fewer
attributes than the best performing baseline [8] (1, 554 vs.
2, 000), our method outperforms it by 4− 7%.

5.3. Image Retrieval on PASCAL VOC2007

Finally, we test the usefulness of our approach for re-
trieving images that contain multiple objects. For this ex-
periment, we use the trainval subset of PASCAL VOC2007,
which contains 5, 011 images of 20 object categories. Each
image contains multiple objects. In a practical image re-
trieval system, users can manually specify the sample relat-
edness among certain samples, i.e., sij in Eqn. (9), accord-
ing to their personal preference. Such feedback can be di-
rectly integrated to tailor the attributes to a certain user’s in-
terests, improving his experience during the retrieval. Here,
we simulate this feedback by specifying the relatedness of
two images by the number of overlapping category labels.

We extract the same Fisher vector features as [24]. Four
state-of-the-art methods in image retrieval [10] are adopted
as comparison baselines: two unsupervised methods (Spec-
tral Hashing [33] and SKLSH [26]), and two supervised
methods (CCA based ITQ [10] and the approach in [8]). We
randomly select 500 images as queries and use the remain-
ing images for training. For the baselines of SH, SKLSH
and ITQ, we use the implementations and parameter set-
tings provided by the authors of [10]. The number of fea-
ture bits used by the four baselines is fixed as 200, and we
tune our parameter λ to learn 196 attributes for fair compar-
ison. The parameters are set as λ = 0.2 and β = 0.1. The
samples having more than 1 overlapping category label with
the query are treated as positive. Performance is evaluated
by the precision and recall rate, and is shown in Figure 6.
The results demonstrate that, as the case for classification,
the supervised approaches generally outperform the unsu-
pervised ones, because they benefit from the additional cat-
egory information related to the end task. Moreover, our
method significantly outperforms all four baselines.



Figure 6. The image retrieval precision-recall curves of our method
and other state-of-the-art methods on PASCAL VOC2007.

6. Conclusions and Future Work
We propose a novel dictionary learning model that is

able to automatically discover basic patterns (non-semantic
attributes) with both good discriminative and generaliza-
tion properties. It incorporates related samples and seman-
tic information to learn a representation well-aligned with
the relations of categories. As a result, it captures shared
properties of the related objects very well. In addition, the
learned dictionary automatically adapts to the complexity
of the data. Such flexible dictionary can be, as we show, ef-
fectively applied for image classification and retrieval. Our
model is in structure similar to a three-layer neural network
which has, however, fewer layers than popular Deep Neural
Networks (DNN). Hence, it can be trained much more effi-
ciently, while still performing very well. The performance
is due to a regularization in the attribute layer that is targeted
to the end task. Such regularization is usually not applied in
DNNs. In addition, the number of “attribute” equivalents in
DNNs is usually pre-set and fixed. It would be an interest-
ing direction to further investigate the relationship between
our structurally steered attributes and DNNs, and how such
regularization ideas may help augment DNN models.
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