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Abstract

This paper presents a unified bag of visual word (BoW)
framework for dynamic scene recognition. The approach
builds on primitive features that uniformly capture spa-
tial and temporal orientation structure of the imagery (e.g.,
video), as extracted via application of a bank of spatiotem-
porally oriented filters. Various feature encoding tech-
niques are investigated to abstract the primitives to an inter-
mediate representation that is best suited to dynamic scene
representation. Further, a novel approach to adaptive pool-
ing of the encoded features is presented that captures spa-
tial layout of the scene even while being robust to situations
where camera motion and scene dynamics are confounded.
The resulting overall approach has been evaluated on two
standard, publically available dynamic scene datasets. The
results show that in comparison to a representative set of al-
ternatives, the proposed approach outperforms the previous
state-of-the-art in classification accuracy by 10%.

1. Introduction
In the last decade, research in image classification and

object recognition is dominated by three general steps: (i)
In the feature extraction step, low-level descriptors are ex-
tracted from interest points or densely from regular loca-
tions. (ii) The coding step generates intermediate visual
words that transform local features into more effective rep-
resentations for the underlying task. (iii) The pooling step
accumulates encoded features over regions to embed weak
geometric information even while maintaining important
properties of spatial invariance.

This paper proposes a novel approach to dynamic scene
recognition, Bags of Spacetime Energies (BoSE), within
the framework indicated in Fig. 1. The approach com-
bines primitive features based on local measurements of
spatiotemporal orientation, careful selection of encoding
technique and a dynamic pooling strategy that in empiri-
cal evaluation outperforms the previous state-of-the-art in
dynamic scene recognition by a significant margin.
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Figure 1. Proposed Representation for Dynamic Scene Recogni-
tion. First, spatiotemporal oriented primitive features are extracted
from a temporal subset of the input video. Second, features are en-
coded into a mid-level representation learned for the task and also
steered to extract dynamic pooling energies. Third, the encoded
features are pooled via a novel dynamic spacetime pyramid that
adapts to the temporal image structure, as guided by the pooling
energies. The pooled encodings are concatenated into vectors that
serve as the final representation for online recognition.

Considerable research has addressed the challenge of
recognizing scenes from single images (e.g., [8, 14, 15,
17]). In contrast, relatively little attention has been paid
to dynamic scene recognition from image sequences, even
though temporal information should support additional rep-
resentational richness for visual scene classification. A pos-
sible reason for this limited research in dynamic scenes
was the lack of a substantial database; however, this limi-
tation has now been addressed, as two dynamic scene video
databases have appeared [6, 22]. Even as it stands, however,
the dynamic scene recognition literature can be reviewed
within the tripartite framework of primitive feature extrac-
tion, coding and pooling.

Various primitive features have been investigated for dy-
namic scenes, including, flow vectors [16], linear dynamical
systems [22], chaotic invariants [22], spatiotemporal orien-
tations [6, 9] and slowly varying spatial orientations [24].
Here, systematic comparisons suggest that spatiotemporal
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orientations provide particularly strong primitives for dy-
namic scene recognition [6, 9].

The coding step has been less investigated in dynamic
scene recognition, with most recognition approaches based
more directly on pooling of primitive features. An excep-
tion [24] is work that used extant approaches to dictionary
building via unsupervised sampling [21] combined with
subsequent soft assignment for final encoding [12]; how-
ever, this work lacked any systematic evaluation of alterna-
tive encoding strategies. Here, it is worth noting that classi-
fication performance can be greatly impacted by the choice
of coding approach [4]; so, careful selection based on sys-
tematic study is appropriate.

The dominant approach to pooling throughout the dy-
namic scene recognition literature is that of spatial pyramids
[6, 9, 22, 24], which employ predefined hierarchically grid-
ded aggregation regions to capture coarse geometric layout
in a multiresolution fashion. A limitation of this approach
is that its predefined aggregation regions do not adapt to
the dynamics of a video sequence, e.g., as regions of inter-
est move to different relative positions with the passage of
time and when camera and scene motion are confounded.
While recent advances in pooling are more flexible (e.g.
[3, 10, 13]), they do not adapt dynamically to the time vary-
ing information that is present in a given dynamic scene and
their utilty will thereby be limited.

The present paper makes the following three main con-
tributions. 1) A novel dynamic pooling is presented that
allows for encoded features to be aggregated adaptively as
a function of scene dynamics. It is shown that this approach
supports superior performance to alternatives when camera
and scene motion are confounded without compromising
performance when camera motion is absent. 2) The only
systematic evaluation of feature coding techniques applied
to dynamic scenes is documented. Here, spatiotemporal ori-
ented features serve as primitives, owing to their strong per-
formance in previous evaluations of dynamic scene recog-
nition features. Recently, the Fisher vector representation
[19] has shown state-of-the-art results for a variety of vi-
sual tasks (e.g., [5, 14, 18, 23]); in contrast, here it is found
that locality constrained linear coding [27] performs par-
ticularly well for dynamic scenes. 3) The selected feature,
encoding and pooling approaches have been assembled into
a complete system for dynamic scene recognition that has
been evaluated on two standard datasets. The results show
that the system outperforms the previous state-of-the-art by
a 10% improvement in classification accuracy.

2. Technical approach

2.1. Primitive feature extraction

The underlying descriptor is based on spatiotemporal
measurements that jointly capture spacetime image appear-

ance, dynamics and colour information at multiple scales.
To extract the representation of spacetime orientation,

the input volume is filtered with oriented 3D Gaussian third-
derivative filters G(3)

3D(θi, σj) = κ ∂3

∂θ3i
exp

(
−x

2+y2+t2

2σ2
j

)
,

with κ a normalization factor. The responses are pointwise
squared and smoothed to yield oriented spacetime energy
measurements

E(x; θi, σj) = G3D(σj) ∗ |G(3)
3D(θi, σj) ∗ V (x)|2, (1)

where G3D is a three-dimensional Gaussian, x = (x, y, t)>

are spacetime coordinates, V is the grayscale spacetime vol-
ume formed by stacking all frames in a sequence along the
temporal axis and ∗ denotes convolution. Convolution with
G3D serves to blur the filter responses, thereby ameliorat-
ing phase sensitivity and suppressing noise. Local smooth-
ing is also appropriate, because the responses are directly
used for subsequent encoding. This is in contrast to previ-
ous work using similar oriented filter responses for dynamic
scene recognition which immediately aggregated filter re-
sponses over some support region (e.g., [6, 9]).

Thus, for every spacetime location, x, the local oriented
energy E(x; θi, σj) measures the power of local oriented
structure along each considered orientation θi and scale σj .
To uniformly sample the 3D spacetime domain along the
minimal set of directions that span orientation forG(3)

3D [11],
the filter directions are chosen along the vertices of a dodec-
ahedron with antipodal directions identified to yield a set of
ten θi. Figure 2 shows the spatiotemporal energies for the
employed filter orientations on a sequence of a windmill
farm. The energies collect dynamic information, see e.g.,
the dominant energies in Fig. 2(h) capturing the movement
of the rotating rotor blades, as well as spatial information,
see e.g., the energies in Fig. 2(d), reaching high values for
spatial orientation structure on the ground of the scene.

The filter responses (1) are sensitive to image contrast.
To achieve invariance to multiplicative contrast variation,
the responses are normalized with respect to the sum of all
filter responses at a point

Ê(x; θi, σj) =
E(x; θi, σj)∑|θ|

k=1E(x; θk, σj) + ε
, (2)

where |θ| = 10 denotes the number of orientations and the
noise bias, ε, avoids numerical instabilities at low overall
energies. To explicitly capture lack of oriented spacetime
structure, another feature channel

Êε(x;σj) =
ε∑|θ|

k=1E(x; θk, σj) + ε
, (3)

is added to the contrast-normalized filter responses of (2).
Figure 2(l) shows Êε(x;σj) for a windmill sequence, where
large responses are seen in the unstructured sky region.
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Figure 2. Distribution of spatiotemporal oriented energies for 16
frames of a sequence from the YUPENN dataset (a) [6]. In (b)-(k)
the oriented energies, calculated by Gaussian derivative filtering,
(1), is shown. (l) illustrates the no structure channel, (3). Hotter
colours (e.g., red) indicate larger filter responses.

Previous evaluations [6, 9, 22] showed that integrat-
ing colour cues is useful for dynamic scene categorization.
Colour information is incorporated in the present spacetime
primitives via the addition of three smoothed colour mea-
surements,

Cm(x;σj) = G3D(σj) ∗ Vm(x), (4)

where m is one of the three CIE-LUV colour channels, i.e.
m ∈ {L,U, V } and all other notation is by analogy with the
filtering formula (1).

Overall, each point, x, in the spatiotemporal image vol-
ume, V , yields a locally defined, primitive feature vector,
v(x), that is formed by concatenating the normalized, mul-
tiscale orientation measurements, (2), with the measures of
unstructuredness, (3), and colour, (4). Notably, owing to the
separability and steerabilty of the underlying filtering oper-
ations, these features can be extracted with modest compu-
tational expense.

2.2. Coding

A variety of different coding procedures exist to convert
primitive local features, v(x) ∈ RD, into more effective
intermediate-level representations, c(x) ∈ RK , for clas-
sification purposes and the choice can significantly impact
performance [4]. In the present case, the primitive features
are given in terms of the feature vector constructed in the
previous subsection. To best mediate between these primi-
tives and dynamic scene classification, a systematic empir-
ical evaluation of a representative set of four contemporary

coding techniques has been performed. In all cases, the en-
coding is with respect to an unsupervised trained codebook
B ∈ RD×K .

As a baseline, vector quantization (VQ) is considered.
In this case, each local feature v(x), is assigned the near-
est codeword in B, based on the minimum Euclidean dis-
tance in the D-dimensional feature space. The use of only
a single codeword does not incorporate distances in the fea-
ture space, discards much descriptive information and is
sensitive to noise [2, 27]. To improve on these limitations
recent research has concentrated on retaining more infor-
mation from the original features and representatives from
these coding methods therefore are considered for incorpo-
ration into the proposed dynamic scene recognition system.

Largely two categories of improved approach have
emerged. One category expresses features as combinations
of (sparse) codewords (e.g., [2, 3, 10, 27]). The other cat-
egory considers differences between the original features
and the codewords (e.g., [19, 20, 30]). Correspondingly,
two particularly strong performers from each of these two
categories are considered [4]. Local linear coding (LLC)
[27] is selected as the representative of the first category.
In LLC, each local feature v(x) is encoded by M � K
nearest codewords in B. Fisher vectors (FV) [19] are con-
sidered as a representative of the second category. An FV
models mean and covariance gradients between a set of fea-
tures {v(x)} and a generative model. The model is learned
on training descriptors by using a Gaussian mixture model
(GMM). Additionally, a recent improvement to Fisher vec-
tors (IFV) is considered to see what gains result [20].

For VQ and LLC, the codebook entries are learned
by quantizing the extracted descriptors from training se-
quences withK-means. In the case of Fisher vector coding,
a GMM is fit to the training descriptors.

2.3. Dynamic pooling

When pooling the encoded features, c(x), from dynamic
scenes, those that significantly change their spatial location
across time should be pooled adaptively in a correspond-
ingly dynamic fashion. For example, global image motion
induced by a camera pan could cause the image features to
move with time and pooling that is tied to finely specified
image location will fail to capture this state of affairs. Simi-
larly, when regions change their spatial relations with time,
pooling should adapt. In such situations, a lack of appro-
priately dynamic pooling will degrade recognition perfor-
mance, as features pooled at one location will have moved
to a different location at a subsequent time and thereby be
at risk of improper matching. Significantly, this challenge
persists if the pooling positions are hierarchically arranged
[15] or even more adaptively defined [3, 10, 13, 25, 26], but
without explicit attention to temporal changes in pooling re-
gions.



In contrast, features that retain their image positions over
time (i.e., static patterns) can be pooled within finer, prede-
fined grids, e.g., as with standard spatial pyramid matching
(SPM) [15]. Indeed, even highly dynamic features that re-
tain their overall spatial position across time (i.e., tempo-
rally stochastic patterns, such as fluttering leaves on a bush
and other dynamic textures) can be pooled with fine grids.
Thus, it is not simply the presence of image dynamics that
should relax finely gridded pooling, but rather the presence
of larger scale coherent motion (e.g., as encountered with
global camera motion).

2.3.1 Dynamic pooling energies

In response to the above observations, a set of dynamic en-
ergies have been derived that favour orderless pooling (e.g.,
global aggregation) when coarse scale image motion dom-
inates and spatial pooling (as in an SPM scheme) when a
visual word is static or its motion is stochastic but otherwise
not changing in overall spatial position. These energies are
used as pooling weights applied to the locally encoded fea-
tures so that they can be pooled in an appropriate fashion.

The energies are based on the primitive feature mea-
surements (1) and therefore provide an intuitive and effi-
cient strategy to enhance pooling. To capture the desired
coarse scale spatiotemporal information the 3D Gaussian
third derivative responses are aggregated as

ER(x; θi, σj) =
∑
x∈R
|G(3)

3D(θi, σj) ∗ V (x)|2, (5)

where R is a rectangular spacetime region defined by
{Rx,Ry,Rt} and centred at x. A rectangular aggrega-
tion region is used to be consistent with the ultimate pooling
grids. Next, since interest is in capturing image dynamics,
irrespective of spatial orientation, the spacetime energies in
equation (5) are steered and then combined across all orien-
tations consistent with a single spacetime orientation (e.g.,
motion direction), as specified by the unit normal, n̂, cor-
responding to its frequency domain plane [28]. To span
orientation space in a plane, 4 directions are needed for a
Gaussian 3rd derivative [11]. So, dynamic energies for di-
rection n̂ are given by

ED(x; n̂, σj) =

4∑
i=1

ER(x; θ̂i, σj), (6)

with θ̂i denoting equally spaced orientations consistent with
n̂; for details see [7]. In the present context, directions
are considered corresponding to motion along the leftward,
rightward, upward, downward and four diagonal directions
as well as static (zero velocity), which are denoted in the
following as l, r, u, d, ru, rd, lu, ld and s, respectively.

The directional spacetime energies, (6), are not sufficient
for distinguishing between so called coherent motion (e.g.,
as exemplified by large scale motion resulting from cam-
era movement) and incoherent motion (e.g., as exemplified
by stochastic dynamic textures) [1, 29]. The desired pool-
ing energies are meant to capture coherent motion and that
can be accomplished by combing the directional energies in
opponent-motion channels as follows

ED|r−l|(x;σj) = |ED(x; n̂r, σj)− ED(x; n̂l, σj)|

ED|u−d|(x;σj) = |ED(x; n̂u, σj)− ED(x; n̂d, σj)|

ED|ru−ld|(x;σj) = |ED(x; n̂ru, σj)− ED(x; n̂ld, σj)|

ED|lu−rd|(x;σj) = |ED(x; n̂lu, σj)− ED(x; n̂rd, σj)|
(7)

to yield a set of dynamic energies representing coherent im-
age motion in 4 equally spaced directions (horizontal (r−l),
vertical (u−d) and two diagonals (ru− ld and lu−rd)). In
contrast to the individual motion direction consistent energy
samples from (6), the opponent motion channels explicitly
capture coherent motion across various directions. For ex-
ample, a spatial region with a stochastically moving space-
time pattern, e.g. the leaves of a tree in the wind can exhibit
large motions in several specific directions n̂; however, after
taking the absolute arithmetic difference from opponent di-
rections, the coherent motions, (7), of such stochastic space-
time texture patterns are approximately zero. On the other
hand, regions that are dominated by a single direction of
motion (i.e. coherent motion regions) will yield a large re-
sponse in the most closely matched channel.

The coherent motion energies are `1 normalized together
with the static energy channel that indicates lack of coarse
motion

ÊDΛk
(x;σj) =

EDΛk
(x;σj)∑

i∈ΛE
D
Λi

(x;σj) + ε
, ∀k ∈ Λ, (8)

to yield a point-wise distribution of static, coherent, as well
as unstructured energy via the normalized ε indicating ho-
mogeneous regions

ÊDε (x;σj) =
ε∑

i∈ΛE
D
Λi

(x;σj) + ε
, (9)

with Λ = {s, |r − l|, |u− d|, |ru− ld|, |lu− rd|} .

Next, since regions without coherent motion or with only
fine scale motion (indicated by ÊDs ), as well as homoge-
neous regions (indicated by ÊDε ), can be similarly pooled
with spatial gridding to capture geometric layout, static en-
ergy is summed with unstructured energy as

ÊDs+ε(x;σj) = ÊDs (x;σj) + ÊDε (x;σj), (10)

to yield the final set of (coherent) motion directions
Λ = {s+ ε, |r − l|, |u− d|, |ru− ld|, |lu− rd|}.



Finally, to capture dynamic information across a range
of scales, the dynamic pooling energies are extracted with
multiple scales, σj , and ultimately collapsed across scale as

ẼDΛk
(x) =

1

|σ|

|σ|∑
j=1

ÊDΛk
(x;σj), ∀k ∈ Λ, (11)

where |σ| denotes the number of scales.

The dynamic pooling energies for a temporal subset of a
street sequence are shown in Fig. 3. For proper illustration,
the temporal support of the largest G(3)

3D filter is depicted
in Figures 3(a)-3(c). Figure 3(d) depicts the central frame
of the filtered sequence and 3(e)-3(i) show the decompo-
sition of the filtered sequence into a distribution of static
and coherent motion dynamic energies. Observe that the
static+unstructured channel consists of large responses for
stationary image structures, e.g., the buildings in the scene,
as well as for homogeneous regions such as the sky in the
centre of the scene. Whereas the foreground red car’s dy-
namic energy can be decomposed into several coherent mo-
tion channels with a large part originating from the horizon-
tal motion channel, i.e., ẼD|r−l|(x), shown in Figure 3(f).
Note that fine-scale motions, such as the moving cars in the
background, are not captured by the coherent motion chan-
nels (Fig. 3(f)-3(i)) and therefore exhibit strong responses
in the static channel 3(e), which is appropriate as they form
(part of) the background dynamic texture.
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Figure 3. Distribution of Spatiotemporal Oriented Pooling Ener-
gies of a Street Sequence from the YUPENN Dataset. (a), (b),
(c), and (d) show the first 8, middle 8, last 9, and centre frame of
the filter support region. (e)-(i) show the decomposition of the se-
quence into a distribution of spacetime energies indicating station-
arity/homogeneity in (e), and coarse coherent motion for several
directions in (f)-(i). Hotter colours (e.g., red) correspond to larger
filter responses.

2.3.2 Dynamic spacetime pyramid

The dynamic pooling energies, (11), are used to control con-
struction of a spacetime pyramid that explicitly captures
spatial and temporal information as described in the fol-
lowing four steps. First, to keep weak geometry informa-
tion of the pooled encodings, a traditional three-level spa-
tial pyramid of size

{
(2l × 2l × 1l)

}2

l=0
is constructed for

each sample point in time within a temporal sliding win-
dow, resulting in M = 21 regions {Rm}Mm=1. Second,
for pooling at the coarsest level l = 0, i.e., in the region
without geometric grid, R1, coded features are globally ag-
gregated. Third, in regions with geometric grids, i.e., l > 0
and {Rm|m > 1}, the static pooling energies ẼDs+ε are used
as geometric coefficients, emphasizing the local contribu-
tion of each visual word. Fourth, to explicitly pool fea-
tures favourably from regions with coherent motion, four
more channels Λ = {|r − l|, |u− d|, |ru− ld|, |lu− rd|}
are added. Due to the coarse-scale motion of these features,
the top pyramid level l = 0 is used. Therefore, the final
spatiotemporal pyramid encodes a sample point in time in
M + 4 = 25 channels, with each channel capturing specific
spatial and temporal properties of the pooled codewords.

To generate a signature of the spatiotemporal feature
codes c(x), extracted at the same point in time, t, max-
pooling is chosen, as it finds the most salient response in
a region Rm and is known to provide robustness to outliers
in the collection of encodings to be pooled [2, 21, 27]. The
developed dynamic max-pooling operation finds the loca-
tion x

(k)
m of the codewords that represent the mth channel in

the dynamic spacetime pyramid by

x(k)
m =


arg max
x∈R1

c(k)(x) m = 1

arg max
x∈Rm

ẼD|s+ε|(x)c(k)(x) 2 ≤ m ≤M

arg max
x∈R1

ẼDΛi
(x)c(k)(x) M + 1 ≤ m ≤M + 4,

(12)

to pool the kth visual codeword by f(k)
m = c(k)(x

(k)
m ), and

yield the final description of Rm by fm ∈ RK . In (12),
the static coefficients, ẼD|s+ε|, assign higher weights to all
features pooled from regions with a spatial grid. Note that
these static coefficients ẼD|s+ε| are `1-normalized together
with the dynamic energies that indicate coarse scale coher-
ent motion. Therefore, dynamic features with coarse scale
motion characteristics are given low weights when pool-
ing in spatial grids of the spacetime pyramid. To explicitly
model the visual words with coarse scale dynamics, equa-
tion (12) pools features with specific directions. For exam-
ple, visual words on horizontally moving objects are pooled
with high corresponding weights ẼD|r−l| to explicitly cap-
ture horizontally moving image structures in the dynamic
spacetime pyramid.



A global feature vector, f , representing a point in time of
the video, is concatenated by stacking the descriptors fm of
all channels. These feature vectors can then serve as the ba-
sis of an on-line recognition scheme when coupled with an
appropriate classifier, e.g, a support vector machine (SVM).

2.4. Implementation summary

1. Sliding window local feature extraction. The video
is processed in a temporal sliding window by dense ex-
traction of normalized oriented spacetime energies, (2),
and colour distributions, (4), with the |θ| = 10 filter ori-
entations, one unstructured channel (Êε), and three LUV
colour channels. All measurements are taken at two scales,
σ = {1, 2} with local filter support of (x, y, t)> ∈{

(13, 13, 13)>, (25, 25, 25)>
}

. The resulting multiscale
spacetime orientation features, v(x), of dimension D =
(|θ|+ 1 + 3)× |σ| = 28 are extracted densely over a spa-
tiotemporal grid by varying x in spatial steps of 8 pixels
and temporal steps of 16 frames.

2. Codebook generation. For VQ and LLC, the codebook
entries are learned by quantizing the extracted descriptors
from the training sequences with K-means. To maintain
low computational complexity, a random subset of features
from the training set, consisting of a maximum of 5000 de-
scriptors from each training sequence, are used to learn a
visual vocabulary of size K = 200 codewords. An ap-
proximated nearest neighbour search is used for efficient
clustering and encoding. In the case of Fisher vector cod-
ing, a GMM with KGMM = 50 mixtures is fitted to the
subsampled training descriptors.

3. Feature coding. The local spacetime descriptors are en-
coded either via VQ, LLC, FV, or IFV. The parameters in
LLC are set to the default values from the original publica-
tion [4, 27]; i.e., the considered neighbouring visual words
are set to M = 5 and the projection parameter to 10−4.

4. Feature pooling. To compare against conventional pool-
ing, an l = 3 level SPM is used to maintain weak spatial
information of the features extracted in each temporal in-
stance. The resulting 21 pooling regions from spatial grids
of size 2l × 2l create a 21 × K = 21 × 200 = 4200 di-
mensional feature vector for VQ and LLC encoding and
a 21 × 2 × KGMM × D = 21 × 2 × 50 × 28 = 58800
dimensional feature vector for the higher order Fisher en-
coding. As in the original publications, pooling is per-
formed by taking the average (VQ) or maximum (LLC) of
the encoded features. For the proposed dynamic pooling,
let Vw and Vh denote the width and height of the space-
time volume in the filtering process (5), then the integra-
tion region is set to Rx = Vw

4 , Ry = Vh

4 , and Rt is set
to the temporal support of the largest filter used in (5). A
25 × K = 5000 dimensional feature vector is generated
by the dynamic spacetime pyramid that also uses a hierar-
chical 3-level pyramid with the finest grid size of 4× 4 for

embedding geometry in 20 of the 25 channels.
5. Learning and Classification. Each set of encoded fea-
tures pooled from the same temporal instance generates a
feature vector, f . For training, all feature vectors extracted
from the training set are used to train a one-vs-rest SVM
classifier. The histogram intersection kernel [15] is used
for VQ, while a linear SVM is applied for Fisher and LLC
coded features. `2 normalization is applied to the feature
vectors used in the linear SVM. The SVM’s regularization
loss trade-off parameter C is set after cross validation on
the training data. During classification, each feature vec-
tor of a test video is classified by the one-vs-rest SVM to
yield a temporal prediction. All temporal predictions are
subsequently combined to yield an overall classification of
the video by the majority of the temporal class predictions.

3. Experimental evaluation
The proposed Bags of Spacetime Energies (BoSE) sys-

tem is evaluated on the Maryland [22] and YUPENN [6]
dynamic scene recognition datasets. A leave-one-video-
out experiment is used for consistency with previous eval-
uations in [6, 9, 22, 24]. The structure of the experi-
ments is three-layered. First (Section 3.1), the best encod-
ing method, in the context of dynamic scene understand-
ing, is sought for the proposed spacetime orientation and
colour features of Section 2.1. This evaluation includes fea-
ture encoding methods that are based on either local code-
word statistics (VQ and LLC), or the difference between
the codewords and features to encode (FV and IFV). Sec-
ond, an evaluation of the novel dynamic pooling framework
is given in Section 3.2, where, based on the evaluation, LLC
encoded features are combined with the proposed dynamic
max pooling approach of Section 2.3. Finally, in Section
3.3 the full proposed BoSE system is compared with the
state-of-the-art in dynamic scene classification.

3.1. Comparison of feature coding methods

Maryland YUPENN

VQ LLC FV IFV VQ LLC FV IFV
65.38 69.23 63.85 66.92 94.52 95.48 91.43 96.19

Table 1. Average recognition accuracy with different encoding
methods. LLC outperforms IFV in the presence of large intra-class
variabilities and temporal variations within the videos (Maryland).

In Table 1, the overall classification performance, aver-
aged over all classes, for the four investigated coding ap-
proaches is shown. On both datasets very competitive per-
formance is achieved by the LLC encoding. Especially on
the Maryland dataset the higher-order Fisher vector encod-
ings are outperformed by LLC. This is interesting, given
that for (static) image classification tasks Fisher vectors
generally have been found to provide superior performance
to sparse encodings such as LLC [4, 14]. Since most of the



Pooling method Maryland YUPENN

max-pooling 69.23 95.48
dynamic max-pooling 77.69 96.19

Table 2. Dynamic scene recognition accuracy with LLC encoded
features for different pooling methods. The proposed dynamic
max-pooling allows best performance on data with a high degree
of coarse scale motion (Maryland), as well as on dynamic scene
sequences captured from static cameras (YUPENN).

videos in the Maryland dataset show significant temporal
variation, these results suggest that for highly dynamic data
LLC is able to outperform IFV. Based on this outcome, the
remainder of the evaluation makes use of LLC encoding.

3.2. Dynamic energy pooling

This section evaluates the performance of LLC encoded
spacetime features that are pooled either via conventional
max-pooling or via the proposed dynamic max-pooling. In
Table 2 the overall classification rate (in %) for variations
in the pooling method is reported. The novel dynamic
max-pooling leads to best performance on both datasets.
Conventional max-pooling is outperformed by a margin of
8.46% and 0.71% for Maryland and YUPENN, resp.

The significant performance gain associated with dy-
namic max-pooling on the Maryland dataset can be at-
tributed to the severe camera movement that is present in
this dataset. Since camera movement generally manifests
itself at coarse temporal scales and the proposed dynamic
pooling method favours pooling without geometric context
within the dynamic pyramid when coarse (coherent) motion
is present, it avoids inappropriate spatially gridded pooling
when image structure drastically changes its position with
time. The approach thereby becomes robust to camera (and
other coarse) motions. Interestingly, further investigation
showed that performance drops to 66.15% (−3.08%) when
the spatial pyramid is not employed at all.

Consideration of the YUPENN results shows that this
advantage is had without compromising performance when
camera motion is absent: Here, the dynamic pooling allows
aggregation at finer levels of the dynamic pyramid to more
precisely localize the spatiotemporal image structure. Inter-
estingly, there is even a slight improvement on YUPENN
under dynamic max-pooling, which may be due to the fact
that coherently moving objects are specifically matched by
the dynamic pooling channels in (12). For example, verti-
cally moving visual words from a waterfall sequence will be
explicitly matched, since these are favourably pooled within
the ÊR|u−d| channel of the dynamic spacetime pyramid.

3.3. Comparison with the state-of-the-art

The proposed approach is compared to several others
that previously have shown best performance: GIST [17]
+ histograms of flow (HOF) [16], GIST + chaotic dy-
namic features (Chaos) [22], spatiotemporal oriented ener-

Class HOF+ Chaos+ SOE SFA CSO BoSEGIST GIST

Avalanche 20 60 40 60 60 60
Boiling Water 50 60 50 70 80 70
Chaotic Traffic 30 70 60 80 90 90
Forest Fire 50 60 10 10 80 90
Fountain 20 60 50 50 80 70
Iceberg Collapse 20 50 40 60 60 60
Landslide 20 30 20 60 30 60
Smooth Traffic 30 50 30 50 50 70
Tornado 40 80 70 70 80 90
Volcanic Eruption 20 70 10 80 70 80
Waterfall 20 40 60 50 50 100
Waves 80 80 50 60 80 90
Whirlpool 30 50 70 80 70 80

Overall 33.08 58.46 43.08 60.00 67.69 77.69
Table 3. Classification accuracy for different representations on the
Maryland dataset.

Class HOF+ Chaos+ SOE SFA CSO BoSEGIST GIST

Beach 87 30 93 93 100 100
Elevator 87 47 100 97 100 97
Forest Fire 63 17 67 70 83 93
Fountain 43 3 43 57 47 87
Highway 47 23 70 93 73 100
Lightning Storm 63 37 77 87 93 97
Ocean 97 43 100 100 90 100
Railway 83 7 80 93 93 100
Rushing River 77 10 93 87 97 97
Sky-Clouds 87 47 83 93 100 97
Snowing 47 10 87 70 57 97
Street 77 17 90 97 97 100
Waterfall 47 10 63 73 77 83
Windmill Farm 53 17 83 87 93 100

Overall 68.33 22.86 80.71 85.48 85.95 96.19
Table 4. Recognition rates for the best performing approaches on
the YUPENN dataset.

gies (SOE) [6], slow feature analysis (SFA) [24], and com-
plementary spacetime orientation (CSO) features [9].

Tables 3 (Maryland dataset) and 4 (YUPENN dataset)
compare the performance of the final Bags of Spacetime
Energies (BoSE) system with the previous state-of-the-art.
Here, the BoSE system consists of densely extracted local
oriented spacetime energies (5) and colour distributions (4)
that are encoded by LLC and pooled via the proposed dyn-
max-pooling, parameter choices as given in Section 2.4.
Note that the reported performance of SFA differs from that
given in the original paper [24]. The results presented here
are the correct ones; see error report and correct recogition
rates (reproduced here) at the SFA website 1.

For both datasets, BoSE performs considerably better
than the previous state-of-the-art, CSO [9], with an im-
provement of 10% or better on both datasets. On the Mary-
land dataset, the novel BoSE representation achieves an ex-
ceptional average accuracy of 78% when coupled with a
simple linear SVM classifier. When comparing to other ap-
proaches, one striking result is the 100% recognition accu-
racy for the Waterfall class. The proposed BoSE approach’s

1http://webia.lip6.fr/˜theriaultc/sfa.html

http://webia.lip6.fr/~theriaultc/sfa.html


96% accuracy on YUPENN suggests that performance is
saturated on this dataset. One remarkable result on this
dataset is the 87% recognition rate for the Fountain class,
which exhibits huge intra-class variations in the background
and only a small amount of common foreground (i.e., the
fountain itself). Overall, BoSE is able to best represent the
classes, by modelling the visual words with locally encoded
spacetime energies that are pooled based on their dynamics.

4. Conclusion

This paper has proposed a generic BoW framework for
dynamic scene recognition. Local features are extracted
densely in a temporal sliding window via application of
multiscale, multiorientation filters followed by smoothing
to yield energy responses, as well as multiscale colour cues.
Based on an evaluation of several popular feature coding
methods, the local spacetime energies are projected into a
mid-level representation by using a learned visual vocabu-
lary. Finally, a novel spatiotemporal pooling strategy has
been introduced that aggregates the encoded features in a
spacetime pyramid representation, based on their dynamics.

The performance of the proposed framework has been
verified in rigorous evaluations, where it has been shown
that a carefully designed BoW model significantly outper-
forms the state-of-the-art. A key factor for the success
of the system is the novel dynamic spacetime pyramid,
which greatly increases performance when camera motion
is present, but does not compromise performance when
camera motion is absent.

The insights of this paper should have a substantial
impact on the design of dynamic scene classification ap-
proaches, as they significantly extend the state-of-the-art.
More generally, the outstanding performance of the pre-
sented spacetime recognition framework suggests applica-
tion to a variety of other areas, such as event retrieval, video
indexing, or object and activity localization.

References
[1] E. Adelson and J. Bergen. Spatiotemporal energy models for

the perception of motion. JOSA A, 2(2):284–299, 1985.
[2] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-

level features for recognition. In CVPR, 2010.
[3] L. Cao, R. Ji, Y. Gao, Y. Yang, and Q. Tian. Weakly super-

vised sparse coding with geometric consistency pooling. In
CVPR, 2012.

[4] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman.
The devil is in the details: an evaluation of recent feature
encoding methods. In BMVC, 2011.

[5] R. G. Cinbis, J. Verbeek, and C. Schmid. Segmentation
driven object detection with Fisher vectors. In ICCV, 2013.

[6] K. Derpanis, M. Lecce, K. Daniilidis, and R. P. Wildes. Dy-
namic scene understanding: The role of orientation features
in space and time in scene classification. In CVPR, 2012.

[7] K. Derpanis and R. P. Wildes. Spacetime texture represen-

tation and recognition based on a spatiotemporal orientation
analysis. PAMI, 34:1193–1205, 2012.

[8] L. Fei-Fei and P. Perona. A Bayesian hierarchical model for
learning natural scene categories. In CVPR, 2005.

[9] C. Feichtenhofer, A. Pinz, and R. P. Wildes. Space-
time forests with complementary features for dynamic scene
recognition. In BMVC, 2013.

[10] J. Feng, B. Ni, Q. Tian, and S. Yan. Geometric `p-norm
feature pooling for image classification. In CVPR, 2011.

[11] W. Freeman and E. Adelson. The design and use of steerable
filters. PAMI, 13(9):891–906, 1991.

[12] H. Goh, N. Thome, M. Cord, and J. Lim. Unsupervised and
supervised visual codes with restricted Boltzmann machines.
In ECCV, 2012.

[13] Y. Jia, C. Huang, and T. Darrell. Beyond spatial pyramids:
Receptive field learning for pooled image features. In CVPR,
2012.

[14] M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman.
Blocks that shout: Distinctive parts for scene classification.
In CVPR, 2013.

[15] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006.

[16] M. Marszalek, I. Laptev, and C. Schmid. Actions in context.
In CVPR, 2009.

[17] A. Oliva and A. Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. IJCV, 42:145–
175, 2001.

[18] D. Oneata, J. Verbeek, and C. Schmid. Action and event
recognition with Fisher vectors on a compact feature set. In
ICCV, 2013.

[19] F. Perronnin and C. Dance. Fisher kernels on visual vocabu-
laries for image categorization. In CVPR, 2007.

[20] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
Fisher kernel for large-scale image classification. In ECCV,
2010.

[21] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Pog-
gio. Robust object recognition with cortex-like mechanisms.
PAMI, 29(3):411–426, 2007.

[22] N. Shroff, P. Turaga, and R. Chellappa. Moving vistas: Ex-
ploiting motion for describing scenes. In CVPR, 2010.

[23] K. Simonyan, O. M. Parkhi, A. Vedaldi, and A. Zisserman.
Fisher vector faces in the wild. In BMVC, 2013.

[24] C. Theriault, N. Thome, and M. Cord. Dynamic scene clas-
sification: Learning motion descriptors with slow features
analysis. In CVPR, 2013.

[25] M. M. Ullah, S. N. Parizi, and I. Laptev. Improving bag-of-
features action recognition with non-local cues. In BMVC,
2010.

[26] J. C. van Gemert. Exploiting photographic style for category-
level image classification by generalizing the spatial pyra-
mid. In ICMR, 2011.

[27] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In CVPR, 2010.

[28] B. Watson and A. Ahumada. A look at motion in the fre-
quency domain. In Motion Workshop, 1983.

[29] R. Wildes and J. Bergen. Qualitative spatiotemporal analysis
using an oriented energy representation. In ECCV, 2000.

[30] X. Zhou, K. Yu, T. Zhang, and T. Huang. Image classifica-
tion using super-vector coding of local image descriptors. In
ECCV, 2010.


