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Abstract

It has been recently shown that reconstructing an isomet-
ric surface from a single 2D input image matched to a 3D
template was a well-posed problem. This however does not
tell us how reconstruction algorithms will behave in practi-
cal conditions, where the amount of perspective is generally
small and the projection thus behaves like weak-perspective
or orthography. We here bring answers to what is theoret-
ically recoverable in such imaging conditions, and explain
why existing convex numerical solutions and analytical so-
lutions to 3D reconstruction may be unstable. We then pro-
pose a new algorithm which works under all imaging con-
ditions, from strong to loose perspective. We empirically
show that the gain in stability is tremendous, bringing our
results close to the iterative minimization of a statistically-
optimal cost. Our algorithm has a low complexity, is simple
and uses only one round of linear least-squares.

1. Introduction

An important problem in computer vision is to infer a
deformed 3D surface from its 2D projection in an image
and a known 3D template. We here refer to this problem
as Shape-from-Template (SfT). This is challenging due to
the high variability and complexity of deformations in nat-
ural objects. Given template to input image registration, SfT
has been studied for a variety of constraints including learnt
shape bases [9, 14, 8], temporal smoothness [15], isomet-
ric deformation [3, 4, 7, 12], conformal deformation [4] and
linear elastic deformation [1, 10].

We here specifically focus on isometric deformations
which preserve surface geodesic distances. Isometric de-
formations apply to a wide variety of real surfaces and iso-
metric SfT has been extensively studied [4, 3, 12, 14]. Ex-
isting approaches can be divided into three main groups: i)
convex numerical optimization approaches [12, 14, 7], ii)
analytical solutions [4, 3, 13] and iii) non-convex numerical

approaches [7]. The last group includes statistically optimal
methods which need to be reliably initialized by a method
from i) or ii) and are computationally expensive. Convex
methods in i) are generally costly and may fail because of
the relaxation they use of the non-convex isometry. Ana-
lytical solutions in ii) exploit the redundancy of isometric
constraints to achieve local solutions. All existing methods
in i) and ii) are in practice far from obtaining optimal re-
sults. There is thus a need for a method that gives fast and
near-optimal solutions without requiring an initialization.

We prove that in orthographic conditions, depth is not di-
rectly recoverable, while depth-gradient is. In other words,
a depth estimate is directly affected by the amount of per-
spective in the image. Clearly, orthography is never per-
fectly reached in practice. However, this result tells us that
trying to estimate depth directly in SfT may be unstable.
We show that indeed, all existing methods in i) and ii) are
intrinsically unstable. Unfortunately, it is difficult to change
the convex relaxations used in i). We thus exploit a novel
way of using the principle underlying methods in ii), which
use the non-holonomic depth solution to a system of non-
linear PDEs. We show that this solution is unstable under
close to orthographic conditions, which tend to happen fre-
quently in practice due to the local nature of these methods.
We propose to use the two-fold non-holonomic solution to
depth-gradient, which has not yet been exploited. Because
we have shown that this solution is always stable, we can
expect our method to give stable results. By using a simple
disambiguation rule exploiting depth, stable even in close
to orthographic conditions, and a linear least-squares inte-
gration step, we obtain a fast and simple SfT method. Our
thorough experimental evaluation shows that its results are
extremely close to a statistically optimal method in iii), and
that it largely outperforms existing methods in i) and ii).

We review state-of-the-art in §2. We present our mathe-
matical modeling and notation in §3. We derive the system
of non-linear PDEs describing SfT and its solutions in §4.
We study the solution stability with respect to projection
conditions in §5. We present our stable solution in §6. We
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show experimental results in §7 and conclude in §8.

Notation. We use bold for vectors (e.g. p) and matrices
(e.g. A) and italics for scalars. We use Greek letters for
functions (e.g. ψ). We use the operator Jϕ to write the func-
tion giving the Jacobian matrix of ϕ. We use diag(v) to
define a matrix whose diagonal is v. Given a matrix M we
write λi(M) and vi(M) for its ith eigenvalue and eigenvec-
tor. We assume the eigenvalues to be in descending order:
λi ≥ λj with i < j.

2. Previous Work

Most methods in i) relax the non-convex isometric con-
straints to inextensibility. They then use the so-called Maxi-
mum Depth Heuristic (MDH) [12, 14]. The idea is to max-
imize the surface depth so that the Euclidean distance be-
tween every pair of points is upper bounded by its geodesic
distance, known from the template. MDH methods are con-
vex and fail if perspective is not strong. Methods in ii) use
a system of nonlinear PDEs. Very recently [4, 3] found the
analytical solution of the system for perspective and affine
cameras. Analytical solutions form a powerful tool to study
SfT, allowing one to prove the existence of solutions. How-
ever, those solutions are approximations when the registra-
tion warp contains noise [13] and do not ensure the surface
to be exactly isometric [4]. Methods in iii) optimize a sta-
tistically optimal cost, that includes deformation and repro-
jection constraints. Those methods are non-convex and rely
on iterative optimization [7] such as Levenberg-Marquardt.

This paper studies the properties of the solutions in ii)
and finds that some of the algebraic solutions that are usu-
ally discarded in ii) (i.e. derivatives of depth or surface nor-
mals) can be the key to obtaining more accurate shapes, still
keeping the low complexity of the analytical solutions with
respect to optimization approaches in i) and iii).

3. Modeling

3.1. Geometric Modeling

Figure 1 shows the modeling of SfT we use [4]. The
template is a 2D domain Ω ⊂ R2. Image registration is
represented by a warp η : Ω → R2 from Ω to the input im-
age I. ∆ : Ω → T is invertible and parametrizes the 3D
template surface T ⊂ R3 from Ω. The template surface is
deformed isometrically by ψ : T → R3. The deformed sur-
face S is parametrized by the unknown embedding function
ϕ : Ω → R3. The deformed surface is projected into I by
the known camera Π : R3 → R2.

Our goal is to solve for SfT, represented by ψ. In practice
we work with the embedding ϕ. This is equivalent since
ϕ = ψ ◦∆. We solve for ϕ from the known functions ∆, η
and Π, and the fact that the surface deforms isometrically.
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Figure 1. Geometric modeling of Shape-from-Template.

We divide the constraints on ϕ in reprojection constraints
and deformation constraints.

3.2. Deformation Constraints

We start with the equation for the embedding ϕ = ψ◦∆,
whose differentiation leads to:

Jϕ = (Jψ ◦∆) J∆. (1)

Multiplying equation (1) by its transpose gives us:

J>ϕ Jϕ = J>∆ (Jψ ◦∆)> (Jψ ◦∆) J∆. (2)

Isometric deformations preserve geodesic distances and for
such deformations we have:

(Jψ ◦∆)> (Jψ ◦∆) = I3×3, (3)

which simply states that the metric tensor on the surface re-
mains unchanged with an isometry described by ψ. Putting
equation (3) in (2) gives:

J>ϕ Jϕ = J>∆J∆. (4)

3.3. Reprojection Constraints

The reprojection constraint η = Π ◦ ϕ enforces consis-
tency between the warp η and the projection of the embed-
ding in the image. Without loss of generality we assume
that the world coordinate frame is the camera’s. Let f > 0
be the camera’s focal length. We use ϕz as the depth func-
tion, where ϕ = (ϕx, ϕy, ϕz)>.

3.3.1 The Perspective Camera

The perspective projection ΠP yields:



η = ΠP ◦ ϕ =
(
f
ϕx
ϕz
, f

ϕy
ϕz

)>
. (5)

From equation (5) we useϕz to parameterize the embedding
ϕ, defining the following back-projection equation:

ϕ = ΦPη̃ with ΦP = diag
(
ϕz
f
,
ϕz
f
, ϕz

)
, (6)

and η̃> =
(
η>, 1

)
.

3.3.2 Global and Local Weak-Perspective Cameras

The global weak-perspective camera approximates the per-
spective camera. It first projects the scene orthographically
onto a fronto-parallel plane placed at the scene’s average
depth and then scales it. The local weak-perspective instan-
tiates a weak-perspective camera at each point [5]. This
gives the same projection as the perspective camera but
simplifies the depth-gradient. It is a non-analytical model.
Whether global or local the weak-perspective projection
ΠWP yields:

η = ΠWP ◦ ϕ =
(
f
ϕx
ζ
, f

ϕy
ζ

)>
. (7)

In the global weak-perspective model ζ is a constant func-
tion. In the local weak-perspective model ζ is different at
each point, while preserving the property that Jζ = 01×2.
The back-projection equation with both local and global
weak-perspective is:

ϕ = ΦWPη̃ with ΦWP = diag
(
ζ

f
,
ζ

f
, ϕz

)
. (8)

4. PDEs and Non-Holonomic Solutions
From equation (6) or (8), the solution of SfT is to find

the depth function ϕz , and thus ϕ, so that the deformation
constraints (4) are met.

4.1. General PDEs

We derive a non-linear system of PDEs that holds for
both perspective and weak-perspective projection (6) and
(8) and deformation constraints (4). We first differentiate
equation (6) and (8) to get Jϕ, setting Φ ∈ {ΦP,ΦWP}:

Jϕ = Mη̃Jϕz
+ ΦJη̃, (9)

where:

M = ∂Φ
∂ϕz

=


MP = diag( 1

f ,
1
f , 1) perspective

MWP = diag(0, 0, 1) weak-perspective.
(10)

We introduce equation (9) in the isometric constraint (4) to
get the following system of non-linear PDEs:

J>ϕz
η̃>M2η̃Jϕz

+ J>ϕz
η̃>MΦJη̃

+J>η̃ ΦMη̃Jϕz
+ J>η̃ Φ2Jη̃ = J>∆J∆. (11)

System (11) models SfT in terms of ϕz and Jϕz
for per-

spective and weak-perspective projections. Assuming Jϕz

and ϕz are independent variables, the algebraic solutions of
system (11) are called non-holonomic solutions. We denote
them as ϕ̄z and κ̄.

Non-holonomic solutions play an important role in the
presence of noise or errors in the warp η. Despite the fact
that system (11) admits exact solutions for both ϕ̄z and κ̄,
they are not generally consistent since Jϕ̄z

6= κ̄. With errors
in η, system (11) is in fact an overdetermined system of
PDEs with no general (i.e. holonomic) solutions.

We briefly present non-holonomic solutions of the sys-
tem and discuss their properties for each projection model.

4.2. Perspective Solutions

The system of PDEs (11) is specialized to perspective
projection by choosing ΦP from equation (6) and MP from
equation (10):

(
1 + η>η

f2

)
J>ϕz

Jϕz + ϕz
f2 (J>ϕz

η>Jη + J>η ηJϕz )

+ϕ2
z

f2 J>η Jη = J>∆J∆. (12)

We simplify this system by changing variables with:

α = ϕzν and ν =

√
1 + η>η

f2 , (13)

giving Jα = νJϕz
+ ϕz

νf2 η
>Jη .

This leads to an equivalent but simpler system of PDEs
in α and Jα:

J>α Jα + α2γ = J>∆J∆, (14)

where:

γ = 1
ν2f2

(
J>η Jη −

1
ν2f4 J>η ηη>Jη

)
. (15)

Following [4, 3] we can always find a single algebraic solu-
tion of system (14). We denote the non-holonomic solutions
of α and Jα as ᾱ and β̄:

ᾱ =
√
λ2
(
J>∆J∆γ−1

)
(16)

β̄ = ±
√
λ1(Υ)v1(Υ), (17)



where:
Υ = J>∆J∆ − λ2

(
J>∆J∆γ

−1) γ. (18)

We may recover ϕ̄z from equation (16) followed by the
change of variable (13). Instead of κ̄, we recover β̄ from
equation (17), then integrate the solution followed by the
change of variable (13) to obtain ϕ̂z . β̄ alone retains the
information in the non-holonomic solution κ̄ up to an un-
known sign and scale change [4].

4.3. Weak-Perspective Solutions

The general PDE for global and local weak-perspective
cameras is found by choosing ΦWP from equation (8) and
MWP from equation (10):

J>ϕz
Jϕz + ζ2

f2 J>η Jη = J>∆J∆, (19)

where we set ζ = ϕz in the local weak-perspective model
as ζ gives the ‘average’ depth at a differential level. In the
global weak-perspective model, ζ = za is constant. [3]
gives a method to find za by integration over the whole sur-
face domain and [13] studies the multiple solutions for κ̄.

System (19) has exactly the same structure as system
(14), the simplified PDE system for perspective projection.
We denote the non-holonomic solutions of the system as
ϕ̄z and κ̄. In the local weak-perspective model we ob-
tain ϕ̄z and κ̄ by simply using equation (16) and (17) with
γ = f−2J>η Jη .

4.4. Obtaining the Embedding

[4, 3] use ϕ̄z directly to get the embedding ϕ through
equation (6) and (8), neglecting the information contained
in β̄ and consequently κ̄. At first glance that seems to be
sensible as β̄ is known only up to sign and requires integra-
tion to get depth. We show however, that β̄ provides more
accurate reconstructions of ϕ than ϕ̄z .

5. Stability of Non-Holonomic Solutions
5.1. Main Results

We prove two important results regarding the stability of
the non-holonomic solutions of the general PDEs (11):

• Result 1): The non-holonomic solution for depth ϕ̄z
is weakly constrained when the projection conditions
tend to orthographic.

• Result 2): The non-holonomic solution for the depth
gradient κ̄ is well-constrained in all projection condi-
tions.

Figure (2) shows a general diagram showing the effect of
projection conditions on SfT.
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Figure 2. SfT solutions for different projection models and amount
of perspective.

To prove these results, we first define a projection func-
tion Πs depending on a parameter s that allows us to con-
tinuously select the amount of perspective:

Πs(Q) = (s+ 1) f
Qz + sf

(
Qx Qy

)>
. (20)

Equation (20) gives an orthographic projection when s →
∞:

lim
s→∞

Πs(Q) =
(
Qx Qy

)>
. (21)

The weak-perspective approximation of Πs is:

ΠWP
s (Q) = (s+ 1) f

ζ + sf

(
Qx Qy

)>
. (22)

5.2. Proof for the Perspective Camera

We first integrate the projection model Πs in the gen-
eral system of PDEs (11) by simply re-defining the back-
projection matrix Φ for perspective projection as:

Φs = diag
(
ϕz + sf

(s+ 1)f ,
ϕz + sf

(s+ 1)f , ϕz + sf

)
. (23)

Introducing Φs in the general system of PDEs (11) we ob-
tain:(

1 + η>η

((s+ 1)f)2

)
J>ϕz

Jϕz + ϕz + sf

((s+ 1)f)2 (J>ϕz
η>Jη) +

+ ϕz + sf

((s+ 1)f)2 (J>η ηJϕz ) + (ϕz + sf)2

((s+ 1)f)2 J>η Jη = J>∆J∆. (24)



By taking the limit as s → ∞ on both sides of equation
(24) we find the following system:

J>ϕz
Jϕz

+ J>η Jη = J>∆J∆, (25)

which represents the general system of PDEs for ortho-
graphic projection [13]. In equation (25) the depth variable
ϕz vanishes, which means that with orthographic projection
depth is not anymore constrained.

Proof of result 1): When s is a large number, the solution
of ᾱ in equation (16) is not well conditioned. ᾱ2 depends
on the eigenvalues of matrix J>∆J∆γ

−1. We write γ from
equation (15) as a function of s:

γs = 1
ν2
s ((s+ 1)f)2

(
J>η Jη −

1
ν2
s ((s+ 1)f)4 J>η ηη>Jη

)
,

(26)
with:

νs =

√
1 + η>η

((s+ 1)f)2 . (27)

Taking the limit of equation (26) we find lims→∞ γs =
02×2. ᾱ is then computed from a matrix whose elements
tend to infinity.

Proof of result 2): By applying the rank-1 constraint to
equation (25), the solution of κ̄ is simply given by:

κ̄ = ±λ1
(
J>∆J∆ − J>η Jη

)
v1
(
J>∆J∆ − J>η Jη

)
. (28)

which means that depth-gradient is equally well constrained
with orthographic projection.

5.3. Proof for Weak-Perspective Cameras

By taking the weak-perspective approximation of the
projection model ΠWP

s and plugging it into equation (19)
we reach the following system:

J>ϕz
Jϕz +

(
ζ + sf

(s+ 1)f

)2
J>η Jη = J>∆J∆. (29)

Again by taking the limit s→∞ on both sides of equa-
tion (29), we reach the system (25) of orthographic pro-
jection. If there is no perspective effect and the camera is
orthographic we cannot get the average depth of the scene
as it vanishes from the equations.

The proof of result 1) follows in the same way as with
the perspective camera by using γ = 1

((s+1)f)2 J>η Jη . For
result 2) the solution of κ̄ in equation (28) is identical with
the weak-perspective model when s→∞.
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Figure 3. Proposed SfT method using the non-holonomic solution
to depth-gradient. This method is stable under all imaging condi-
tions.

6. SfT from Depth-Gradient
Because depth is locally unstable, we propose to use β̄

to solve SfT. In order to get depth ϕ̂z from β̄ we need to
solve the following three problems: i) sign disambiguation
for β̄, ii) integration of β̄ and iii) the arbitrary integration
factor. Figure 3 shows the general diagram of our method.

6.1. Sign Disambiguation

According to equation (17), non-holonomic solutions for
β̄ and κ̄ are known up to a local sign change. [4, 13] pro-
pose a few methods to disambiguate the sign, at least par-
tially, based on external cues, such as shading, temporal
smoothing, or surface smoothing. We show below that we
can do without these additional cues, which may be unavail-
able or even unstable in practice.

If there is some perspective, even very loose, we know
that a non-holonomic solution for ϕz exists. We thus pro-
pose to disambiguate β̄ or κ̄ by using the non-holonomic
solution to depth ϕ̄z .

In the perspective camera the process has three steps: 1)
We first differentiate ᾱ to obtain Jᾱ. 2) We discard those
regions of the template where Jᾱ differs substantially from



β̄. We use the angle between the two vectors as a metric:

θ = acos
(
|Jᾱβ̄|
‖Jᾱ‖‖β̄‖

)
. (30)

3) We select the sign of β̄ so that the resulting vector is the
closest to Jᾱ.

With the weak-perspective camera the three steps are al-
most identical, using ϕ̄z to disambiguate κ̄. Here, with no
change of variable required, β̄ and κ̄ are identical.

6.2. Numerical Integration

The non-holonomic solution β̄ is not guaranteed to be
integrable. We thus need a numerical integration method
to estimate ϕ̂z . We propose to use a parametric function
represented by a Thin-Plate Spline (TPS). With a TPS, or
any other linear basis expansion model, we can integrate β̄
by means of linear least squares. The solution is defined up
to an additive integration constant.

6.3. Integration Constant

After integration we obtain α̂z +kz , where kz is an arbi-
trary integration constant. We propose to use ᾱ to estimate
kz . Given a set of points {pi}Ni=1 in the template domain we
obtain samples from α̂ + kz and ᾱ. We then obtain kz by
using the median of the differences between the samples.

7. Experimental Results
7.1. Compared Methods and Error Measurements

We use MATLAB to perform experiments with our
methods1 as well as with the compared methods. In all ex-
periments we use two types of error measurements to quan-
tify accuracy: mean depth error (average distance between
the reconstructed and true surfaces) in mm and mean shape
error (average difference between the reconstructed and true
surface normals) in degrees. In all experiments we compare
the following algorithms: AnD prefixes methods using di-
rectly the non-holonomic solution for depth ϕ̄z . AnJ is the
method we propose in §6 using non-holonomic solutions for
depth-gradient. We write AnD-P [4] and AnJ-P for the per-
spective camera model and AnD-WP [3] and AnJ-WP for
the weak-perspective camera model. We denote as ReD-
P and ReJ-P the methods AnD-P and AnJ-P followed by
non-linear refinement using [7]. We consider those meth-
ods as giving the optimal results. We also compare with
methods Salz [15] and Perr [12] based on the inextensible
relaxation and the Maximum Depth Heuristic.

We use TPS for representing functions η, ∆ and ϕ. We
impose smoothness using the bending energy [6]. The fol-
lowing problems are all solved with linear least-squares:

1The codes are available at http://isit.u-clermont1.fr/∼ab/Research/
index.html.

a) to obtain η from a set of feature correspondences and
smoothness priors [2]. b) to fit a scalar function (e.g. ϕ̄z)
from a set of sample points, prior to computing its deriva-
tives (e.g. Jϕ̄z

) in closed form.

7.2. Synthetic Data

We use developable surfaces [11] to simulate 6 dif-
ferent isometric deformations of a flat template of size
640 px × 480 px. We generate synthetic images using a
pin-hole camera with varying focal length. We use a single
parameter s to define the focal length f = (s + 1)500 px.
With s = 0 the camera has a focal length of 500 px. The
scene depth is translated with s to keep the size of the object
in the image invariant against f . We randomly generate N
point correspondences between the template and the image
and add Gaussian noise to their positions with standard de-
viation σ in px. We use s = 0, σ = 1.0 px and N = 100
as default values in all experiments. Figure 4 shows our
results.

All experiments clearly show that AnJ methods are very
accurate and close to their non-linear refinement ReJ in
both depth and shape errors. Our proposal works consis-
tently better than AnD methods that use the non-holonomic
solution to depth. In the presence of very high correspon-
dence noise (σ = 3), AnJ-P has a mean depth error of 20
mm and a mean shape error of about 9 degrees, which is
even slightly better than ReD. With very low number of
correspondences, we observe that our method has the least
error after the statistically optimal method. Against increas-
ing focal length, though Salz captures the shape better in
the range between s = 3 and s = 11, it fails to estimate
depth. In the range f = 100 px to f = 1500 px, which
is also the working range of most cameras, AnJ-P has the
best shape and depth errors after ReJ and ReD. We see no
relevant differences between the camera models in the an-
alytical methods when s > 2. Similar observations can be
made for varying number of correspondences.

7.3. Real Data

The CVLAB Paper dataset. The CVLAB dataset [16]
consists of 191 frames taken with about the same angle and
focal length of a sheet of paper being deformed. The num-
ber of features detected in each frame of the sequence is
around N = 1300. The performance of the different meth-
ods for each frame is plotted in figure 5.

The results with this dataset are very similar to those ob-
tained on the synthetic data. In this case we can see that
Salz needs a high number of features. This was also seen
in the third column of figure 4 for the synthetic dataset ex-
periment. We found that Perr has depth and shape errors
outside the scale of the plots in the first row of figure 5, as
the number of correspondences gets larger. Although this
dataset presents a favorable scenario for methods like Salz

http://isit.u-clermont1.fr/~ab/Research/index.html
http://isit.u-clermont1.fr/~ab/Research/index.html


Figure 4. Synthetic data experiments. We show the depth errors in the first row and the shape errors in the second row. In the first column
we show the errors against the parameter s. In the middle column we show the influence of σ and in the last column the influence of N .

The Zooming dataset 

The CVLAB paper dataset 

Figure 5. Plots for the CVLAB dataset and Zooming dataset (leg-
end in figure 4).

we observe that our approach is still performing better in
most of the frames for both shape and depth errors. The
mean errors for the depth are: 6.9 mm for AnD-P, 4.18 mm
for AnJ-P, 7.76 mm for Salz and 3.62 mm for ReD-P. As
the images are very perspective, AnJ-WP does not perform
well. Similar results also hold for the shape error.

The Zooming dataset. We propose a dataset which
shows folded sheets of paper with different focal lengths

and views. The focal length varies from 1300 px to 4000
px for an image size of 1728 × 1552 px. Each zoom level
has between 7-10 images with different viewing angles. We
computed the ground-truth from each view in camera co-
ordinates using stereo. We computed the depth and shape
errors for each image in the sequence. The second row in
figure 5 shows the mean errors over different views against
the focal length. To illustrate the reconstruction accuracy
for each point, we show the reconstruction of all 8 methods,
texture mapped with a colormap representing the shape er-
ror in figure 6. The illustration is presented for the zoom
levels 1, 4 and 9. We denote as Mde and Msh, the depth
and shape errors respectively. Our solution AnJ-P per-
forms consistently well over all focal lengths, with a total
mean depth error of about 6.08 mm compared to 77.74 mm
for Salz and 2.63 mm for ReD. Furthermore, as the focal
length goes over 4000 px, the camera models converge as
expected.

8. Conclusions

We have shown that depth-gradient is always recoverable
in SfT, and consequently so is relative depth. Non-convex
statistically optimal algorithms are thus well-formulated.
However, we have shown that existing initialization algo-
rithms are unstable in non-strongly perspective imaging
conditions. This includes both convex algorithms based on
the maximum-depth heuristic and analytical solutions based
on keeping the non-holonomic solution to depth.

We have proposed to keep the non-holonomic solution
to depth-gradient which, contrarily to depth, is always sta-
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Figure 6. Representation of the shape error in 3 zoom levels of the Zooming dataset and the 3D shapes reconstructed for zoom level-9.

ble. Our algorithm is mostly analytical and requires only
linear least-squares. It does not use perspective directly, but
only to disambiguate the depth-gradient field and to find the
integration constant. It is therefore fast, simple and stable.
It outperforms state-of-the-art and gives results extremely
close to statistically-optimal refinement.
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