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Abstract

We present a novel approach for event detection in video
by temporal sequence modeling. Exploiting temporal infor-
mation has lain at the core of many approaches for video
analysis (i.e. action, activity and event recognition). Un-
like previous works doing temporal modeling at semantic
event level, we propose to model temporal dependencies
in the data at sub-event level without using event annota-
tions. This frees our model from ground truth and addresses
several limitations in previous work on temporal modeling.
Based on this idea, we represent a video by a sequence of
visual words learnt from the video, and apply the Sequence
Memoizer [21] to capture long-range dependencies in a
temporal context in the visual sequence. This data-driven
temporal model is further integrated with event classifica-
tion for jointly performing segmentation and classification
of events in a video. We demonstrate the efficacy of our ap-
proach on two challenging datasets for visual recognition.

1. Introduction

The exponential growth of video content today creates
a great need for methods of intelligent video analysis and
understanding. Among them, video event detection plays a
central role in many applications such as surveillance, topic
discovery and content retrieval. The task of event detec-
tion involves identifying the temporal range of an event in a
video (i.e.when) and sometimes the location of the event as
well (i.e. where). While there have been increasing efforts
recently to tackle this problem, it remains rather challeng-
ing due to compounding issues such as large intra-variances
of events, varied durations of events and the presence of
background clutter.

In this work we aim to address the problem of video
event detection by exploiting temporal dependencies among
events. Realistic video events are often dependent, exhibit-
ing short or long interactions between them depending on
scenarios. As illustrated in Fig. 1, in an airport surveillance
environment,PeopleMeet(a passenger approaching the in-

formation desk for direction) is followed byPointing (the
staff worker pointing to a direction) and then bySplitUp
(the two people splitting up). More rich temporal patterns
among events in an airport scenario are shown in Fig. 1.

Modeling temporal relationships and structures de-
scribed above has lain at the core of human action, hu-
man activity and event recognition. Approaches for action
recognition usually focus on capturing the underlying tem-
poral structures of actions (i.e.intra-dependencies), either
through feature representations [11] or using more sophis-
ticated models [13, 8, 23]. In the meanwhile, works of ac-
tivity recognition attempt to explore the temporal relation-
ships between primitive actions of an activity (i.e.inter-
dependencies) by graphical models such as HMMs and
DBNs [7, 12, 17, 5].

Figure 1. Temporal patterns exhibited on two cameras in the
SEDdata [15]. The top images show such an example:PeopleMeet→
Pointing→ SplitUp (best view in zoom and color).

While temporal modeling has been enjoying great suc-
cess in video understanding, for effective analysis of video
events, several issues remains to be addressed. Firstly, the
common practice of temporal modeling based on the1st-
order Markov assumption can only capture a short interac-
tion between the current and previous states. While this
may suffice for human activity modeling where the tem-
poral ordering of actions in an activity is well defined and
often strict, it faces great limitations when applied to ex-
plore the relatively loose and sometimes long-range tem-
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poral contexts (usually unknown) often presented in event
data. Then-grammodels such as [1] used in speech recog-
nition might help, but in practice they tend to suffer from
insufficient training data for capturing the complex rela-
tionships and computational scalability issues. Secondly,
in many cases, there are only a few events of interest in
a video and they are often accompanied with a substan-
tially larger amount ofnull events or background clutter.
Consequently, the Markov assumption will be heavily bi-
ased towardsnull events and weaken the dependencies be-
tween true events, leading to unsatisfactory performance.
Thirdly, most approaches build temporal models directly
from ground truth. Such models cannot discover tempo-
ral patterns associated with unannotated events regardless
of how strong the dependencies are. For instance, the re-
lationship betweenPeopleMet, PointingandSplitUp in the
above example, would not be captured if any two events
were unavailable in the annotations.

To address the aforementioned limitations, we present a
novel approach for video event detection based on temporal
modeling. We formulate the detection task as a problem of
sequence modeling where our goal is to break a visual se-
quence into segments of varied lengths and label them with
events of interest or anull event. Based on this formula-
tion,we first represent a video by a sequence of visual words
learnt from our data in an unsupervised way with k-means
clustering (Fig. 3). We then apply the Sequence Memo-
izer (SM) [21] to explore temporal dependencies among the
visual words in the sequence. The SM, a non-parametric
Bayesian approach initially developed for language model-
ing, can effectively model long-range contexts in discrete
sequence data as well as the power-law properties [24] ex-
hibited in a wide variety of problems. More specifically,
SM-based sequence model is empowered with the ability to
predict the occurrence of a subsequent visual word in a se-
quence conditioned on all its previous contexts observed. It
is this ability that enables a robust way of temporal mod-
eling without heavily relying on annotation. We finally in-
tegrate the sequence model and event classification into a
framework that performs segmentation and classification of
events jointly in a video.The optimal segmentation can be
found efficiently by dynamic programming, similar to the
work of [6].

An overview of our approach is illustrated in Fig. 2. To
the best of our knowledge, this is one of the very few ap-
proaches that apply a viable statistical approach to model
long-range contextual dependencies for a visual recogni-
tion problem. It presents several advantages over previous
works. The sequence model is built upon visual words (sub-
events), not on annotated events, thus it does not require
ground truth. As demonstrated later, such temporal model-
ing on sub-event level is superior to its event-level counter-
part. In addition, our approach automatically discovers the

temporal contexts and structures inherent in the data and
exploiting them to enhance detection. We validate our ap-
proach and demonstrate its efficacy using two challenging
visual recognition datasets.

2. Related Work

A lot of schemes have been proposed for the human ac-
tion recognition. Most of them perform classification on
pre-segmented clips, exploiting temporal information either
through feature representations [11, 20] or more sophisti-
cated models [13, 8, 19, 23]. For example, Laptev et al.
[11] applied bag of spatiotemporal interest points to classify
human motion in realistic video settings. Tran & Sorokin
[20] developed motion context features to learn nearest
neighbor metric for classifying actions in YouTube videos.
Niebleset al. [13] developed an unsupervised model for
human actions detection based on probabilistic Latent Se-
mantic Analysis. More recently, Tan et al. [19] developed
a variant of HMM model that is trained in a max-margin
framework to automatically discover discriminative and in-
teresting segments of video. Zhang et al. [23] proposed an
approach that can identify both local and long-range motion
interactions to handle long-term activities more effectively.

For applications where the temporal range of an action
or event needs to be identified in a video, sliding win-
dow is a popular technique [3, 9] to turn a classifier into
a detection method. For example, Chenet al. [3] built
an event classifier based on a Fisher vector coding repre-
sentation for surveillance events, and then combined tech-
niques of sliding windows, multi-scale detection and non-
maximum suppression for event detection. The difficulty
of such approaches is the determination of a classification
threshold for true events. Due to this limitation, more re-
cent efforts have proposed to learn framework for simul-
taneous segmentation and recognition in longer video se-
quences [18, 14, 6]. For example, Ohet al. [14] developed
a linear dynamical system to model honeybee behavior. The
work of [6] trains a discriminative recognition model with a
multi-class SVM that maximizes the separating margin be-
tween classes, in a similar spirit of [18] which maximizes
the overall classification scores.

Another related direction of our work is human activity
recognition. Most of works in activity recognition explore
the temporal relationships between primitive actions of an
activity (i.e. inter-dependencies) using graphical models
such as HMMs and DBNs [7, 12, 17, 5]. However, such
approaches usually require domain knowledge to build or
guide temporal modeling.

Our approach is different from these previous methods
in several aspects: 1) our model can capture both intra-
dependencies and inter-dependencies simultaneously by ex-
plicitly modeling the temporal relations over video seg-
ments; and 2) the model can capture and exploit long-range



Figure 2. Given an input video, our approach divides it into ase-
quence of temporal segments uniformly and then builds a temporal
model on top of the sequence to capture long contextual dependen-
cies in the visual data sequence. Then the approach combinesthe
temporal model and event classification to jointly perform event
segmentation and classification.

temporal dependencies in the data; and 3) the model con-
struction does not rely on event annotations or ground truth.

3. Our approach

Unlike most previous works on event detection such as
[3] that treat video segmentation and event classification
separately, our approach performs video segmentation and
classification jointly with a temporal model described later
in Section 4. The motivation behind temporal modeling is to
exploit rich temporal structures and dependencies that often
exist in event data to enhance detection. We start by intro-
ducing the video representation in our approach.

3.1. Video Representation

Given an input videoX, we first divide it inton temporal
segments of a fixed lengthlseg , i.e.X = {x1,x2, · · · ,xn}.
We then compute the bag of words (BOW) feature for
each segment upon motion SIFT key points [2]. The seg-
ments are further clustered intok visual words using k-
means, and each segment is assigned a visual word. Fi-
nally, the video is represented by a sequence of visual words
W = {w1, w2, · · · , wn}. In our experiments,lseg was set
invariantly to the total length of the video, andk usually
ranges from600 to 900 depending on the complexity of the
data.

Fig. 3 illustrates a few subsequences learnt from our
data. One immediate observation is that the same event
tend to generate similar visual words. A visual word from
one event may statistically interact with another one from a
different event, even though the two words can be tempo-
rally distant. For instance,K andP . We shall show how to
model this type of long-range interactions later on in Sec-
tion 4.

Figure 3. Samples of visual word sequences related to events. A
same event tends to generate similar visual words. Words for
null events are skipped here for clarity.

3.2. Joint Segmentation and Classification

With the video representation described above, our goal
is to partitionX = {x1,x2, · · · ,xn} into m units and
label each unit with an event of interest or anull event
(Fig. 2). Here a unit is a set of consecutive segments of
X. Let S = {s1, s2, · · · , sm} be such a partition where a
unit si = Xt1

i
:t2

i
= [xt1

i
, . . . ,xt2

i
] andt1i andt2i specify the

start and end indices of the segments insi. Also, letY =
{y1, y2, · · · , ym} whereyi ∈ Y is the event class label as-
signed tosi. To model temporal contexts in the data, we
associateS with a visual sequenceZ = {z1, z2, · · · , zl}.
The quality of the partitionS with regard to event classifi-
cation can then be evaluated by,

f(S,Y) =
m∑

i=1

ϕ(yi|si) + µ
l∑

i=1
1≤k≤i−1

p(zi|zi−k, · · · , zi−1)

(1)
whereµ is a trade-off parameter learnt from data empiri-
cally. Note thatZ can be of any visual data sequence cre-
ated on top ofS. For example, a sequence of visual events
or visual words. We will further explain this in Section 4.2.

The first itemϕ(yi|si) in Eq. 1 measures the likelihood
of the unitsi being eventyi. We use the SVM classification
score ofsi on eventyi for this item (see Section 5 for detail).

The second itemp(zi|zi−k, · · · , zi−1) is provided by our
sequence model discussed in Section 4.2. To put it sim-
ple, it is the probability of predictingzi as the next sym-
bol after seeing the previousk symbols fromzi−k to zi−1.
Whenk = 1, this item degrades to the well-studied1st-
order Markov property. On the other hand, ifk = i − 1,
it puts the entire history of the sequence into consideration.
Addressing such long contexts is a valid concern in previ-
ous work [22]. However, a recently developed probabilistic
model [21] broke through this limitation by exploring an
infinite length of context in a discrete data sequence.

Before detailing how to model the temporal sequence us-
ing the technique of [21] in the next section, we briefly de-
scribe how the above objective function can be solved effi-
ciently by dynamic programming.



Figure 4. An example in [21] of prefix trie and prefix tree for the
stringoacac

3.3. Dynamic Programming

Performing segmentation on a new video sequenceXcan
be casted into the task of maximizing the objective function
f(S,Y). Given any video flipX0:u with lengthu ∈ (0, n].
let us consider a variation objective functionf(S,Y, u) ac-
cording tou. Let Zu−l:u be the visual sequence ofXu−l:u

andZ0:u−l = {z1, z2, · · · } be the union of visual sequences
backward. The transition functionθ(u, l) can be expressed
as:

θ(u, l) = max(ϕ(y|Xu−l:u) + µP (Zu−l:u|Z0:u−l)

lmin ≤ l ≤ lmax

(2)

wherey ranges all the possible event labels. [lmin, lmax]
gives the minimum and maximum durations of an event,
which can be obtained from ground truth. The final task is
to computef(S,Y, len(X)), which can be done by:

f(S,Y, u) = argmax
lmin≤l≤lmax

{θ(u, l) + f(S,Y, u − l)} (3)

Unlike [6] which does exhaust search on each frame in
the dynamic programming, our approach searches only on
segments. The complexity of the implementation for seg-
mentation onX is O(m (lmax−lmin+1)

lseg
len(X)).

4. Temporal Modeling by Sequence Memoizer

To solve Eq. 1, we need to compute the probabil-
ity of a visual labelzi conditioned on an observed se-
quence{zi−k, · · · , zi−1}. We adopt the Sequence Mem-
oizer (SM) [21] here for such a purpose.

4.1. Sequence Memoizer (SM)

Sequence Memoizer (A Stochastic Memoizer for Se-
quence Data) is an unbounded-depth,hierarchical, Bayesian
nonparametric model of discrete sequences. Compared to
other techniques for sequence modeling, the SM can more
effectively learn a joint distribution over discrete sequences
of flexible lengths and capture long-range dependencies.
The approach has demonstrated state-of-the-art results for
language modeling and data compression.

Given a sequence of discrete random variablesx1:T =
{x1,x2, · · · ,xT } of arbitrary length T, each taking values
in a symbol set. The joint distribution over the sequence
estimated by the SM is

p(x1:T) =

T∏

i=1

p(xi|x1:i−1) (4)

which hints that eachxi is predicted given a context of all
preceding variablesx1:i−1. Note that this is different from
annth-Markov assumption asT here can go to infinity the-
oretically.

The SM represents a sequence by a prefix trie (Fig.4.a),
or a more efficient prefix tree (Fig. 4.b) that can be con-
structed from an input string in linear time and space com-
plexity. Based on this representation, the SM places a
Pitman-Yor prior (PYP) to approximate the frequency of
each subsequence in the tree. This nicely addresses the
problem of insufficient training data often encountered by
traditonal sequence modeling based onn-th Markov as-
sumption. Mathematically, the probability ofs ∈

∑
given

its previous contexts
′

, G[s], is expressed by

G[s]|d[s], c[s], G[s′ ] ∼ PY(d[s], c[s], G[s′ ]), (5)

wherec andd are the parameters of the Pitman-Yor prior.
[s] = [ss

′

]. As shown in [21], using some special analytic
marginalization technique,G[s] can be computed efficiently
in linear time. We refer the reader to [21] for further details.

In SM, the later symbols in a context are more im-
portant in predicting the subsequent symbol. Based on
this idea, in the example illustrated in Fig. 3, the simi-
larity between the two subsequences shown at the bottom
(i.e. · · ·KLLMNNOP · · · and· · ·KLMMNNOP · · · )
is high as they share a long suffix. On the other hand,K is
more important than others for predictingL asKL occurs
in both of the two subsequences.

4.2. Temporal Sequence Modeling

A natural thought is to apply the SM to model an event
sequence, similar to what an HMM does. This is straight-
forward and can be done easily by settingzi in Eq. 1 toyi

directly. We call this methodevent-level sequence modeling
(ESM). However, such a method, though being widely prac-
ticed, requires ground truth for model learning. As pointed
out previously in Section 1, this model can not take full
advantage of the SM due to event sparsity and extremely
unbalanced distribution, and is also less robust in handling
null events.

Realizing that Eq. 1 takes flexible visual sequences, we
model the visual word sequence with the SM in Eq. 1. Such
modeling at a granular level, referred to as segment-level se-
quence modeling (SSM) here, turns out to be more effective
and robust in our experiments. This largely lies in that a) a



large number of visual words are more likely to present a
power-law distribution than real events that are usually only
a few; and b) the sequence model is constructed in a purely
data-driven way, not from the event annotations.

We now show how to computep(zi|z1 · · · zi−1) with the
SM. Remember that the visual labelzi is associated with
a unit si = [xt1

i
, . . . ,xt2

i
], which can be represented by a

sequence of visual words[wt1
i
, . . . , wt2

i
] (See Section 3). By

taking this into account and applying a chain rule, we can
obtain,

p(zi|zi−k · · · zi−1) = p(wt1
i
, . . . , wt2

i
|wt1

i−k
, . . . , wt2

i−1

)

=

t2i∏

j=t1
i

p(wj |wt1
i−k

, . . . , wj−1)

(6)

By settingk = i − 1 in the above equation, the last item
becomep(wj |w1, . . . , wj−1). This can be computed by the
SM efficiently.

5. Event Classification

In Eq. 1, we need to evaluateϕ(yi|si) for any possible
lengthl (lmin ≤ l ≤ lmax) of a unitsi on all events includ-
ing thenull event class. We note that the temporal length
of ground truth events can vary significantly. For example,
the maximum length of aPersonRunsevent is up to 1000
frames while the minimal length is only 10 frames. Such
diversity in duration brings information loss if we learn a
classification model with a single fixed temporal scale. We
thus propose to learn classifiers on multiple temporal scales
to match the initial video segmentation by a fixed length of
lseg frames described in Section 3.1.

Let h = (lmax − lmin)/lseg. Then it suffices to solve
Eq. 1 if we trainh classifiers for each event at each scale
from lseg to h ∗ lseg . In all our experiments, we used the
same temporal range (30 − 120 frames) for all events and
built 4 classifiers for each event at 30, 60, 90, and 120
frames, respectively, for efficiency. Note that this is con-
sistent with the fact:l = h ∗ lseg, (h = 2, 4, 6, 8), lseg = 15
andlmin ≤ l ≤ lmax. we use multi-class SVM [4] to train
a model for each event class.

6. Experimental Results

We tested our proposed approaches on two challeng-
ing datasets:Hollywood [11] and TRECVID Surveillance
Event Detection (SED) [15]. The former is a human action
dataset retrieved from popular movies while the latter is a
visual event detection dataset collected from a surveillance
environment.

Figure 5. Typical video shots of theSEDdataset. From left to right
arePointing, CellToEarandPersonRunsevents.

6.1. Experimental Setup

We developed three sequence models based on the SM
technique. The first one (ESM-∞), as described in Sec-
tion 4.2, performs sequence modeling at event level, tak-
ing a full length of context into account. The second one
(ESM-1), is a special case of the first one with only1st-
order dependency considered, in a similar spirit of HMMs.
The last one (SSM-∞) is what we propose, i.e. a segment-
level sequence model exploiting a full length of context.
These models are integrated into the framework described
in Section 3 for event detection.

BaselinesWe implemented the approach proposed by
Hoai et. al. in [6] and used it as the primary baseline
in our evaluation. This approach performs joint segmenta-
tion and classification of human actions based on maximiz-
ing the margins of the top two event classification scores.
However, it does not consider temporal relationships among
events. On theSED dataset, in addition to Hoai’s work,
the approach developed by Chenet. al [3] was included in
our comparison. While Chen’s approach conducts event de-
tection by sliding window, it has acheived state-of-the-art
performance on theSED dataset, ranking on the top on4
events out of7 in the TRECVID SED 2012 evaluation.

Features for ClassificationWe used STIP features [11]
for event classification onHollywood, and spatial-temporal
Fisher Vector features [3] onSED. We adopted the Multi-
class SVM method [4] to train a classifier for each event (ac-
tion) plus anull event (action) class for all the approaches
in comparison except Chen’s, which does multiclassifica-
tion using the one-against-all methodology. For each class,
4 classifiers were built at different temporal scales of30, 60,
90 and120 frames, respectively.

Event Detection and EvaluationTo generate visual se-
quences for training our modelSSM-∞, we used k-means
to cluster a sequence of uniformly divided segments. On
Hollywood, k was fixed to200 in all the tests. OnSED, we
empirically determinedk for each camera, which usually
ranges between600 and900. A more detailed analysis onk
is provided later in Section 6.4.

For each video in our evaluation, we first ran our ap-
proaches to find the optimal segmentation and class labels.
At that point, each segment is assigned to a particular event
class with a start and end frame. We then align the detection
results with the ground truth (i.e the reference annotations)
using a Bipartite matching method developed in [10]. If a



Events
Hoai[6] ESM1 ESM-∞ SSM-∞

P R P R P R P R
AnswerPhone 0.64 0.35 0.64 0.35 0.62 0.31 0.67 0.35

HugPerson 0.46 0.37 0.45 0.33 0.44 0.35 0.47 0.37
Kiss 0.44 0.49 0.43 0.51 0.43 0.49 0.44 0.49

SitDown 0.36 0.40 0.37 0.43 0.34 0.40 0.35 0.43
Overall 0.47 0.40 0.47 0.40 0.46 0.39 0.48 0.41

Table 1. Precisions (P) and Recalls (R) of different approaches on the
new data set created fromHollywood (no temporal relationships among
actions)

detection is matched to a true event, it is considered a true
positive. otherwise it is a false positive.

6.2. Evaluation on Hollywood Dataset

Data Hollywood is a video dataset focusing on realistic
human actions. These actions includeAnswerPhone, Hug-
Person, Kiss, SitDown, SitUp, GetOutCar, HandShake,and
StandUp. This dataset is divided into two disjoint subsets
with 219 video samples in the training set and211 in the
test set, respectively. Following [6], we selected the first
four classes as actions to be recognized, and treated the oth-
ers asnull class.

SinceHollywoodcontains only pre-segmented clips, we
created new video clips of longer durations for our evalua-
tion purpose, by concatenating video clips picked from the
original dataset. Two such datasets were created, both us-
ing all the clips from the training and testing sets. In the
first one the clips were selected in an random order for con-
catenation. In the second one, in order to enforce temporal
relationships, some clips were selected to exhibit temporal
dependency. Specifically, we inserted some actions with 1-
order dependency (such asSitDown-AnswerPhone) and 2-
order dependency (such asHugPerson-Kiss-SitDown) to the
data. A total of about40 such video samples were formed in
such a way, half into the training set and half into the testing
set.

ResultsWe reported the results onHollywoodby stan-
dard precision and recall metrics. As shown in Table 1,
when there are no temporal relationships among events in
the data, all approaches perform similarly, with our pro-
posed approach (SSM-∞) doing slightly better than oth-
ers. However, when temporal dependencies were added to
events in the data, all the approaches with temporal mod-
eling outperform the baseline, suggesting that temporal in-
formation is helpful for event detection. As expected,SSM-
∞ achieves the best results in terms of both precision and
recall, demonstrating a large improvement over the base-
line. There is not much difference betweenESM-1 and
ESM-∞ in this test, because the datasets were contrived to
exhibit only simple temporal relationships and the scenes in
the clips differ significantly from movie to movie, leaving
little long temporal context for exploitation.

Events
Hoai[6] ESM1 ESM-∞ SSM-∞

P R P R P R P R
AnswerPhone 0.64 0.32 0.65 0.36 0.64 0.32 0.64 0.43

HugPerson 0.46 0.29 0.49 0.33 0.48 0.33 0.51 0.33
Kiss 0.40 0.48 0.42 0.52 0.42 0.52 0.44 0.59

SitDown 0.36 0.36 0.38 0.38 0.39 0.38 0.39 0.38
Overall 0.47 0.36 0.48 0.40 0.48 0.39 0.50 0.42

Table 2. Precisions (P) and Recalls (R) of different approaches on the
new data set created fromHollywood (with enforced temporal relation-
ships among actions)

6.3. Evaluation on SED Dataset

The SED dataset was captured from5 surveillance cam-
eras at different locations in a busy airport. The dataset
has been used in the TRECVID SED evaluation track since
2009 to support the development of technologies of visual
event detection in a large collection of streaming video data.
It contains10 surveillance events with people engaged in
particular activities. Among them,7 events were used in
the TRECVID 2012 evaluation, includingCellToEar, Em-
brace, ObjectPut, Pointing, peopleMeet, PeopleSplitUpand
PersonRuns. This is an extremely challenging dataset for
event detection, due to many confounding issues such as
high-level activity, camera view changes, large variances
of events (i.e. PeopleMeet) and small objects (i.e. Cell-
ToEar) (Fig. 5). The annotations ofSEDonly include tem-
poral extents and event labels.

We used the development set ofSED (about 100 hours
of video data) for our evaluation. The data were split into
two equal parts for training and testing.

ResultsThe results of different approaches onSED are
listed in Table 3. In addition to precision and recall, the
scores of the Detection Cost Rate (DCR), a performance
metric adopted in the TRECVID evaluation [16], are pro-
vided in Table 3. Basically, DCR is a linear combination of
two errors: Missed Detections and False Alarms. It reflects
a tradeoff between these two types of errors by weighing
them differently in scoring.A lower DCR indicates a better
performance. More details about this metric can be found
in [16].

First, we observe that while Hoai’s approach performs
reasonably well onHollywood against other approaches, it
fails to yield comparable results onSED. Also, it has very
low recalls forCell2Ear, ObjectPutandPointingevents, the
most difficult ones to detect in this dataset. On the other
hand, with the help of temporal information,ESM-1 already
achieves similar performance to Chen’s approach. By fur-
ther exploring longer temporal contexts,ESM-∞ andSSM-
∞ outperform Chen’s approach, clearly demonstrating the
benefit of modeling more complex temporal interactions in
the sequence data.SSM-∞ produces the best results on all
the events except onCell2Ear. Some of the difficult events
such asPointing and ObjectPuthave seen significant im-
provements inSSM-∞ over the baselines, indicating the ef-
ficacy of temporal modeling by our approach. We also no-



Events #Ground
Chen[3] Hoai[6] ESM1 ESM-∞ SSM-∞

truth P R DCR P R DCR P R DCR P R DCR P R DCR
Cell2Ear 374 0.21 0.06 0.953 0.13 0.01 1.002 0.30 0.06 0.953 0.34 0.07 0.933 0.28 0.05 0.95
Embrace 479 0.13 0.27 0.835 0.12 0.24 0.856 0.14 0.27 0.833 0.15 0.28 0.812 0.17 0.34 0.764
ObjectPut 1898 0.33 0.05 0.985 0.43 0.01 1.001 0.39 0.05 0.969 0.44 0.06 0.941 0.45 0.09 0.918

PeopleMeet 1376 0.19 0.27 0.931 0.17 0.26 0.942 0.19 0.27 0.933 0.19 0.28 0.919 0.20 0.28 0.913
SplitUp 762 0.20 0.37 0.819 0.17 0.32 0.897 0.21 0.36 0.767 0.21 0.36 0.764 0.22 0.38 0.715

PersonRun 365 0.21 0.52 0.573 0.19 0.44 0.761 0.20 0.51 0.569 0.20 0.52 0.564 0.23 0.59 0.499
Pointing 2338 0.21 0.12 1.009 0.20 0.03 1.018 0.21 0.11 0.998 0.22 0.13 0.983 0.26 0.19 0.958
Overall 7592 0.19 0.15 N/A 0.20 0.17 N/A 0.20 0.19 N/A 0.24 0.22 N/A 0.25 0.27 N/A

Table 3. Precisions(P), Recalls(R) and DCRs of different approaches onSED. Note that a lower DCR score indicates a better performance.The overall
DCR performance is not available as the evaluation tool provided by TRECVID only outputs a score for each individual event.

Figure 6. The performance (precision and recall) comparison using
different lengths of temporal contexts.

tice that our temporal modeling tend to have little effect on
those events exhibiting no evident temporal dependencies
on other events, such asCell2EarandPeopleRun.

6.4. Discussions

Below we provide more detailed analysis of our ap-
proach to support our main claims in this paper.

Long-range Temporal Dependencies.To demonstrate
the efficacy of exploiting long-range temporal dependen-
cies in modeling, we compared the performance of our pro-
posed approach with then-gram temporal model [22]. Fig 6
clearly illustrates the benefit of modeling long-range tempo-
ral contexts in the data. As the range of temporal dependen-
cies increases, the performance improves consistently.

Effects of Ground Truth. To further understand the ef-
fects of ground truth in temporal modeling, we designed an
experiment by comparing the results of our approaches us-
ing the original ground truth set and a reduced one. Specifi-
cally, we took out two events (i.e.PeopleMeetandSplitUp)
from the event annotations on Camera1 in SED, and ran
ESM-∞ andSSM-∞ with the modified annotations. Note
that these two masked out events have significant contribu-
tions to the temporal patterns inSED. From Table 4, we can
see thatESM-∞ cannot stand up to expectation without
the temporal relationships explicitly indicated in the ground
truth. In comparison,SSM-∞ has not been affected much
by the imperfect annotations. This experiment strongly sup-
ports our claim that at sub-event level granularity it is much

events
ESM-∞ SSM-∞

P R DCR P R DCR
Pointing 0.27 0.12 1.004 0.36 0.20 0.950

PersonRun 0.11 0.20 0.806 0.15 0.30 0.785
ObjectPut 0.39 0.06 0.944 0.45 0.09 0.933
Embrace 0.18 0.22 0.809 0.2 0.33 0.785

Table 4. performance ofESM-∞ and SSM-∞ based on only partial
ground truth (only on Camera SED-1)

Figure 7. Performance of our approach varying by the number of
visual words on two subsets (SED-1 and SED-2)

more effective for the SM to capture the temporal depen-
dencies.

Sensitivity AnalysisK-means clustering is used to gen-
erate visual sequences for our modeling. Choosing a proper
k can help discover fine-detailed temporal structures in the
data. Generally speaking,k has to do with the complex-
ity of the data. The more complex the scene is, a largerk
is expected. In our experiments we empirically determined
the number of visual words on each camera. To better un-
derstand howk affects the performance, we assessed the
sensitivity of performance with respect tok. As illustrated
in Fig 7, while some careful tuning ofk is desirable for bet-
ter performance, choosing ak between600 and800 on the
SEDdataset can yield reasonably good performance.

7. Conclusions

In this paper we have proposed a joint-segmentation-
detection framework with temporal dependencies among
events considered to enhance detection in videos. The
dependencies are learned on visual word sequences using
Squence Memoizer, which can capture long range depen-
dencies and power-law characteristics. In addition, our
model is constructed without relying on event annotations
and is capable to handlenull events well. We have shown



competitive results on difficult datasets and demonstrated
that our approach outperforms state-of-the-art event detec-
tion methods.

Additionally, note that we undertook only limited joint
segmentation (e.g., overlap between true events and cor-
rectly detected events) and recognition error analysis (false
positives/negatives) in one corpus of the dataset (SED)
when the domain experts (NIST and governmental author-
ities) specified the relative weights of the individual errors
in the form of DCR metric [16]. In near future, we will
more comprehensively explore the performance trade-offs
between localization and categorization.
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