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Abstract

A video captures a sequence and interactions of concepts
that can be static, for instance, objects or scenes, or dy-
namic, such as actions. For large datasets containing hun-
dreds of thousands of images or videos, it is impractical
to manually annotate all the concepts, or all the instances
of a single concept. However, a dictionary with visually-
distinct elements can be created automatically from un-
labeled videos which can capture and express the entire
dataset. The downside to this machine-discovered dictio-
nary is meaninglessness, i.e., its elements are devoid of se-
mantics and interpretation. In this paper, we present an
approach that leverages the strengths of semantic concepts
and the machine-discovered DOVE by learning a relation-
ship between them. Since instances of a semantic concept
share visual similarity, the proposed approach uses soft-
consensus regularization to learn the mapping that enforces
instances from each semantic concept to have similar rep-
resentations. The testing is performed by projecting the
query onto the DOVE as well as new representations of se-
mantic concepts from training, with non-negativity and unit
summation constraints for probabilistic interpretation. We
tested our formulation on TRECVID MED and SIN tasks,
and obtained encouraging results.

1. Introduction

For computer vision problems related to video under-
standing, it has been shown that performance can be in-
creased through the use of intermediate concepts [16, 8, 19],
which may belong to any of the four modalities, i.e., audio,
image, video or text. In the semantic hierarchy, concepts
lie between events and attributes. Events are composed
of concepts such as objects, scenes and actions, while at-
tributes refer to the properties possessed or shared by dif-
ferent concepts. Nonetheless, concepts and attributes have
been used interchangeably in literature [28]. Concepts have
been mostly used as an intermediate representation to im-
prove performance on some other tasks [1]. However, there

are other high-level computer vision problems which di-
rectly depend on the performance of individual concept de-
tectors, such as, evidence-based reasoning and recounting
[4]. In recounting, where the goal is to generate a textual
description of contents of a video, the performance depends
on the accuracy of each concept detector, as correct tem-
poral ordering of concepts is crucial. Concept detection is
also the precursor to localization, as it reduces the search
space. Thus, improvement in semantic concept detection,
especially when labeled data is not abundant, will improve
results of many other dependent problems.

The traditional approach to obtaining such concepts is
through manual annotation [14, 5], which is a cumbersome
task especially in large datasets containing hundreds of
thousands of videos. For such datasets, the annotation has to
be restricted to a subset of the data. However, semantic con-
cepts have the benefit of supervised learning since they have
labels. To alleviate the issue of manual annotation, there are
quite a few recent works that discover ’concepts’ automati-
cally and use them to improve detection [26], classification
[18], recognition [13, 27] and retrieval [28]. These concepts
are learned automatically in an unsupervised fashion from
the data. Although, the machine-discovered concepts do not
have labels and are not meaningful, they do offer several ad-
vantages: 1) they can be learned through unlabeled data, 2)
they are expressive of the entire data, and, 3) it is possible to
impose certain constraints while discovering these concepts
such as separability or orthogonality.

The labeled and unlabeled nature of semantic and
machine-discovered concepts, respectively, may suggest
one to employ semi-supervised learning to learn better de-
tectors for semantic concepts. But, our experiments us-
ing Transductive SVM reveal that this is not the case and
machine-discovered concepts result in lower performance
for semantic concept detection (see Sec 4). But, since these
concepts have been shown to improve object and event de-
tection, they do offer certain advantage that can be exploited
to improve the detection of semantic concepts. In this paper,
instead of training classifiers on machine-discovered con-
cepts, we select representative element from each machine
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Figure 1: Illustration of the idea: Given pairs of instances from two manually annotated concepts, motorcycle and quadruped,
shown in the first column and a dictionary of visually-distinct elements (DOVE) from a given dataset, our goal is to find
coefficients for each of the annotated instances in terms of the DOVE. We regularize this using soft-consensus constraint
which enforces the new representations to be consistent across instances, as can be seen in the pairs of coefficient vectors in
the second column.

concept, and form a DOVE. Then, we show that when se-
mantic concepts are described in terms of an over-complete
DOVE (Figure 1), it leads to improved performance on se-
mantic concept detection.

Since instances of semantic concepts share visual sim-
ilarities, we enforce the new representations to be mathe-
matically similar and consistent when describing them in
terms of the machine-discovered DOVE. This consistency
is achieved through the use of soft-consensus regularizer
which captures distance of each instance from the consen-
sus (center) in the new space. Thus, the goal is to re-
construct all the instances of semantic concepts as best as
possible while maximizing similarity between the new rep-
resentations for each individual concept. This procedure
yields consistent representations and uses only the positive
instances for each concept. We show that training can be
performed independently for each semantic concept, which
has the advantage that new concepts can be added to the
concept pool independently of existing concepts. This char-
acteristic is extremely desirable in large-scale datasets since
new concepts can be defined and added without requir-
ing relearning of existing concepts, which will happen for
discriminatively-trained detectors due to change in the neg-
ative sets. However, our approach does require a comple-
mentary testing procedure which takes into account both the
DOVE as well as the new representations obtained through
training. The proposed approach can be used as an al-
ternative to any dictionary-based classification or detection
method [15, 24, 25].

In summary, 1) we explore the idea of improving se-
mantic concepts through machine-discovered DOVE. This
is achieved through 2) a training procedure that imposes
consistency across samples of each concept. 3) The testing

is performed by representing each query in terms of DOVE
as well as new representations obtained on semantic con-
cepts from training. 4) The proposed approach is general
in nature and can be applied to members of the semantic
hierarchy other than concepts, and 5) can supplant existing
dictionary-based approaches. 6) The extensive evaluations
offer several insights for future research.

2. Related Work

Concepts or attributes have typically been defined man-
ually [14, 12] and are meaningful. Here, we focus on works
that use machine-discovered concepts or attributes in iso-
lation or in conjunction with semantic ones. In literature,
machine-discovered is synonymous with data-driven [26],
latent [6], weak [28], and automatically-discovered [2].

Some works aim to discover attributes that have weak se-
mantics such as Classemes [20] and automatic attributes [2],
while others do not care about semantics at all [17, 26, 27].
Both [26, 27] discover machine concepts for complex event
detection. Kumar et al. [11] propose to use semantic
attributes with simile classifier to improve face verifica-
tion. Liu et al. [13] also combine semantic and machine-
discovered attributes for action recognition. The weight of
both type of attributes for each class is learned through La-
tent SVM. Yu et al. [28] propose to use machine-discovered
attributes for image retrieval where the attributes of a query
are represented in terms of a small subset of large pool of
weak attributes. However, in all these methods, the goal
is to improve category (object, event) classification and re-
trieval. In this work, we propose to improve detection of
semantic concepts through a novel approach which utilizes
DOVE created from machine-discovered concepts.



Dictionary-based Classification has been extensively
used in computer vision especially in face recognition. The
goal is to recognize a face image from a training set which
may contain multiple face images per person. The feature
vectors from training images are directly used as dictionary
and the query face image is represented in terms of this dic-
tionary. The query is assigned the identity of the person
which has the lowest reconstruction error. Wright et al.[24]
introduced sparse representation-based classification (SRC)
for face recognition where a single query image is repre-
sented as sparse combination of training images. Linear
Regression Classification (LRC) was proposed by [15] who
used least-squares estimation for classification. Recently,
Zhang et al. [29] showed that the success of classification
methods based on sparse representation is largely due to
collaborative representation, i.e., expressing query image in
terms of dictionary of training images, rather than sparsity.
The authors propose to use `2-norm which they show yields
similar results as SRC. Since sparsity is useful for compres-
sion, and does not have significant influence on classifica-
tion [29], our experiments for concepts also yield the same
conclusion. Note that detection is closely related to clas-
sification. While classification picks the class with lowest
error for dictionary-based methods, the error can be used
as score for detection, where low error means higher likeli-
hood of presence of object, action or event. Although there
has been extensive work on learning dictionaries, however,
like the papers discussed in this category, we assume that
the dictionary is given in advance, which in our case, is ob-
tained independently from unlabeled data.

Simultaneous Representation of multiple vectors was
independently introduced as Multiple Measurement Vectors
(MMV) by Cotter et al. [3] and Simultaneous Sparse Ap-
proximation by Tropp et al. [22, 21]. MMV occur in many
applications such as neuromagnetic imaging where it is as-
sumed that the input vectors share a common sparsity struc-
ture. The aim is then to find sparse approximation of several
input vectors simultaneously using different linear combi-
nations of the same base vectors (elements of dictionary).
An extension of FOCUSS - an algorithm for finding sparse
representation of single input vector - to multiple vector was
presented in [3]. Since then several extensions of existing
sparse approximation [23] and new algorithms with tempo-
ral extensions [29] have been presented. Again, a complete
review is beyond the scope of this work. The proposed ap-
proach for training differs from MMV in that we do not im-
pose sparsity on the coefficient vectors and a soft consensus
penalty is imposed on coefficient vectors of instances be-
longing to the same concept / class. Consensus regulariza-
tion has also been used recently in [25] to yield consistent
coefficient vectors of the same query across different views
/ features. In contrast, we propose to use it across training
instances of a particular semantic concept.

3. Proposed Approach
Our approach begins by discovering machine concepts

automatically from a given set of images, keyframes or
videos, from which we form the dictionary of visually-
distinct elements (DOVE). Next, using the training data,
we learn new representations that are consistent across each
concept. Then, given a query image or video, we recon-
struct it in terms of both the DOVE and new representa-
tions from the training data such that coefficients are non-
negative and have unit summation. The sum of coefficients
for each training concept gives the probability or score of
query for belonging to that concept.

3.1. Creating DOVE

To create DOVE, we first discover machine concepts us-
ing an approach similar to [26]. Given training data, each
image or clip from a video is represented using feature vec-
tors, which can be Bag-of-Words representation based on
low-level features. Since the features tend to lie in a high-
dimensional non-Euclidean space, a low-dimensional rep-
resentation is learned that preserves non-linear relationship
between the data points. For that we use Deep Belief Net-
work (DBN) by stacking several layers of Restricted Boltz-
mann Machines (RBMs), where the output from the layer
below is used as input to the layer above, with original fea-
ture vectors as input to the bottom layer. Each layer above
has fewer number of nodes than the one below to reduce
the dimensions. Once the network is trained, all images or
clips are passed through the network to obtain the new rep-
resentation. We then cluster them into d groups, and select
the medoids as our DOVE. Each machine concept provides
an element in the dictionary D to which the relationship is
learned from the semantic concepts. The vectors for seman-
tic concepts are also passed through the same DBN to ob-
tain vector representation that lie in the same space as that
of DOVE. Note that, we followed this approach due to its
simplicity as sophisticated methods can be used to create
DOVE.

3.2. Representing Semantic Concepts in terms of
DOVE (Training)

Let C be the total number of concepts (classes) and the
training vectors for concept c be given by X(c) ∈ Rm×nc .
Then the matrix X = [X(1) X(2) . . . X(C)] contains train-
ing vectors from all concepts. Given the DOVE D ∈ Rm×d,
we minimize the following objective function:

L = ‖X− DV‖2F + µ‖V− Ṽ‖2F

= Tr

(
(X− DV)(X− DV)T

)
+µTr

(
(V− Ṽ)(V− Ṽ)T

)
,

where the goal is to obtain coefficient vectors, V (c) ∈
Rd×nc , which serves as the mapping from semantic con-



cept c to the DOVE. The coefficient vectors for all concepts
are given by V = [V (1) V (2) . . . V (C)]. The first term
in above equations capture the reconstruction cost while
the second term is the soft-consensus regularizer which en-
forces the solution to be consistent or similar across vectors
of each concept. Mathematically, this also prevents overfit-
ting or for the under-constrained case (large d), it permits
the solution to be computed. The matrix Ṽ contains con-
sensus vectors from all concepts. The consensus vector for
concept c when replicated nc times gives Ṽ (c) ∈ Rd×nc .
Thus, Ṽ = [Ṽ (1) Ṽ (2) . . . Ṽ (C)].

The trace of a matrix does not change by altering off-
diagonal entries. Substituting the original matrix with a
block-diagonal matrix, where each block belongs to one
concept, we can write

L =

C∑
c=1

Tr

(
(X(c) − DV (c))(X(c) − DV (c))T

)

+ µ

C∑
c=1

Tr

(
(V (c) − Ṽ (c))(V (c) − Ṽ (c))T

)
(1)

It is obvious from above equation that ∂L/∂V (c) does
not depend on either X(c′) or V (c′) when c′ 6= c. Thus, we
can find new representations V (c) for each concept indepen-
dent of other concepts. In the following, we drop the index
of concept for clarity. For a particular concept c, we have

L(c) = Tr

(
(X − DV )(X − DV )T

)
+ µTr

(
(V − Ṽ )(V − Ṽ )T

)
(2)

The matrix Ṽ contains repetitions of consensus vector
obtained by minimizing (2) w.r.t Ṽ , i.e., V̄ (c) = n−1V 1nc

.
Substituting Ṽ in (2) and expanding the relevant terms,

L(c) = Tr(−2V T DTX + V T DT DV ) + µTr(V JJTV T ),
(3)

where J = Inc − n−1c 1nc1T
nc

is the centering matrix. Mini-
mizing (3) by taking its derivative w.r.t V , we have

∂L(c)

∂V
= −2DTX + 2DT DV + µ2V JJT , (4)

Since J is a projection matrix, we have J = JJT . Setting
(4) equal to zero, we get

−DTX + DT DV + µV J = 0, (5)

−DTX + DT DV + µV Inc − µn−1c V 1nc1Tnc
= 0, (6)

Using the fact that IdV = V Inc
, we get the following

multiplicative update rule for iterations:

V ← (DT D + µId)−1
(

DTX + µn−1c V 1nc1Tnc

)
. (7)
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Figure 2: Effect of consensus on training: Since (2) at-
tempts to minimize the distance of each vector to consensus
vector, the V of each instance will have a different distance
from the corresponding V̄ . In the figure, we visualize the in-
stances based on their distance from the consensus vectors.
On top, we show consensus errors in sorted fashion for all
60 concepts. On bottom, instances are shown based on the
error for four concepts (ski, anchorperson, airplane, hand).
It is evident that instances of concepts with low training er-
ror (1 & 2) are visually more similar. Furthermore, it can
be seem that instances with low consensus errors are good
exemplars of their respective concepts.

Using this approach, V typically converges in 3 − 4 it-
erations. Figure 2 shows the effect of this procedure on in-
stances from different concepts.

3.3. Concept Detection (Testing)

The training procedure gives new representations for
each training instance, therefore, in testing, we have to find
new representation for a query both in terms of the DOVE
and new representations of training data. During testing,
we represent each query instance in terms of the DOVE,
and enforce the constraint that the coefficient vector of the
query should lie in the space spanned by training coefficient
vectors. Thus, the testing becomes a problem of represent-
ing query in terms of two dictionaries, i.e., the DOVE and
the other comprising training coefficient vectors. We show
that this optimization can be solved using quadratic pro-
gramming which yields a global optimum for each query.
Additional constraints such as non-negativity and unit sum-
mation are imposed for probabilistic interpretation.

Given a particular query vector x ∈ Rm, and all co-
efficient vectors obtained after training V ∈ Rd×n where
n =

∑
nc, our aim is to obtain to reconstruct x in terms

of D while enforcing the constraint that the resultant coef-
ficient vectors lies in the convex hull of V. We pose the



optimization as following:

T = 2−1‖x− Dv‖22 s.t. v = Vy, ‖y‖1 = 1, y > 0

= 2−1‖x− DVy‖22 s.t. ‖y‖1 = 1, y > 0

= 2−1(xT x− 2yT VT DT x + 2yT VT DT DVy)

s.t. ‖y‖1 = 1, y > 0, (8)

which can be solved using quadratic programming:

min
Y

yTQy +RT y s.t. − Iny ≤ 0 1Tny = 1, (9)

where Q = VT DT D V and R = −VT DT x. Then the score
or probability of query image or video represented by x be-
longing to a concept c is obtained by adding the coefficients
corresponding to a particular concept.

score(c) = {
∑
i

yi|V:,i ∈ V (c)}. (10)

Under non-negativity, the unit summation constraint be-
comes |y|1 = 1, which means the proposed testing also im-
poses a weak notion of sparsity. However, since our goal is
detection or classification and not sparsity, these constraints
come with all the benefits of sparsity (Sec. 4), but allow
a global and efficient solution to be computed in the same
amount of time as sparse representation. In Figure 3, we
show the results of testing procedure in relation to training.

4. Experiments
We performed extensive evaluations of proposed method

on both static concepts in images and action concepts
in videos using the challenging multimedia datasets of
TRECVID SIN and MED. In TRECVID Semantic Index-
ing (SIN) task, given a set of static training images for dif-
ferent concepts, the goal is to detect concepts that occur
in the keyframes of a video. The task is challenging due
to low resolution of the images and huge intra-class varia-
tion. TRECVID MED is an extremely challenging video
dataset with large camera motions, cluttered background
and changes in illumination. Furthermore, the dataset is
characterized by videos of varying lengths, ranging from
few seconds to few minutes, the frame rate lies between
12 to 30 fps and the resolution ranges from 320 × 480 to
1280 × 2000. For experiments related to action concepts,
we used concepts selected from TRECVID MED data sim-
ilar to [9]. We report the performance using mean average
precision (mAP) [5].

SIN Concepts. For the TRECVID 2013 semantic in-
dexing task, 60 concepts were defined. The set contains
variety of concepts including scenes, e.g., classroom, hills,
lakes, objects, e.g., airplane, telephone and activities, e.g.,
cheering, running. We used the same set of concepts in our
experiments but limit the number of examples per concept
to only 200. The images were represented in terms of ISA
[7] features with a codebook size of 1, 000. The dimension
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Figure 3: Consensus error in training vs. detection score
in testing: For two concepts (airplane and bridge), consen-
sus error is visualized with dashed lines where longer lines
represent higher consensus error during training. Both the
color and size of the circles indicates the testing score the in-
stances received (in different folds). This shows that testing
score is inversely related to consensus error during training,
i.e the length of the dashed lines is inversely proportional to
the area of the corresponding circle.

was reduced to 100 using DBN of depth 3 while the DOVE
was created from a separate set with d = 2, 000.

MED Action Concepts. Similar to [9], we manually
selected 52 action concepts, e.g, person dancing, person
jumping, blowing candle, from the description provided in
the event collection (EC) of MED 2011 and 2012. For each
concept, we annotated clips by tagging the beginning and
ending frame of the video that contains that particular con-
cept. We obtained a total of 9, 052 training clips for the 52
manually defined concepts. Each annotated clip was repre-
sented in terms of ISA feature using the codebook size of
4, 096. The dimension was reduced to 500 using DBN of
depth 3. We used a subset of clips in the test set DEVT to
create DOVE, thus, making sure that there was no overlap
between the clips used for DOVE and the testing data. In to-
tal, 2, 500 machine-discovered concepts were used to create
DOVE.

For both SIN and MED Action concepts, we evaluate
the performance by changing the number of training sam-



5 25 45 65 85 100

SVM 11.7 ± 1.5 21.4 ± 1.1 24.1 ± 0.8 25.5 ± 0.8 26.5 ± 0.9 27.3 ± 1.0
TSVM 08.3 ± 0.6 11.9 ± 1.0 13.6 ± 0.7 15.1 ± 0.6 15.9 ± 0.8 16.8 ± 0.6
LRC 15.3 ± 1.3 16.1 ± 0.7 15.9 ± 0.5 15.6 ± 0.4 15.3 ± 0.4 07.5 ± 0.6
SRC 17.4 ± 1.2 24.2 ± 1.1 26.2 ± 0.8 27.1 ± 0.8 27.8 ± 0.8 28.1 ± 0.8
CRC 11.9 ± 0.7 20.3 ± 0.9 23.0 ± 0.7 24.6 ± 0.7 25.4 ± 0.6 26.0 ± 0.6

Proposed 20.0 ± 0.8 28.7 ± 0.5 32.4 ± 0.3 35.6 ± 0.5 37.2 ± 1.1 38.1 ± 0.3
SVM 15.5 ± 1.3 25.7 ± 1.2 29.0 ± 1.2 30.6 ± 1.2 31.8 ± 0.5 32.6 ± 0.8

TSVM 08.1 ± 0.7 13.6 ± 0.3 15.2 ± 0.6 19.5 ± 1.4 21.8 ± 1.4 22.7 ± 0.9
LRC 19.9 ± 0.6 24.7 ± 0.9 26.2 ± 0.6 26.9 ± 0.9 28.0 ± 0.4 28.0 ± 0.4
SRC 18.9 ± 1.0 28.5 ± 0.3 34.6 ± 1.3 36.6 ± 0.6 40.0 ± 0.5 39.9 ± 0.5
CRC 19.9 ± 1.4 24.8 ± 0.9 30.5 ± 1.0 32.2 ± 1.1 34.3 ± 0.4 35.5 ± 1.1

Proposed 21.5 ± 1.0 33.2 ± 0.5 38.9 ± 1.4 42.8 ± 0.3 45.6 ± 1.1 46.6 ± 0.5

Method
K

SI
N

M
ED

Table 1: Comparison: This table shows the evaluation using SVM, TSVM [10], LRC [15], SRC [24], CRC [25] and the
proposed approach which outperforms all other methods.

ples from K = 5 to K = 100. The experiments were
performed on 25 randomly selected concepts and were re-
peated 10 times for each method. The final mAP as well as
the standard deviation is reported in Tables 1 and 2.

Comparison. We compare proposed approach to sev-
eral baseline methods including SVM, Transductive SVM
[10], LRC [15], SRC [24] and CRC [25]. These results
are shown in Table 1 for both SIN and MED Action con-
cept. Except for LRC, all methods show an increase in per-
formance as the number of training instances varies from
K = 5 to K = 100. The reason for drop in perfor-
mance of LRC may be due separate projections onto train-
ing classes unlike all other methods which simultaneously
project query onto training instances from all classes. The
performance of TSVM is much lower than that of regu-
lar SVM because machine-discovered concepts add noise
in the learning stage and cannot be treated as unlabeled
data for semi-supervised learning. The reason is obvious
since machine concepts do not have unique labels in terms
of semantic concepts and there is one-many and many-one
relationship between them. CRC which uses `2 performs
slightly worse than SRC which uses `1, with a difference of
less than 2% on average. The proposed approach gives im-
proved performance compared to all baseline methods. The
contribution of different aspects of the proposed approach
are given in Fig. 4.

Cross-Combinations. If we were to test the proposed
idea of learning the relationship between semantic and
machine-discovered DOVE using existing tools, one so-
lution is to use Multiple Measurement Vectors (MMV)
for training and SRC for testing. We show the result of
MMV/SRC combination in the first two rows of Table 2.

Figure 4: Evaluation of Contributions: The blue curve
shows mAP using proposed testing when training instances
are used as dictionary and constraints in 8 are ignored. The
green curve shows improvement from proposed training us-
ing machine-discovered DOVE, while red curve shows the
results of proposed approach.

The difference between mAP of proposed approach (Table
1 last row) and MMV/SRC increases from 1% at K = 5
10% at K = 100. We tested MMV using two algo-
rithms, MFOCUSS [3] and MSBL [23]. Next, we substi-
tute proposed testing with the two algorithms for MMV.
The MMV/Proposed combination performs 3% lower than
combination of proposed training and testing. The next five
rows show results of using proposed training with LRC,
CRC and SRC, Group Lasso and Sparse Group Lasso.
Group Lasso performs surprisingly well at all ranges. We
used `2 within groups, which promotes non-sparsity, while
`1 across groups which promotes sparsity. This results in
either all instances of a concept selected, with non-zero



5 25 45 65 85 100

MFOCUSS / SRC 17.8 ± 1.2 25.1 ± 1.2 27.0 ± 0.8 27.3 ± 1.3 29.6 ± 0.6 28.7 ± 0.7
MSBL / SRC 16.7 ± 1.7 24.8 ± 0.4 26.8 ± 0.3 26.6 ± 0.9 27.1 ± 0.7 28.2 ± 1.8

MFOCUSS / Proposed 18.3 ± 0.6 26.2 ± 0.7 30.2 ± 0.7 33.8 ± 0.4 34.3 ± 0.4 34.1 ± 0.6
MSBL / Proposed 17.9 ± 1.5 27.7 ± 0.5 31.2 ± 0.6 33.3 ± 0.6 34.0 ± 1.1 34.1 ± 0.9
Proposed / LRC 15.2 ± 0.5 16.0 ± 0.5 16.3 ± 0.4 16.0 ± 0.6 16.1 ± 0.5 8.6 ± 0.6
Proposed / SRC 17.7 ± 0.9 24.3 ± 1.7 26.2 ± 0.7 27.8 ± 1.4 29.0 ± 0.6 29.3 ± 1.1
Proposed / CRC 10.8 ± 1.4 20.6 ± 0.6 23.2 ± 1.0 23.7 ± 0.5 25.4 ± 0.5 26.1 ± 0.6

Proposed / Lasso (l1l2) 17.4 ± 0.5 27.2 ± 1.1 30.3 ± 0.3 31.3 ± 0.6 32.7 ± 0.5 33.9 ± 1.4
Proposed / Lasso (l1l2+l1) 17.3 ± 1.3 28.2 ± 0.7 30.2 ± 1.3 31.9 ± 0.7 32.8 ± 0.4 34.9 ± 0.6

Method
K

Table 2: Cross-Combinations of training and testing on SIN Concepts: In this table, we report results of different combi-
nations of training and testing. We used MFOCUSS [3] and MSBL [23] for MMV with SRC and proposed testing which
outperforms the MMV/SRC by 6%. Next, the combinations of proposed training and LRC [15], SRC [24], CRC [25], Group
Lasso and Sparse Group Lasso with `2-norm is reported. The improvement from proposed training and testing is evident
from these evaluations.
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Figure 5: Results on MED Videos: The results of chance,
SVM and proposed method are shown in this figure. On
average, the proposed approach improves results by 3.2%,
a relative improvement of 52%.

coefficients, or all rejected. Sparse Group Lasso differs
from Group Lasso with `1 on all coefficients in addition to
group constraints. The results are slightly better than reg-
ular Lasso at higher values of K, similar to the difference
between CRC and SRC. This suggests that for the task of
detection or classification, group sparsity is more important
than the sparsity imposed uniformly on all coefficients. The
proposed method, despite the fact it does not use group spar-
sity in testing, outperforms all baseline methods by a margin
of 4%. However, we believe when incorporated within our
testing, group sparsity will improve the performance of our
method as well.

Complex Event Detection. Although this work primar-
ily works on static or video concepts, it is equally appli-
cable to objects or events. We also evaluated our method
on TRECVID multimedia event detection (MED) 2011 task
where instead of concepts, where we used labeled event

videos in place of semantic concepts and videos from hold-
out unlabeled data to obtain machine-discovered events
which are used to create DOVE. The dataset consists of con-
sumer videos collected from YouTube. For training, there
are 10 pre-defined events with ∼ 150 videos per event,
while for testing, there are 32, 061 videos which may be-
long to one of the pre-defined events from training set or
to none at all. These are termed background videos or null
events, and their numerous number significantly affects the
average precision, making it a challenging task.

The results of event detection are shown in Fig. 5. The
proposed approach gives a relative improvement of 52%
over SVM. Performance on all events improves over the
baseline except the Parade event. This is due to its vi-
sual similarity with Flash Mob, which also depicts crowded
scenes. Since we do not learn any discriminative classi-
fiers, it confuses both events thus resulting in lower gains
on Flash Mob event and reduced performance in Parade
event. The advantages of generative approach for large-
scale datasets are discussed in Sec. 1.

Effect of d. The effect of dictionary size, d, is shown in
Fig. 6 evaluated at K = 25. The x-axis ranges from 100
to 3000, while y-axis shows mAP. The curves for both SIN
and MED concepts reach a plateau at d = 2500.

5. Conclusion

We explored the problem of improving concept detection
by representing semantic concepts in terms of a dictio-
nary of visually-distinct elements created from concepts
automatically discovered by machine. We showed that a
dictionary-based formulation leads to an improvement in
performance of semantic concepts. The proposed training



Figure 6: On x-axis is the dictionary size, and on y-axis is
mAP. The experiment was performed at K = 25.

can be used in place of Multiple Measurement Vectors
when sparsity is not desired. An important conclusion
is that consistency whether enforced as soft-consensus
in training or grouping in testing significantly improves
results. Future work includes kernelization of proposed
approach and enforcing consensus (grouping) in testing.
Using other methods to obtain DOVE which have useful
mathematical properties such as orthogonality will also be
explored.
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