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Abstract

In this paper, we deal with the image deblurring prob-
lem in a completely new perspective by proposing separa-
ble kernel to represent the inherent properties of the cam-
era and scene system. Specifically, we decompose a blur
kernel into three individual descriptors (trajectory, inten-
sity and point spread function) so that they can be opti-
mized separately. To demonstrate the advantages, we ex-
tract one-pixel-width trajectories of blur kernels and pro-
pose a random perturbation algorithm to optimize them but
still keeping their continuity. For many cases, where current
deblurring approaches fall into local minimum, excellent
deblurred results and correct blur kernels can be obtained
by individually optimizing the kernel trajectories. Our work
strongly suggests that more constraints and priors should be
introduced to blur kernels in solving the deblurring problem
because blur kernels have lower dimensions than images.

1. Introduction
The blur effects caused by camera shake and object mo-

tion in scenes occur frequently in photography, produc-
ing disappointing blurry images with inevitable information
loss, which becomes one of the most common reasons for
discarding photographs. Mathematically, a blurry image B
can be formulated as

B = K ⊗ I +N, (1)

where K is a non-negative blur kernel, whose support is
small compared to the image size, I is the latent sharp im-
age, N is noise, and ⊗ denotes convolution. Image deblur-
ring is to solve the deconvolution of Eq. (1) [14, 16]. The
blur kernel K needs to be recovered simultaneously with
the latent sharp image I from the observed blurry image B.

Currently, the kernel K is represented by a 2D matrix.
But if carefully analyzing the process of photography, we
can find that it actually consists of three aspects: trajec-
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tory, intensity and point spread function (PSF)1. Each
of them would be able to clearly correspond to a property
of the camera and scene system. Specifically, the trajec-
tory describes the projection of camera shake in 2D image
plane. Intensity reflects staying time of shaking camera and
moving object in every position. PSF is decided by camera
focus, scene depth and camera motion at the perpendicular
direction of image plane.

Many deblurring approaches attempt to solve three as-
pects of the blur kernel K simultaneously [4, 30, 22, 11,
18, 25, 13, 17, 12], which often results in local minimum in
the deconvolution [16] and wrong blur kernel for extremely
complicated camera motion. Visually, the deblurred results
may contain ringing and other artifacts. To solve this prob-
lem, we consider the deconvolution in a brand new perspec-
tive with the idea of separable kernel. We propose decom-
posing a blur kernel into three individual descriptors (trajec-
tory, intensity and PSF), which can be optimized separately
by taking their physical properties as priors.

Before us, non-uniform deconvolution approaches have
been proposed from spatial-variant kernels [10, 7, 8, 26] or
motion-variant kernels [6, 23, 28, 24]. They actually con-
sider multiple blur kernels for one blurry image. On the
contrary, the proposed approach improves individual de-
scriptor of one blur kernel. To demonstrate the advantage,
we extract one-pixel-width trajectory of the blur kernel and
introduce the continuous constraint on it. Following the
idea of the evolutionary algorithm (EA) [5], we randomly
change a local segment of the trajectory and perform the
deconvolution with the change. The deblurred result is eval-
uated on the selected blocks with salient structures to decide
whether the change is accepted or not.

Our experimental results show that the optimization on
trajectory can significantly improve the deconvolution. Al-
though earlier hardware-based work did consider the tra-
jectory with the help of extra sensor [9], our work is the
first paper that quantify the effect of the trajectory in the
deconvolution without any extra hardware device. The pro-

1Unlike in [22], the PSF in our paper is not equal to the blur kernel.
PSF is decided by camera focus, scene depth and camera motion at the
perpendicular direction of image plane.
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posed separate kernel is also suitable to optimize other two
parts of a blur kernel. But in this paper we will focus on
the trajectory optimization hereafter. Our contributions are
summarized as follows.

• We propose an innovative separable kernel concept to
provide a more precise description of blurry effect.

• Our separable kernel is effective in respectively reveal-
ing the trajectory, intensity and point spread function
characteristics of the kernel.

• We successfully show that the optimization of the tra-
jectory will lead to a more accurate reconstruction of
the kernel as well as the latent sharp image.

The outline of the rest of the paper is as follows. Section
2 introduces related researches. Section 3 presents our pro-
posed separable kernel. Then in Section 4 we specifically
propose an algorithm to optimize the trajectory individu-
ally. Section 5 presents experiment results and Section 6
concludes this paper.

2. Related Work
Uniform Deconvolution - It assumes one blur kernel for

one blurry image. The researches in this line focus on intro-
ducing different regularization (priors) for better deconvolu-
tion. Fergus et al. introduce image statistical characteristics
to solve the blur kernel [4]. Yuan et al. use a noisy but clear
image as priors [30]. Shan et al. propose a unified proba-
bilistic model [22]. Joshi et al. take color information as
priors [11]. Cai et al. [1] recover latent image by enhancing
the sparsity of blur kernels in the curvelet system. Li et al.
work on the blurry video to generate a clear panorama [18].
Xu et al. exploit edges as priors [25]. Krishnan et al. pro-
pose the sparsity priors [13]. Levin et al. take the overall
shape of the posterior distribution as priors [17]. The key
problem in this line is that the blurry images are hard to be
characterized by one blur kernel. No matter what priors are
introduced, they may result in local minimum.

Spatial-variant Deconvotion - The researches in this line
study the multiple blur kernels with different PSFs for one
blurry image. Joshi et al. estimate PSFs via sharp edges
[10]. Harmeling et al. propose to solve the devolution by
partitioning the blurred images into multiple regions, where
each region has its own kernel [7]. Hirsch et al. further ex-
tend the work to multiple frames [8]. Xu et al. estimate the
PSFs with depth information [28]. When the blurry images
have different scene depths, it is better to use multiple blur
kernels with different PSFs.

Motion-variant Deconvolution - The researches in this
line study different projections of camera motion in a scene.
Gupta et al. propose modeling camera motion by motion
density function [6]. Tai et al. model the camera motion by

the projective motion path [23]. Xu et al. introduce sim-
plified homograph blur model [28]. Whyte et al. propose
modeling camera rotation motion as opposed to translation
[24]. They mainly study a more general camera motion in
3D space and try to model the camera rotates, tilts, or moves
along the camera axis during exposure. Our approach opti-
mizes the trajectory in the 2D kernel plane and thus is more
simple. Furthermore, the evolution process makes our ap-
proach easier to skip out of local minimum.

Partial Motion Deconvolution - The researches in this
line study the blur caused by fast moving objects in scenes.
Thus only partial of images is blurred. Levin et al. propose
to detect the blurry regions by the statistic of derivative fil-
ters [15]. Liu et al. identify the blurry regions with the help
of color, gradient and spectrum information [19]. Dai et al.
propose a linear constraint similar to the optical flow field
[3]. Cho et al. use the orthogonal parabolic exposures to
keep high frequency image contents [2]. In this paper, we
mainly focus on the blur caused by camera shake.

Hardware Assistant Deconvolution - It is usually tough
to directly apply deconvolution on blurry images. Conse-
quently, Ramesh et al. proposed encoding the movement of
objects by fluttering the shutter [21]. Joshi et al. proposed
exploiting inertial measurement sensor data to recover the
true trajectory of the camera during exposure [9]. The key
problem in this line is that they need specially designed
camera and cannot be applied to real world blurry images
directly. Our approach can find a better camera motion
WITHOUT any special device, and can be directly imple-
mented on real world blurry images.

3. Proposed Separable Kernel

Figure 2. An exmple of our separable kernel.

Our proposed separable blur kernel is illustrated in Fig.
2, where the orange line is the trajectory, the size of circle
node represents the PSF, the brightness of the circle node
indicates different intensities. Mathematically, let us denote
(x(t), y(t)) to be a point at t-th moment that locates in the
2D image plane with horizontal and vertical axes being x(t)
and y(t)), respectively. Then the trajectory of the kernel
during the moment [0, t0] can be represented by

T =

∫ t0

0

T (x(t), y(t))dt, (2)



Figure 1. The dataflow of our proposed scheme for separable image deblurring.

where T (x(t), y(t)) = 1 indicates that the trajectory passes
through (x(t), y(t)) in the 2D plane, vice versa. Then the
separable kernel can be formulated as

K =

∫
t

S(t)× T (x(t), y(t))⊗G(x(t), y(t)), (3)

where S(t) is the detention time in particular location of the
2D plane at t-th moment, which directly reflects the inten-
sity value of one point in the kernel. G(x(t), y(t)) is the 2D
Gaussian function at t-th moment. ⊗ represents the convo-
lution operation.

• Obviously, our separable kernel can fully represent
the traditional uniform kernel, with more specific and
reasonable decomposition. One intrinsic constraint in
our separable kernel is the continuity of the trajectory,
which has not been well established in previous litera-
ture.

• As our separable kernel is effective in describing a
general global model, such global model can then be
mapped into different regions of one blurry image with
different projections, leading to non-uniform kernel.
In other words, our proposed separable kernel can be
easily extended to a higher dimension to represent the
non-uniform kernels.

Generally speaking, our separable kernel can be treated
as a more concise description and observation for the cam-
era and scene system beyond the uniform and non-uniform
idea. The beauty of this separable concept is that our de-
scription of the real physical camera motion tends to be
more realistic but succinct than traditional kernel represen-
tation.

4. Deconvolution with Separate Trajectory
To demonstrate the advantages of separable kernel, we

propose an algorithm to optimize the trajectory of the blur
kernel individually. As shown in Fig. 1, let us start with
an observed blurry image B followed by the blind decon-
volution by existing approaches. A one-pixel-width trajec-
tory T0 of the blur kernel K0 is first extracted. Inspired by

the idea of evolutionary algorithm [5], we randomly change
one segment of the trajectory. The changed trajectory T1
is served as a regulation term in the trajectory-aided blind
deconvolution. The deblurred image I1 is statistically eval-
uated by selected salient blocks to decide if the changed
trajectory T1 is accepted or not. Fig. 1 gives a summary of
the proposed scheme to validate our separable kernel idea.

4.1. Trajectory Extraction

Given the initial kernel K0, we propose an iterative or-
dered region-growing process to extract the one-pixel-width
trajectory from K0. While region growing algorithms have
been well studied before, we treat the problem in a com-
pletely different way by firstly representing the kernel as a
energy-tree-structure.

Extracting energy-tree-structure from the kernel can be
treated as producing a graph representation that describes
the connectivity between all nodes in the kernel [29].
Specifically, at any given iteration, growth occurs from the
node on the boundary of the grown region with the highest
intensity,

sk = max(Bk) = {x ∈ Bk|∀y ∈ Bk, I(x) ≥ I(y)},
s.t. Gk = {sk}8\Rk,

Bk+1 = (Bk ∪Gk)\sk,
Rk+1 = Rk ∪Gk,
Bk ⊆ Rk.

(4)
where sk is the seed-point for k-th growing, Rk repre-
sents the nodes within the region at k-th iteration, Bk is the
boundary of Rk and Gk is the set of growth nodes at the k-
th iteration. {·}8 refers to the set of immediate 8-neighbors
of a single node, and max{·} denotes the node of maxi-
mum intensity of a set of nodes. A typical example for the
extraction of energy-tree-structure from a kernel is depicted
in Fig. 3(a) and 3(b).

LetNs andNe represent the starting and ending nodes of
the trajectory, and let P = (p1, p2, · · · , pl) be the trajectory
where l is the length, our goal is to have

dist(Ne, l) = max
P
{f(P )},

s.t. f(P ) = T (Peff ∧ E)− λT (P − E)
(5)



where the objective function f is formulated as the maxi-
mization of the possibility that the trajectory pass through
most nodes of the energy-tree-structure. E is the set of the
bidirectional energy-tree-structure, i.e, E(x, y) = 1 indi-
cates that x and y has connection, and E(x, y) = 0 indi-
cates the disconnection. T (·) denotes the frequency (times)
of one case occurs. Peff is the effective trajectory regard-
less of the direction and duplication, i.e., once the connec-
tion appears, counting 1 for the frequency, otherwise count-
ing 0. The symbol ∧ represents the “Logical Conjunction”.
Consequently, T (Peff ∧ E) is the frequency of the case
that the effective trajectory passes through the energy-tree-
structure. Similarly, T (P − E) is the frequency of the
case that the trajectory never passes through the energy-
tree-structure, given by

T (P − E) =
l−1∑
i=1

[1− E(pi, pi+1)] . (6)

Under the recursive decomposition, f(P ) becomes

f(P ) = f(P ′, Ne)
= f(p1, p2, · · · , pl−1)︸ ︷︷ ︸

f(P ′)

+Dup(pl−1, pl)− λE(pl−1, pl)︸ ︷︷ ︸
g(N ′

e,Ne)

,

(7)
where we denote P ′ = (p1, p2, · · · , pl−1), N ′e be the end-
ing point for P ′, and

Dup(pl−1, pl)

=

{
0 (pl−1, pl) ∈ {(p1, p2), (p2, p3), · · · , (pl−2, pl−1)}
1 otherwise.

(8)
Substituting (7) into (5),

dist(Ne, l) = max
P
{f(P ′) + g(N ′e, Ne)}. (9)

Due to the fact thatN ′e belongs to the 8-connected neigh-
borhoods of Ne (denoted as N ′e ∈ {Ne}8), and the length
of the trajectory P ′ would be l − 1, then (9) becomes,

dist(Ne, l) = max
N ′

e∈{Ne}8
{dist(P ′, l − 1) + g(N ′e, Ne)}.

(10)
Combining (7), (8) and (10), we can recursively find out

the optimal solution of (5), i.e., given any starting node
Ns, the optimal trajectory for arbitrary ending node Ne and
length l. Fig. 3 depicts a representative example of the tra-
jectory extraction from the corresponding kernel.

4.2. Random Trajectory Perturbation

Examining K0, it is interesting that several outstanding
nodes (denoted as “VIP nodes” in this paper) have relatively
higher intensity than the remaining nodes, as verified in Fig.
4 within the highlighted circles. Generally speaking, such

(a) (b) (c)

Figure 3. (a) initial kernel (K0); (b) energy-tree-structure of K0;
(c) extracted trajectory T0.

VIP nodes may reflect the particular status that the camera
motion stays for a relatively longer time. In other words,
the VIP nodes tend to have high probability to be stable (un-
changed or with minor changes), which allows us to allocate
high trust on the VIP nodes in K0. Consequently, during
the random perturbation of the trajectory T0, the VIP nodes
will be approximated to be stable and T0 will be decom-
posed into several sub-segments accordingly, as depicted in
Fig. 4(c).

(a) (b) (c)

Figure 4. (a) VIP nodes in K; (b)VIP nodes in K0; (c)Subtrace
identified by VIP nodes.

Take any sub-segment as an example, we denote S
as the sequence of nodes in a sub-segment given by
{(x1, y1), (x2, y2), · · · , (xk, yk)}, k is the number of nodes
within sub-segment. Alternately, the gradients of nodes
fully describe the relative directions among neighbor nodes.
Such that S can be represented with the sum of gradients,

S =
k∑

i=1

(dxi, dyi), (11)

where (dxi, dyi) are gradients of ith node (xi, yi) in sub-
segment. Then the random perturbation can be achieved
simply by random switching the gradients within sub-
segment sequence,

S′ = R
i 6=j

((dxi, dyi), (dxj , dyj)), (12)

where R(·) denotes the random switch operation.

4.3. Trajectory-based Solution

Recall that a general mathematical form of image blur-
ring problem is Eq. (1). Under the same notation, we pro-



pose a trajectory-based kernel optimization as follows

min
K,I

||∇B −∇I ⊗K||22 + λ1
||∇I||1
||∇I||2 + λ2||K||1

s.t. Trace(K) = T1,
(13)

where K, I , B are kernel, latent image, and blurry image
respectively. ||∇I||1

||∇I||2 is the latent image prior proposed in
[13] to avoid delta kernel estimate. λ2||K||1 is the L1 norm
serving as a sparse constraint. To solve Eq.(13) is non triv-
ial because the trajectory is difficult to be represented with
a straightforward function. Instead of dealing with the tra-
jectory space itself, we propose to restrict the kernel space
within a limited range of the trajectory by adding the dif-
ferent penalties (weights) on the kernel. Specifically, if the
point is far from the trajectory, the penalty (weight) would
be large, vice versa. On this basis, the optimization problem
in Eq. (13) becomes

min
K,I

||∇B −∇I ⊗K||22 + λ1
||∇I||1
||∇I||2 + λ2||W �K||1

s.t. W = 1− E(T1),
(14)

where W is the weight of K, � is the Hadamard product
and E(·) is the Gaussian mask. Given a trajectory, the cor-
responding W would be a matrix with the value between
[0, 1], as shown in Fig. 5. With the help of W and a rela-
tively large setting of λ2, the shape of the kernel would be
restricted to be alike T1 in any possible way.

(a) (b) (c)

Figure 5. (a) Kernel initialization; (b) kernel initialization effects
(E); (c) weight (W = 1− E).

Considering the feedback for the random Perturbation
from T0 to T1, since we have no reference for the evaluation
of T1 (or I1), we introduce a penalty function by jointly con-
sidering “local smooth region smoothness (LM)” as well as
the “local salient structure sharpness (LS)”. Due to the fact
that the ringing artifacts tend to appear in the smooth region
that nearby a strong boundary, we extract plenty of salient
structure patches (about 50 different patches around differ-
ent strong boundaries), and compute the average of the LM
and LS values respectively. Specifically, the the variance of
the gradient in the smooth region nearby the strong bound-
aries is utilized to measure the smoothing level (indicating
the level of ringing artifact), while the variance of the gra-
dient in the boundaries is utilized to compute the sharpness
(indicating the level of edge preservation) [20]. Under our
definition, a smaller value of LM (indicates less ringing ar-

tifacts in the salient structure) and a larger value of LS (indi-
cates a sharper edge preserved in the salient structure) may
lead to a better visual result.

5. Experimental Results and Discussions
We have performed experiments to verify the accuracy

of the proposed scheme, where the tool in Jia etal. [27] is
implemented as the initialization of kernel, and when kernel
estimation finished, we use the same deconvolution tool to
reconstruct the final latent image for all the concerned meth-
ods. Following the similar testing configuration as other BD
papers, both the artificially generated blurry images and real
world blurry images are used in experiments. In particular,
we compare our method with Krishnan at al.[13] (2011) and
Jia et al. [27] (2013) in the following experiments. Krish-
nan et al. propose the normalized sparsity priors for blind
deconvolution. Jia et al. propose a robust deblurring soft-
ware that incorporated the latest powerful blind deconvolu-
tion technologies [27] and [25] to remove camera shake.

As depicted in Fig. 6(a)-6(h), the shape of the kernel is
well optimized in our kernel due to the proposed trajectory
random perturbation and optimization. On the contrary, the
estimated blur kernels in [13] and [27] fail to estimate the
shape of the kernel, resulting in more ringing artifacts in the
reconstructed image than our method (the roof and window
of the house image).

Recall that one very important inherent constraint in our
separable kernel is the continuity of the trajectory, indicat-
ing that our scheme is able to deal with the broken kernel.
As demonstrated in Fig. 6(i)- 6(p), the broken kernel in Fig.
6(o) has been well optimized to be Fig. 6(p), leading to a
visually superior reconstructed image (the shoulder and tri-
pod of the cameraman image).

Similarly, due to the continuity constraint of the trajec-
tory, our method is effective in suppressing the isolated
noisy points or bifurcations that have negligible energy in
the kernel, yielding better reconstructed results in both the
kernel and latent image, as depicted in Fig. 6(q)-6(x) re-
spectively.

We further testify the different performances of con-
cerned methods using real world blurry image. Fig. 7(a) is
the real blurry image where the two cropped text regions are
highlighted with red and blue outlines and the green outline
corresponds to the Fig. 7(e). Fig. 7(b) and 7(c) are the de-
blurred image using [13] and [27] respectively. Apparently,
the zooming of the cropped text regions in their results are
less readable with more ringing artifacts than our result. Ex-
amining the region highlighted with green outline, we can
discover the rough structure of the blur kernel. Obviously,
our estimated kernel is more accurate than the other two
kernels, as shown in Fig. 7(f)-7(h).

To demonstrate that our scheme is robust to initial ker-
nels, we take kernel estimated from [13] as initial for the



following trajectory extraction and random perturbation. As
depicted in Fig. 8, (a) is the real blurry image “flower”
taken by mobile phone indoors, where the noise and sat-
uration points are obvious. (b)(c)(d) are deburred results
using [13], [27] and our scheme respectively. Although the
visual quality of three deblurred results may appear simi-
lar at first glance, you may find that our kernel is accurate
enough to recover the blurry line (as shown in Fig. 8(e)) to
be a concentrated point.

6. Conclusion and Future Work
This paper proposes the concept of separable kernel for

solving the deblurring problem. The blur kernel is decom-
posed into trajectory, intensity and PSF so that they can be
optimized individually. To demonstrate the advantages of
separable kernel, we also propose an algorithm to optimize
the trajectory. Experimental results show that the proposed
separable kernel and optimization can help the existing de-
blurring approach to get excellent results and correct blur
kernels when camera motion is complicated.

The current trajectory is optimized by the proposed EA-
like algorithm, which will lead to a high computation. In
future, we can directly use the constraints on trajectory as
priors. It will avoid the perturbations. In addition, this pa-
per only shows the optimization on trajectory. Next, we
will consider optimizing intensity and PSF individually. For
example, for non-uniform deconvolution, we can first opti-
mize the trajectory by using the whole blurred image and
then optimize the multiple kernels with different PSFs but
the same trajectory. The most advantage of separable kernel
is to enable the strategy of divide-and-conquer in solving
the deblurring problem.

References
[1] J.-F. Cai, H. Ji, C. Liu, and Z. Shen. Blind motion deblurring

from a single image using sparse approximation. In Proc. of
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2009. 2

[2] T. S. Cho, A. Levin, F. Durand, and W. T. Freeman. Motion
blur removal with orthogonal parabolic exposures. In ICCP,
2010. 2

[3] S. Dai and Y. Wu. Motion from blur. In CVPR, 2008. 2
[4] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T.

Freeman. Removing camera shake from a single photograph.
In ACM Trans. on Graphics, 25(3):787-794, 2006. 1, 2

[5] D. B. Fogel. An introduction to simulated evolutionary op-
timization. Signal Neural Networks, IEEE Transactions on,
5(1):3–14, 1994. 1, 3

[6] A. Gupta, N. Joshi, C. L. Zitnick, M. Cohen, and B. Curless.
Single image deblurring using motion density functions. In
ECCV, 2010. 1, 2

[7] S. Harmeling, H. Michael, and B. Schölkopf. Space-
variant single-image blind deconvolution for removing cam-

era shake. In Advances in Neural Information Processing
Systems, pages 829–837, 2010. 1, 2

[8] M. Hirsch, S. Sra, B. Scholkopf, and S. Harmeling. Efficient
filter flow for space-variant multiframe blind deconvolution.
In CVPR, 2010. 1, 2

[9] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski. Image
deblurring using inertial measurement sensors. ACM Trans-
actions on Graphics, 29(4):30, 2010. 1, 2

[10] N. Joshi, R. Szeliski, and D. J. Kriegman. Psf estimation
using sharp edge prediction. In CVPR, 2008. 1, 2

[11] N. Joshi, C. L. Zitnick, R. Szeliski, and D. J. Kriegman. Im-
age deblurring and denoising using color priors. In CVPR,
2009. 1, 2
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(a) Blurred House (b) [13] (c) [27] (d) Our Result

(e) Ground Truth Kernel (f) Kernel of [13] (g) Kernel of [27] (h) Our Kernel

(i) Blurred Cameraman (j) [13] (k) [27] (l) Our Result

(m) Ground Truth Kernel (n) Kernel of [13] (o) Kernel of [27] (p) Our Kernel

(q) Blurred Lena (r) [13] (s) [27] (t) Our Kernel

(u) Ground Truth Kernel (v) Kernel of [13] (w) Kernel of [27] (x) Our Kernel

Figure 6. (a)(i)(q) Artificially blurred image; (e)(m)(u) ground truth kernel for (a)(i)(q); (b)(j)(r) deblurred image of [13]; (c)(k)(s) deblurred
image of [27]; (d)(l)(t) our result.



(a) Burry Image (b) [13] (c) [27] (d) Our Result

(e) (f) Kernel of [13] (g) Kernel of [27] (h) Our Kernel

Figure 7. (a) Real blurry image; (b) deblurred image use [13]; (c) deblurred image use [27]; (d) our result; (e) cropped block from (a) (the
green block); (f) blur kernel use [27]; (g) our blur kernel.

(a) Burry Image (b) [13] (c) [27] (d) Our Result

(e) (f) Kernel of [13] (g) Kernel of [27] (h) Our Kernel

Figure 8. (a) Real blurry image; (b) deblurred image use [13]; (c) deblurred image use [27]; (d) our result; (e) cropped block from (a) (the
green block); (f) blur kernel use [27]; (g) our blur kernel.
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