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Abstract

Robust tracking of deformable object like catheter or
vascular structures in X-ray images is an important tech-
nique used in image guided medical interventions for effec-
tive motion compensation and dynamic multi-modality im-
age fusion. Tracking of such anatomical structures and de-
vices is very challenging due to large degrees of appearance
changes, low visibility of X-ray images and the deformable
nature of the underlying motion field as a result of complex
3D anatomical movements projected into 2D images. To
address these issues, we propose a new deformable tracking
method using the tensor-based algorithm with model prop-
agation. Specifically, the deformable tracking is formulated
as a multi-dimensional assignment problem which is solved
by rank-1 `1 tensor approximation. The model prior is prop-
agated in the course of deformable tracking. Both the high-
er order information and the model prior provide powerful
discriminative cues for reducing ambiguity arising from the
complex background, and consequently improve the track-
ing robustness. To validate the proposed approach, we ap-
plied it to catheter and vascular structures tracking and
tested on X-ray fluoroscopic sequences obtained from 17
clinical cases. The results show, both quantitatively and
qualitatively, that our approach achieves a mean tracking
error of 1.4 pixels for vascular structure and 1.3 pixels for
catheter tracking.

1. Introduction

X-ray fluoroscopy is one of the primary modalities used
in image guided interventional procedures. Robust de-
formable tracking of intravascular devices (e.g. guidewire,
catheters as seen in Fig. 1) or vascular structures in dynam-
ic X-ray images is essential in image guided intervention-
s. These structures serve as surrogate signals for dynamic
overlay of 3D patient-specific anatomical information over
2D X-ray images. Fig. 1 demonstrates the challenges of

Figure 1. Examples of X-ray fluoroscopic images from differen-
t sequences. Images in the first row contain catheters. Vascular
structures are shown in the second row. The odd columns are orig-
inal images, where annotations of catheters or vascular structures
are illustrated in the even columns (in green).

the tracking problem. For intravascular devices and vascu-
lar structures, large variations in their appearances such as
shape and intensity are observed. Low visibility and poor
image quality due to a low dose of radiations in interven-
tional imaging make the deformable tracking more difficult.
Furthermore, these structures undergo complex deformable
motion as a result of 3D deformable anatomical movements
projected onto the 2D image plane. In this paper, we ad-
dress the problem of deformable tracking in dynamic X-ray
images.

Object tracking techniques [21] based on appearance
features such as intensity and color histograms are not suit-
able for deformable tracking due to the large variation and
non-linear deformation in target shapes. Active contour and
level set methods [13] heavily rely on the design of ener-
gy function and the choice of object specific parameters.
Palti-Wasserman et al. [15] used a filter based method to
identify a guidewire in an X-ray image and used Hough
transform to fit a polynomial curve to track a guidewire.
In [1], guidewire is modeled as a line-like structure and the
deformation is achieved by spline optimization. Wang et
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al. [19] proposed a learning-based method which aimed at
detecting a guidewire in individual frames. The shape of the
guidewire is captured by snake-like energy function involv-
ing probabilities computed by guidewire detector. These
approaches rely on appearance detection for tracking and
do not explicitly address the estimation of guidewire defor-
mation.

Image registration and alignment are another set of tech-
niques suitable for deformable tracking. Bhagalia et al. [4]
presented an importance sampling approach which used
sampled image points with larger gradients to perform reg-
istration. To cope with static structures in X-ray images,
Zhu et al. [24] introduced a method to separate static struc-
tures from moving structures through temporal statistics
across frames. The registration is achieved by variational
approach [10]. A motion layer separation solution for the
similar task was proposed in [23].

In this paper, the objective is to track the curvilinear
structure in the dynamic X-ray sequence. The curvilinear
structure is represented by a model which is manually la-
beled in the first frame. Deformable tracking of the curvi-
linear structure is then estimated during remaining frames.
To address the problem, we propose a new approach us-
ing tensor-based multi-dimensional assignment (TMDA)
framework. First of all, curvilinear structure candidates are
detected by a discriminative classifier. Then, we construc-
t a high-order tensor from all trajectory candidates over a
time span. Associations of detected candidates between ad-
jacent frames are computed by rank-1 `1 tensor approxi-
mation. Finally, curvilinear structure tracking is achieved
by model propagation during the frames. Through model
propagation, higher order temporal information helps to re-
duce ambiguity during object localization across time. To
validate the proposed approach, we apply it to curvilinear
structure tracking in clinical images obtained from cardiac
and liver interventions. A challenging dataset containing 17
clinical X-ray sequences, together with manually annotat-
ed ground truth, is used for testing. The proposed method
demonstrates very promising results and achieves a mean
tracking error of 1.4 pixels for vascular structure and 1.3
pixels for catheter tracking.

In summary, there are two main contributions of our
work. Firstly, we propose to use tensor-based multi-
dimensional assignment for curvilinear structure tracking.
Deformable tracking is estimated by using higher-order in-
formation from multiple frames. In contrast, most tra-
ditional methods only consider two frames in the track-
ing. Secondly, model propagation is applied in tensor ap-
proximation to preserve the model’s spatial constrain dur-
ing the tracking. Unlike standard tensor approximation,
our method does not require the computation of curvilin-
ear structure candidates matching between two consecutive
frames. The curvilinear structure can be directly computed

from model propagation. Another benefit of model prop-
agation is to reduce unnecessary associations of detected
curvilinear structures. Therefore, only the model is propa-
gated in the tracking.

The remaining of the paper is organized as follows. Re-
lated work is reviewed in Sec. 2. In Sec. 3, we formulate the
deformable tracking problem into the tensor-based multi-
dimensional assignment framework. Experimental results
are presented in Sec. 5. Finally, Sec. 6 concludes the paper.

2. Related Work
With observations of a batch of frames, object tracking is

formulated as data association of these observations across
frames. The classic method is Multiple Hypothesis Track-
ing (MHT) [16] which finds all possible association com-
binations and selects the most likely association set as the
optimal solution. In general, MHT optimization is an NP-
hard problem and the computation is prohibitive when the
numbers of objects and frames are large.

Multiple target association across K frames can be for-
mulated as the multiple dimensional assignment (MDA)
problem. Although there exits exact solutions with poly-
nomial time for two-frame association. For instance, Hun-
garian algorithm is one popular method for this special case
of MDA, whereK = 2. It is usually infeasible to search the
global optimal solution of MDA whenK > 2, which is NP-
hard when no assumption is provided. Recent studies focus
on approximation solution of MDA problem. In [17], a rank
constrained continuous formulation of multi-frame multi-
target tracking problem is approximated by semi-definite
program method. The Lagrange relaxation strategy is ap-
plied in [9] to present an efficient and generalized assign-
ment algorithm.

Some works treat MDA as a graph theory problem
such as bipartite matching, which incorporates a limited-
temporal-locality of the sequence. One of them is to for-
mulate MDA as a network flow problem by decomposing
the cost of the trajectory as the product of pairwise terms.
Then the network flow problem is solved by linear program-
ming [12], shortest path algorithm [3] etc. Although glob-
al optimal solution by polynomial time complexity can be
achieved by these methods, higher-order temporal informa-
tion is missing in the network flow formulation. In order to
achieve long-term data association, generalized minimum
clique graph is proposed in [22] to incorporate long-term
temporal span. Maximum weight independent set of the
graph built by pairs of detections is provided to solve similar
MDA problem in [5]. Other alternative approaches include
Markov Chain Monte Carlo Data Association approaches
[2, 14], greedy search [20] and hierarchical target associa-
tion [11].

Our work is closely related to the framework in [18] by
using rank-1 tensor approximation of MDA. Their iterative



approximate solution is inspired by [7], which iteratively
solves two-frame assignments in turn while keeping all oth-
er assignments fixed. Sharing similar procedure of [18], the
curvilinear structure tracking is formulated as a MDA prob-
lem. Tensor-based approximation is adopted to estimate the
motion of curvilinear structure. Compared to [18], a mod-
el is involved in the tensor-based formulation of MDA. In
addition, our model prior is preserved during tracking by
performing model propagation.

3. Curvilinear Structure Tracking
We first introduce notations used in this paper. We will

denote scalars by lower-case italic letters (a, b, . . . ); vectors
by lower-case boldface letters (a,b, . . . ), matrices by bold-
face capitals (A,B, . . . ), and tensors by calligraphic letter-
s (A,B, . . . ). The notation is consistently used for lower-
order parts of a given structure. For example, the i-th entry
of a vector a is denoted by ai, the (i, j)-th entry of a matrix
A by aij and the (i0, i1, . . . , iK)-th entry of a K-th order
tensor A by ai0i1...iK .

3.1. Problem Formulation

A deformable object is often modeled as a set of ele-
ments whose spatial relations vary across time. To track a
deformable object, roughly speaking, is to localize or de-
tect its elements across time span. We plan to formulate
deformable tracking as a spatial constrained tensor-based
multi-dimensional assignment.

The model is manually labeled in the first frame and
tracking is performed throughout the following frames.
O(0) = {o(0)

i0
}I0i0=1 is denoted as the model to be tracked

with I0 elements. The topology of the object is encoded by
an edge set E = {(i0, i′0) : o

(0)
io

and o
(0)
i′o

are connected}.
Then, let O(k) = {o(k)

ik
}Ikik=1 be the set of curvilinear

candidate elements for the k-th frame, k = 1, 2, . . . ,K,
and I0 ≤ Ik. We assume all sets have equal number of
items for notation convenience. This assumption will not
affect the algorithms and analysis, since we can always
pad the sets with virtual items that are used for handling
missing or noisy items. Therefore, we can rewrite it as
O(k) = {o(k)

ik
}Iik=1 where each frame has I items.

MDA aims to find a (K + 1)-partite assignment from
these sets that maximizes the total matched affinity. The
problem can be formally defined as the following con-
strained optimization:

arg max
X∗

f∗(X ∗) =
∑
i0

∑
i1

· · ·
∑
iK

a∗i0i1,...iKx
∗
i0i1,...iK (1)

s.t.


∑

i0,i1,...,iK\{ik}
x∗i0i1,...iK = 1, ∀k

x∗i0i1,...iK ∈ {0, 1}, ∀k
(2)

Figure 2. Overview of proposed method.

where a∗i0i1,...iK denotes the affinity for a joint assignment

of item Oi0,i1,...,iK = {o(0)
i0
,o

(1)
i1
, . . . ,o

(K)
iK
}, x∗i0i1,...iK in-

dicates whether Oi0,i1,...,iK is selected (= 1) or not (= 0);
and X ∗ = (x∗i0i1,...iK ). Finally, the tracking result of curvi-
linear structure O(0) can be retrieved from the joint assign-
ments in k-th frame. The overview of the proposed method
is provided in Fig 2.

3.2. Low Rank Tensor Approximation

Following the approach presented in [18], the MDA
problem is converted to a new tensor-based MDA formula-
tion. Taking benefit of the non-negativity of a∗i0i1,...iK and
x∗i0i1,...iK , f∗ can be represented in a tensor form as:

f∗(X ∗) = ‖X ∗ • A∗‖F , (3)

where A∗ = a∗i0i1,...iK is the affinity tensor, ‘•’ the
Hadamard product and ‖ · ‖ the Frobenius norm.

Intuitively, to maximize f∗, a large a∗i0i1,...iK encourages
a large x∗i0i1,...iK , which in turn suggests a sequence of bina-

ry matching (o
(0)
i0

o
(1)
i1

), (o
(1)
i1

o
(2)
i2

), . . . (o
(K−1)
iK−1

o
(K)
iK

). This
suggests us to seek solutions through between-set assign-
ments, hereafter referred as local assignments. By contrast,
we refer the joint assignment as global assignment in the
rest of the paper.

We first decompose a global assignment variable
x∗i0i1,...iK as a sequence of local assignment ones. Let
the local assignment between two consecutive sets O(k−1)

and O(k) be represented by an assignment matrix Xk =
(xik−1ik)(k) ∈ RI×I , which can be reshaped as a vec-
tor denoted as x(k) = (xkjk) ∈ RJ , where J

.
= I2.

Hereafter we use the same scalar symbol x to denote en-
tries in both X and x, with double subscripts and a sin-
gle subscript respectively. In addition, given the matrix en-
try index (i1, i2), we denote its index after vectorization by
⇓ (i1, i2), while given a vector entry index j, we denote
its corresponding matrix index as (j, j). To summarize,



we have (X)i1i2 = xi1i2 = x⇓(i1,i2) = (x)⇓(i1,i2) and
(x)j = xj = xjj = (X)jj . With the above notation, we
have the following decomposition

x∗i0i1,...iK = x
(1)
i0i1

x
(1)
i1i2

. . . x
(K)
iK−1iK

= x
(1)
⇓(i0,i1)x

(2)
⇓(i1,i2) . . . x

(K)
⇓(iK−1,iK).

(4)

The K-th order affinity tensor A ∈ RJ×J×···×J as

a∗i0i1,...iK =

{
a∗j1j2...jK , if jk = jk+1,∀k = 1, . . .K − 1
0, otherwise

(5)
Combining Eqn. 4 and 5, the MDA problem is reshaped

as a new tensor-based MDA (TMDA) in the following form:

arg max
X

f(X) = A×1 x
(1) ×2 x

(2) · · · ×K x(K), (6)

s.t.


∑

ik−1
x
(k)
ik−1ik

= 1, ∀k = 0, 1, . . . ,K∑
ik
x
(k)
ik−1ik

= 1, ∀k = 0, 1, . . . ,K

x
(k)
ik−1ik

∈ {0, 1} ∀k = 0, 1, . . . ,K

(7)

where X .
= {x(1),x(2), . . . ,x(K)} is the set of local as-

signment vectors and ×k is the k-mode tensor product.
With the TMDA formulation, the problem can be viewed

as to seek vectors X to maximize the “joint projection” of
A on X. This way TMDA closely correlates with the rank-1
tensor approximation [8], which aims to approximate a ten-
sor by the tensor product of unit vectors up to a scale factor.
By relaxing the integer constraint on the assignment vari-
ables, once a real valued solution of X is achieved, it can
be binarized using the Hungarian algorithm. The key issue
here is to accommodate the row/column `1 constraints of E-
qn. 7, which are different from the commonly used `2 norm
constraint in tensor factorization. We use the approach de-
veloped in [18], which is a tensor power iteration solution
with row/column normalization.

The key steps of power iteration are listed below,

x(k) ← (A×1 x
(k) • x(1) ×2 x

(2) . . . (8)
×k−1x

(k−1) ×k x(k+1) · · · ×K x(K)),

x(k) ← rcnorm(x(k)), (9)

where rcnorm(·) indicates a row/column normalization.

3.3. Model Propagation

To solve the proposed TMDA problem for curvilinear
structure tracking, local assignment matrix X(k) between
curvilinear structure sets o(k−1) and o(k) is consecutive-
ly computed by the power iteration algorithm. Bipartite

Figure 3. Model propagation example.

matching of o(k−1) and o(k) is obtained by Hungarian al-
gorithm. In order to get the tracking result of curvilinear
structure of o(0) in other following frames. The straightfor-
ward method is to link these binary assignments together.
Curvilinear structure o(0) is then passed into the sequence
by these binary assignments during K frames.

A key issue is to measure, before reaching final result-
s, whether a candidate o

(k)
ik

matches a model element part

o
(0)
i0

. We address the issue by dynamically maintain a “soft

assignment”. In particular, we use θ(k)i0ik
to indicate the like-

lihood that o(k)
ik

corresponds to o
(0)
i0

, it can be estimated by

Θ(k) = Θ(k−1)X(k), k = 1, 2, . . . ,K, (10)

where Θ(k) = (θ
(k)
i0ik

) ∈ RI0Ik , and Θ(0) is fixed as the
identity matrix. An illustration example of model propaga-
tion is given in Fig. 3.

Together with local assignment matrix X(k), the mod-
el likelihood Θ(k) is then propagated through the sequence.
Therefore, the model likelihood Θ(k) is incorporated in the
power iteration rank-1 tensor approximation for our curvi-
linear tracking problem. More specifically, the model prop-
agation is updated in each step of the power iteration. The
final tracking result of the matching between o(0) and o(k)

is computed from Θ(k). Therefore, the curvilinear structure
model CS(k) which is propagated to k-th frame can also
be directly computed by Θ(k). We summarize the proposed
method in Algorithm 1.

4. High-Order Tensor Construction
Given a batch ofK+1 frames from one X-ray sequence,

the tensor is constructed from curvilinear structure candi-
dates O(k), where k ∈ {0, 1, . . . ,K}. The model, O(0) is
manually annotated in the first image of the batch. Candi-
dates on other frames are detected by a discriminative clas-
sifier.



Algorithm 1 Power iteration with model propagation
1: Input: Global affinity A : aj1...jk...jK , k = 1 . . .K,

curvilinear structure candidates O(k), k = 0 . . .K.
2: Output: curvilinear structure CS(k), k = 1 . . .K.
3: Initialize X(k), k = 1 . . .K, CS(0) = O(0) and Θ(0) =

I.
4: repeat
5: for k = 1, . . . ,K do
6: for jk = 1, . . . , J do
7: update x(k)jk

.
= x

(k)
ik−1ik

by

x
(k)
jk
∝ x(k)jk

K∑
jf :f 6=k

aj1...jk...jKx
(1)
j1
. . . x

(f)
jf

. . . x
(K)
jK

8: end for
9: row/column normalize X(k)

10: update model likelihood: Θ(k) = Θ(k−1)X(k)

11: end for
12: until convergence
13: for k = 1, . . . ,K do
14: discretize Θ(k) to get curvilinear structure CS(k).
15: end for

4.1. Curvilinear Structure Candidates Detection

A random forest classifier of curvilinear structure is
learned using only the first image of each sequence. Then
the classifier is applied to find candidates in other frames.

Local features are proposed to capture the visual appear-
ance of curvilinear structure. A few local features for each
sampling point are extracted from the image. Local visu-
al features such as intensity and gradient are fed into the
learning process. For example, given a point centered at
x, the feature components are I , gx, gy and ‖g‖. For each
feature component f , the following values are computed as
additional features: f,

√
‖f‖, f2, f3 and log(‖f‖). All the

features are normalized by the variance of intensity values
in the local patch.

For each image in the sequence except the first frame,
a curvilinear structure probability map is computed by the
learned classifier. A threshold is set to eliminated most
of the false alarms in the image. These results are further
processed by a thinning algorithm. Final curvilinear struc-
ture candidates are down-sampled from the thinning results.
Down-sampling approach is applied to keep a small number
of detection candidates, which is aimed to avoid building
huge number of trajectories in tensor construction.

4.2. Trajectory Hypotheses

We follow the conventional method to build trajectory
hypotheses based on the association of two adjacent frames
[18]. The association between two consecutive frames is
created by O(k−1) and O(k). Usually, it is unnecessary to

build the bipartite graph by linking all the candidates to-
gether . A link between o

(k−1)
ik−1

and o
(k)
ik

is only established
when these two candidates are spatially close. A threshold
is taken to eliminate candidates far away from each other,
which in turn reduces the number of trajectory hypotheses
in multi-frame batch.

As proposed in [6], a practical tracking algorithm must
handle missing detections and variable numbers of targets
exiting each frame. To address these issues, a virtual dum-
my node is added to each frame. This dummy node is linked
to all the real curvilinear structure candidates in the previous
frame and the next frame. A link is also built for dummy ob-
servations of two consecutive frames to process short-time
missing or exiting candidates. These virtual nodes enlarge
the number of potential trajectories.

4.3. Trajectory Affinity

The affinity of one trajectory hypothesis Oi0,i1,...,iK =

{o(0)
i0
,o

(1)
i1
, . . . ,o

(K)
iK
} is defined by

a∗i0i1,...iK = appi0i1,...iK × kini0i1,...iK , (11)

where appi0i1,...iK describes the appearance consistence
and kini0i1,...iK is to model the kinetic affinity. Essentially,
appi0i1,...iK can be written as

appi0i1,...iK = appi0i1 ×appi1i2 ×· · ·×appiK−1iK , (12)

where appik−1ik is the appearance similarity between curvi-
linear structure candidates ok−1

ik−1
and ok

ik
.

Similar as in [7, 18], the motion affinity of a trajec-
tory Oi0,i1,...,iK is defined as a joint assignment of item
Oi0,i1,...,iK = {o(0)

i0
,o

(1)
i1
, . . . ,o

(K)
iK
}, kini0i1,...iK is writ-

ten as

kini0i1,...iK = exp(−αEcont − βEcurv), (13)

where
Econt = 1

K

K+1∑
k=1

‖o(k)
ik
− o

(k−1)
ik−1

‖

Ecurv = 1
K−1

K+1∑
k=1

‖o(k+1)
ik+1

− 2o
(k)
ik

+ o
(k−1)
ik−1

‖

(14)
Continuous term Econt penalizes large movement of

curvilinear structure in position using the average distance
between successive pairs of points o(k)

ik
and o

(k−1)
ik−1

. Ecurv

is the curvature measurement computed by the sum of cur-
vature segments over the trajectory. The motion consistence
of the trajectory is a variant of internal energy term of the
popular “snake” active contour. Parameters α, β are weighs
of Econt and Ecurv .



5. Experiments
To investigate the performance of the proposed approach

for curvilinear structure deformable motion tracking, we
use X-ray images from clinical cases of liver and car-
diac intervention. The data is acquired with pixel size
of 512 × 512 and resolution of 0.4313mm, 0.3450mm or
0.3660mm. These cases are chosen due to the visibility of
the vascular structure and catheter throughout the entire im-
age, which provide groundtruth for evaluation (as shown in
even columns of Fig. 1).

These X-ray sequences are categorized into two groups.
One group contains 6 sequences for vascular structure track-
ing. 11 sequences in the second group are used for catheter
tracking. The results of proposed method are compared to
registration-based approach and bipartite graph matching.

5.1. Vascular Structure Tracking

Our first experiment is conducted on vascular structure
tracking in X-ray image sequences. There are 6 X-ray im-
age sequences which contain vascular structures in all the
frames.

Vascular Structure Candidates Detection. The first
frames from these sequences are used to generate training
samples. Random forest is applied to train a vascular struc-
ture detector. An independent training sample set is collect-
ed for each tree in the forest. From annotation, 1000 vascu-
lar structure points and 1000 negative samples are generated
for each image. There are totally 2000 × 6 × 2 = 24, 000
training samples to train a decision tree in the forest. Due
to the large width of vascular structure, the sampling pat-
tern for local features descriptor is 30 × 30 pixels, which
provides a feature vector with dimension 18, 000. A ran-
dom forest of 50 trees with depth 10 is constructed in the
experiment. In the node optimization, 100 active features
are randomly sampled from the whole feature space. Stump
is chosen in the node optimization.

The vascular structure probability map of X-ray images
could be obtained by the learned classifier. Pixels with prob-
ability value larger than 0.5 are selected for post-processing.
After thinning and down-sampling, around 200 vascular
structure candidates left in each frame. Number of points
on the model is around 50 for each sequence.

Tensor Parameters. In our experiment, we investigate
the case when K = 3 which provides 4 frames in the batch.
Curvilinear structure model is annotated in the first frame.
In order to capture the possible large movement of curvi-
linear structure, the distance threshold to establish the links
between two consecutive frames is 25 pixels. Shape con-
text feature is used to represent the appearance of vascular
structure. Appearance similarity appik−1ik is calculated by
shape context feature of ok−1

ik−1
and ok

ik
. The parameter of

kini0i1,...iK is set to α = 0.01, β = 0.01 in our experi-
ments.

Tracking Results. Using the proposed method, curvilin-
ear structures model CS(0) is propagated to its consecutive
frames. Curvilinear structure CS(k) in the k-th frame is
computed by Θ(k). A B-Spline is then fitted to represent
the vascular structure in X-ray images. For these selected
sequences, we manually annotate the vascular structure on
the X-ray images. Tracking error is defined as the short-
est distance between tracked pixels and groundtruth anno-
tations. For each performance metric, we compute its mean
and standard deviation.

The proposed method is compared with registration-
based approach [24]. In their method, the first image is fixed
as the reference image. Registration is conducted between
other floating frames and the reference image. Two-level
pyramid is applied in the registration-based method to re-
cover large motion of curvilinear structure. The number of
iterations for the first level of the pyramid is set to 16 and
the second to 24.

Solutions calculated by bipartite graph matching is also
compared with our method. We use the same affinity formu-
lation for fair comparison. Hungarian algorithm is applied
to compute the bipartite matching. Curvilinear structure
O(0) is propagated to CS(k) by bipartite graph matching.
The final curvilinear structure is represented by a B-Spline
fitted by CS(k).

An example of vascular structure tracking results are il-
lustrated in the first row of Fig. 4. The qualitative exper-
imental results of vascular structure tracking are listed in
Table 1. It can be seen that our approach performs better
than the registration-based method. The tracking results are
better than most of the results computed by bipartite graph
matching. The reason is that our proposed method incorpo-
rates higher-order information from multiple frames. How-
ever, the bipartite graph matching is only computed from 2
frames.

5.2. Catheter Tracking

Our proposed approach is also evaluated on the second
group for catheter tracking. We have 11 sequences for
catheter tracking.

Catheter Candidates Detection. Similar as vascular
structure detection, training samples are generated from 11
images which are the first images in each sequence. 1000
catheter points and 1000 negative samples are generated
from each image. 1000×11×2 = 22, 000 training samples
are used to train a decision tree in the forest. The feature s-
pace has a dimension of 2000 where sampling pattern for
local features descriptor is 10×10 pixels. The same param-
eter of random forest as in vascular structure experiment is
set for training a catheter detector.



Table 1. Tracking error of vascular structure.
seq id registration [24] bipartite matching proposed
VAS1 2.7656 ± 3.2464 1.5397 ± 1.5850 1.3346 ± 1.0761
VAS2 2.0180 ± 3.1024 1.4885 ± 1.5743 1.4926 ± 1.7403
VAS3 3.2530 ± 7.6413 1.6519 ± 2.3965 1.4089 ± 1.5470
VAS4 2.1581 ± 2.5227 1.6069 ± 2.2493 1.9900 ± 3.0176
VAS5 3.0399 ± 5.4569 2.7115 ± 4.3623 1.3642 ± 1.4405
VAS6 2.8646 ± 5.5972 1.4048 ± 1.9433 1.3159 ± 1.6788

Over all 2.6881 ± 5.0251 1.7498 ± 2.6012 1.4898 ± 1.8598

The probability map threshold is chosen to 0.5. Conse-
quently, around 200 catheter candidates are kept for each
frame. Model in the first frame is annotated to have around
50 points on it.

Tensor Parameters. K is set to 3 in our proposed method
which gives a batch with 4 frames. The parameter of
kini0i1,...iK is set to α = 0.001, β = 0.01 in our experi-
ments. Other parameters are the same as vascular structure
tracking.

Tracking Results. Fig. 4 shows several examples of
catheter structure tracking results. We use the same evalua-
tion metric for catheter tracking. Registration-based method
[24] and bipartite graph matching are also compared with
our method. The comparison results of catheter tracking
are listed in Table 2. We can observe that our higher-order
tensor-based method outperforms other two approaches.

6. Conclusion and Discussion
In this paper, we model the curvilinear structure tracking

as a tensor-based multiple data association problem with
model propagation. Rank-1 tensor approximation is used
to solve the optimization problem. More specifically, `1 u-
nit norm tensor power iteration is applied in the tensor de-
composition. Our model propagation automatically propa-
gates curvilinear structure to consecutive frames in the se-
quence. Moreover, curvilinear structure can be obtained
directly from model propagation without solving the two
adjacent frame matching in standard tensor approximation.
Experiments on two groups of curvilinear structure demon-
strate the effectiveness of our proposed approach.
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