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Abstract

In this paper, we present a novel refractive calibration
method for an underwater stereo camera system where both
cameras are looking through multiple parallel flat refractive
interfaces. At the heart of our method is an important find-
ing that the thickness of the interface can be estimated from
a set of pixel correspondences in the stereo images when
the refractive axis is given. To our best knowledge, such
a finding has not been studied or reported. Moreover, by
exploring the search space for the refractive axis and us-
ing reprojection error as a measure, both the refractive axis
and the thickness of the interface can be recovered simulta-
neously. Our method does not require any calibration tar-
get such as a checkerboard pattern which may be difficult to
manipulate when the cameras are deployed deep undersea.
The implementation of our method is simple. In particular,
it only requires solving a set of linear equations of the form
Ax = b and applies sparse bundle adjustment to refine the
initial estimated results. Extensive experiments have been
carried out which include simulations with and without out-
liers to verify the correctness of our method as well as to test
its robustness to noise and outliers. The results of real ex-
periments are also provided. The accuracy of our results
is comparable to that of a state-of-the-art method that re-
quires known 3D geometry of a scene.

1. Introduction

Camera calibration is one of the most extensively re-
searched topics in computer vision. It is a required step for
3D geometry in order to extract metric information from
2D images. Despite the remarkable success [17] for land-
based camera systems, underwater camera calibration has
been unaddressed in computer vision community until re-
cently. The main difficulty is the refraction which occurs
when light travels through different media, which results in
distortion in the image that depends on the scene distance
and cannot be simply modeled as lens radial distortion [11].

Therefore, calibrating an underwater camera system with
multiple refractive layers with an unknown refractive axis
and layer thickness is still an open problem.

In this paper, we focus on the problem of recovering the
refractive axis and layer thickness simultaneously for a two-
view underwater stereo camera system. The key idea of
our method is an important finding that the layer thickness
can be estimated once the refractive axis is known. To the
best of our knowledge, such a relationship is unknown in
previous work. Moreover, we show that the refractive axis
is constrained within a search space and can be specified
once the stereo cameras are calibrated in air. Combining
the above two findings, both the axis and layer thickness
can be computed. Our main contributions are as follows.
• A new theory to demonstrate that the layer thickness

can be estimated once the refractive axis is given.
• A new method to recover both the axis and the thick-

ness by analyzing the search space.
• Our method only requires a set of pixel correspon-

dences in the stereo images of any arbitrary 3D scene. The
calibration pattern is used only once to calibrate the relative
pose between the cameras as a pre-processing step.
• The implementation is simple, which can be easily

adapted to most existing underwater stereo camera systems.

2. Related Work

The refraction effects are either ignored in the early
works of underwater computer vision [12], or approxi-
mated, such as using focal length adjustment [4, 6, 9]. How-
ever, it is a known fact that the refraction effects are highly
non-linear and depends on the scene geometry. Therefore,
approximation methods usually produce errors in the re-
sults. It is demonstrated by Treibitz et al. [15] that er-
rors exist in underwater camera calibration by using a sin-
gle viewpoint (SVP) model. Moreover, they develop a cal-
ibration technique to recover the distance from the camera
center to the interface assuming that there is only one re-
fraction. This method uses a planar checkerboard pattern,
and assumes that the depth of the pattern is known. It also
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applies the constraint that the interface must be parallel to
the image plane which is not practical.

Applying a physically correct model has attracted the
attention of researchers since it is able to improve the 3D
reconstruction results. Chari and Sturm [3] provides theo-
retical analysis of refraction to demonstrate that the refrac-
tive fundamental matrix exists between two cameras view-
ing a scene through the same refractive interface. However,
only theoretical results are provided instead of practical im-
plementation. A multi-view 3D underwater reconstruction
method is proposed in [2] where all the cameras share the
same refractive interface. In this method, the effect of re-
fraction is modeled as a function of scene depth. Nonethe-
less, it assumes that the normal of the refractive interface is
known and also requires an additional device called inertial
measurement unit (IMU) to measure the roll and pitch an-
gles of the camera. A flexible method is presented in [14] to
calibrate the housing parameters for underwater stereo rigs.
The method does not require a calibration object and can
account for two refractions by assuming that the glass thick-
ness of the housing is known. A major limitation is that its
optimization process is very time consuming and the result
of real data is not evaluated. Kang et al. [7] study two-
view structure and motion using cameras that do not share
the same interface. A limitation of this technique is the as-
sumption that the interface is parallel to the image plane.
Agrawal et al. [1] show that the flat refractive geometry cor-
responds to an axial camera. Such a finding leads to a gen-
eral theory of camera calibration by assuming that the 3D
geometry of the calibration target is known. As a result, a
checkerboard pattern is usually used as the calibration target
when implementing the method, which may not be practical
when the camera system is deployed deep undersea. Yau et
al. [16] extend the work of [1] by considering the disper-
sion of light which improves the calibration accuracy. How-
ever, it requires a heavy custom built submersible light box.
More recently, [5] present a structure-from-motion method
for underwater images, which performs calibration for both
the housing parameters and the relative pose. However, the
method requires a good initial estimate for the housing pa-
rameters. Our method does not have this limitation. In par-
ticular, our method obtains a good initial estimate from the
stereo correspondences and refines it by sparse bundle ad-
justment.

We can see that there are certain requirements in most
existing calibration methods that make them impractical.
For example, a planar pattern or a light box is difficult to use
when the camera system is deployed deep undersea. Others
assume that the normal of the refractive interface is known
or parallel to that of the image plane, or assume that the di-
mension of the calibration target is known [8]. In contrast
to previous methods, our method makes no assumption on
the configuration of the camera system or the refractive in-

terface, and works on arbitrary unknown 3D scenes.

3. Proposed Method
Without loss of generality, we assume that each camera

is facing the refractive interface of its own underwater hous-
ing. Notice that the two cameras sharing the same interface
is a special case. Moreover, we assume that there is one
or multiple refractive interfaces and they are all parallel to
each other. Both 3D and 2D diagrams for this scenario are
shown in Fig. 1. The diagram shows two corresponding
rays coming out from the camera centers, passing through
multiple interfaces, and intersecting at an object point.

(a) (b)

Figure 1. (a) Flat refractive geometry with multi-layer of refractive
interface for a stereo camera system. (b) 2D diagram for (a).

We first describe the symbols shown in Fig. 1(b). The
subscript “L” denotes the left camera view and “R” the
right. Suppose there are N refractions in each camera view
and the refractive indices µi

L and µi
R, i ∈ [0, N ] are given.

Here i is always an integer. The normals of the refractive
interfaces are denoted as nL and nR. We assume that the
orientations and positions of the two cameras are known by
performing offline calibration in air. In other words, cam-
era centers CL and CR are provided. Moreover, we assume
that a set of corresponding rays coming out of the camera
centers has been established. For example, {r0L, r0R} is a
pair of corresponding rays and there are M pairs. The di-
rections of rays in each refractive interface are denoted as
riL and riR, and the rays intersect each interface at points
qiL and qiR. The thickness of the left layer is diL, and of the
right diR, i ∈ [0, N−1]. To sum up, CL, CR andM pairs of
corresponding rays such as {r0L, r0R}, and the refractive in-
dices µi

L, µ
i
R are assumed to be known. Our method solves

for nL, nR, diL and diR, i ∈ [0, N−1] simultaneously. Once
they are obtained, the 3D geometry of the scene can be re-
constructed by ray-tracing from the correspondences.

3.1. Given nL and nR, estimate diL and diR

We first assume that nL and nR are given, which will be
relaxed later in Section 3.2. We demonstrate that diL and
diR can be obtained by solving a set of linear equations once



nL and nR are known. Our method is based on an important
finding which is expressed as

(qNL − qNR ) · (rNL × rNR ) = 0. (1)

In the equation, · denotes dot product and × cross product.
The equation states that qNL q

N
R is on the plane formed by

the two rays rNL and rNR . We can see that this condition is

always true. It is known that qiL = qi−1L − di−1L
ri−1
L

nL·ri−1
L

, i ∈
[2, N ], and qiR is obtained similarly. Furthermore, q1L =

CL − d0L
r0L

nL·r0L
and a similar equation holds for q1R. By

substituting these to Eq. 1, which can be written as((
CL − d0L

r0L
nL · r0L

− d1L
r1L

nL · r1L
− · · · − dN−1L

rN−1L

nL · rN−1L

)
−
(
CR − d0R

r0R
nR · r0R

− d1R
r1R

nR · r1R
− . . .

− dN−1R

rN−1R

nR · rN−1R

))
· (rNL × rNR ) = 0. (2)

Let R = (rNL × rNR ), Ri
L =

riL
nL·riL

and Ri
R =

riR
nR·riR

. Eq.
2 can be further expanded as(
CL − CR − d0LR0

L − · · · − dN−1L RN−1
L

+ d0RR0
R + · · ·+ dN−1R RN−1

R

)
· R = 0. (3)

Re-arrange the order of terms produces

− d0L(R0
L · R)− · · · − dN−1L (RN−1

L · R) + d0R(R0
R · R)

+ · · ·+ dN−1R (RN−1
R · R) = (CR − CL) · R. (4)

Finally Eq. 4 can be written as[
− (R0

L · R), . . . ,−(RN−1
L · R), (R0

R · R), . . . , (RN−1
R · R)

][
d0L, . . . , d

N−1
L , d0R, . . . , d

N−1
R

]T
= (CR − CL) · R. (5)

Once nL and nR are known, then riL and riR, i ∈ [1, N ] can
be obtained since r0L and r0R are known, and the refractive
indices are assumed to be given. Therefore,Ri

L, i ∈ [0, N−
1] which is riL

nL·riL
, can be calculated. Similarly, Ri

R and R
can be computed as well. Up to this point, we can see that[
d0L, . . . , d

N−1
L , d0R, . . . , d

N−1
R

]T
are the unknowns in Eq.

5 and all the others can be calculated. Notice that Eq. 5 has
the same form asAx = bwhich can be easily solved. Given
M pair of correspondences, the dimension ofA isM×2N ,
b is 2N × 1 and x is M × 1. By solving the set of linear
equations, diL and diR, i ∈ [0, N − 1] are obtained.

3.2. Search space

The above section demonstrates that once nL and nR are
provided, diL and diR can be computed by solving a set of

linear equations. After that, the 3D geometry of a scene
can be obtained as well. This method can be readily incor-
porated into an existing underwater stereo camera system
where the normals of the refractive interfaces are known.
Unfortunately, some systems do not have information of the
normal and this section is designed to address this problem.

Although we do not know accurately nL and nR, we do
know that they are both inside a search space which is the
hemisphere shown in Fig. 2. That is, the z component of the
normal direction is always negative in the camera’s coordi-
nate system. Denote nL = [nL(x), nL(y), nL(z)]. Then,

Figure 2. The search space for the normal of the refractive inter-
faces.

nL(x) ∈ [−1, 1], nL(y) ∈ [−1, 1], nL(x)2 + nL(y)
2 ≤ 1

and nL(z) = −
√

1− x2 − y2. Both nL(x) and nL(y) are
within [−1, 1] because nL represents the normal direction
and its length is 1. The search space for nR can be defined
in the same way. Since the two cameras are calibrated in
air, the relationship between their coordinate systems can
be obtained. As a result, the search space for both nL and
nR can be defined.

There are many hypotheses for nL and nR in their
search spaces, and the reprojection error is used to measure
whether or not the result produced by a particular hypothe-
sis is appropriate. To be more specific, for a certain hypoth-
esis of nL and nR, we compute diL and diR, i ∈ [0, N−1] by
using our method in Section 3.1. After that, M pairs of cor-
responding rays generate M 3D points by ray-tracing, and
these 3D points are projected back to the images to compute
the reprojection error. It is demonstrated in [1] that by solv-
ing a 4th degree equation the reprojected pixels can be ob-
tained for a single refraction, and a 12th degree equation for
two refractions. Assuming that the measured correspond-
ing pixels in the two images are p̂L and p̂R, and the corre-
sponding reprojected pixels are pL and pR, then the repro-
jection error is defined as the root mean square (RMS) error

J =
√

1
M

∑M
i=1

(
(pL(i)− p̂L(i))2 + (pR(i)− p̂R(i))2

)
.

We select the hypothesis of nL and nR that minimizes J .

4. Implementation Details
A naive implementation of the method in Section 3.2 is

a brute force search in the search space for the normals. For
example, one can use a step size of 0.01 when searching the
entire space for nL and nR. However, this implementation



is very time consuming and the results may not be accurate
enough because the step size is 0.01. Instead, we use binary
search in the defined search space. In particular, our imple-
mentation terminates at the 10th iteration and the step size
at the ith iteration is 0.5i. At each iteration, there are 25
hypotheses each for nL and nR, which result in a total of
(25)2 hypotheses. Therefore, our implementation explores
(25)2×10 hypotheses and the final step size is 0.510, which
is much finer than 0.01.

Since the established corresponding rays such as
{r0L, r0R} can be corrupted by noise, a post-processing step
is performed. We use the sparse bundle adjustment [10] to
refine the parameters nL, nR, diL and diR, i ∈ [0, N − 1].

5. Experimental Results
Extensive experiments have been performed and the re-

sults are reported here. The refractive index for air is 1.0, for
water 1.33 and for glass 1.50. We assume that the light path
from the camera to the object is air→ glass→ water. This
is the most common scenario for both the lab environment
and for camera systems deployed undersea. For example,
water is usually contained in a tank made of glass in the
lab environment. Cameras are normally placed in their own
housing equipment made of glass before they are deployed
undersea. From now on, we use the term “single approxi-
mation” to represent that we use a single refraction of water
to approximate the refraction of glass + water. Under this
circumstance, the glass thickness is not estimated.

5.1. Simulations

We test the following five cases in the simulated exper-
iment. Case 1: Known refractive normal + single approx-
imation. Case 2: Known refractive normal + estimate all
layers’ thickness. Case 3: Unknown refractive normal +
known glass thickness. Case 4: Unknown refractive normal
+ single approximation. Case 5: Unknown refractive nor-
mal + estimate all layers’ thickness. Our results for Case 4
and 5 are compared with that produced by [1]. The reason
for comparing only these two cases is that the method of [1]
assumes that both the refractive normal and glass thickness
are unknown. Case 3 is designed because all the housing
equipment is custom built and the thickness of the glass is
normally known. The positions of the cameras, the normals
of the refractive interfaces, the distances from the camera
centers to the glass are randomly generated. Since the thick-
ness of the glass varies for different systems, it is set to be
a factor of the distance from the camera center to the glass.
The factor varies from 0.1 to 1.9. The object is set to be a
plane in order to easily inspect the quality of the reconstruc-
tion. It is noteworthy that our method does not require the
scene to be a planar object. In our real experiments, arbi-
trary 3D objects are used. The size of the plane is 0.5× 0.5
units. Throughout our simulated experiments, the image

resolution is 2048×1536 pixels. The number of pixel corre-
spondences established from the object is M = 2500. The
correspondences are generated with Gaussian noise (vari-
ance σ2 pixels) and we perform 100 trials for each noise set-
ting. We evaluate our results as follows. Suppose the refrac-
tive normal recovered by our method is n̂L and the ground
truth is nL, then the angle between them is computed by
arccos (n̂L · nL) × 180◦ and termed “angular error.” It is
applied to nR as well. Moreover, assume that the layer
thickness recovered by our method is d̂iL, i ∈ [0, N −1] and
the ground truth is diL, then the normalized error is com-

puted by |d̂
i
L−d

i
L|

di
L

where | · | denotes absolute value. The

error of diR is also computed. Beside the above parameters,
we also compute a 3D error as follows. Two objects are
used to generate noise free correspondences for each test
case. Combining the estimated parameters and the noise
free correspondences the 3D models of the objects can be
reconstructed. They are compared with the actual objects
used. One of the objects is the plane that we used to gen-
erate the M correspondences, and the other object is the
Stanford Bunny. The size of the Stanford Bunny is scaled
to be around 0.5 × 0.5 × 0.5 units. We denote the coordi-
nates of each object point as P , and the coordinates com-
puted by using our estimated parameters as P̂ . The distance
between these two points is obtained and averaged for the
entire object. We useDp to denote the averaged distance for
the plane, and Db for the Stanford Bunny. We can see that
all the measures indicate errors in the results. Therefore, a
lower value in the curves indicates better results.

Due to the space limit, only the results of Case 3 and 5
are shown in Fig. 4 and 5, the rest is placed in the supple-
mental material. The legend for these curves are the same
and shown in Fig. 3. In particular, the legend shows the
factor of the glass thickness relative to the distance from the
camera center to the glass, which varies from 0.1 to 1.9. A
3D object reconstruction result is shown on the left of Fig.
3. In particular, the ground truth is shown in red which is
overlapped with our result shown in green. The result with-
out accounting for the refraction effects is shown in blue. It
is the result for Case 2 when there is no noise at all and the
glass thickness factor is 0.1, which verifies the correctness
of our method by showing that our method can recover the
ground truth when the dataset is noise free. The object is a
plane, and the reconstruction result is curved when the re-
fraction is not accounted for. We compare our method with
that in [1] for Case 4 and 5. In particular, the top two rows
in Fig. 5 show our results and the bottom two show those
produced by [1]. The comparison indicates that our method
is comparable with that of [1], although not better than it.
The major advantage of our method is that we do not have
any requirement on the scene, while [1] requires the 3D ge-
ometry of the calibration object to be known.

Comparing all the five cases, we discovered that the av-



Figure 4. Error for Case 3 in the simulated experiments.

Figure 3. Left: 3D reconstruction results for a simulated experi-
ment. Right: legend for all figures.

eraged error in the 3D model is increased from Case 3 →
2 → 1 → 4 → 5. Therefore, we recommend researchers
to measure the thickness of the housing equipment before
the camera systems are deployed underwater. Moreover,
one should try to avoid the cases when both the refractive
normal and the glass thickness are unknown. For example,
when the glass thickness factor is 0.1 and the noise is 0.5
pixels, the error Db is about 0.0075 unit in Case 3 while
0.07 in Case 5. Considering that the size of the 3D object
is about 0.5 × 0.5 × 0.5, we can conclude that the error in
Case 3 is quite small (1.5%).

5.2. Simulations with Outliers

In our implementation, gray code structured light pat-
terns [13] are projected onto the scene to establish corre-
spondences. The reason of using structured light patterns

is that it usually produces better accuracy comparing with
passive stereo methods. However, outliers could still ex-
ist in the established correspondences. RANSAC is used to
detect outliers.

The experiments are designed as follows to demonstrate
that our method is robust to outliers. We generate M =
2500 correspondences with outliers and the number of out-
liers varies from 0% to 30%. We select the noise variance
to be 0.5 pixels and repeat the experiments for all the 5
cases described in Section 5.1. Only the result for Case
2 is shown in Fig. 6. The curves for the other cases have a
similar shape and is shown in supplemental material. Our
method can handle up to 25% of outliers. In reality, the
number of outliers in the established correspondences by
using the gray code patterns is usually much less than 25%.

Figure 6. Error for Case 2 with outliers.



Figure 5. Error for Case 5 in the simulated experiments. The top two rows show our results and the bottom two the results of [1].

5.3. Real Data

Besides the simulated experiments, real experiments are
carried out in a lab environment and the setup is shown in
Fig. 7. Two images are taken from different angles to show
the details of our setup. In particular, two Canon 5D cam-

(a) (b)

Figure 7. Setup for our real experiments.

eras (indicated by the green arrows) are placed in front of a

plexiglass tank and each camera has its own refractive inter-
face. A projector, which is indicated by the purple arrow, is
used to project gray code structured light patterns in order to
establish dense correspondences between the cameras. The
resolution of the cameras is 4368 × 2912 and of the projec-
tor is 1024× 768. A reference camera (indicated by the red
arrow) is used to obtain the ground truth for the refractive
axis (nL, nR) and the distance from the two Canon cameras
to the refractive interface (d0L, d

0
R). The reference camera

focus on both checkerboard patterns. Therefore, the trans-
formation between the coordinate systems of the checker-
board and the reference camera can be computed through
calibration. After that, once the three cameras are calibrated
in air, the transformation between the coordinate systems of
the checkerboard and the two Canon cameras can be com-
puted. As a result, the ground truth for the refractive axis
and the distance can be obtained. The thickness of the glass
(d1L, d

1
R) is measured by a ruler. Our results will be com-



pared with the ground truth to measure the accuracy.

Three datasets are captured under the same stereo cam-
era configuration and all the five cases are tested. In par-
ticular, the three datasets are named “Plane”, “Cave” and
“Boat”. Correspondences are established for each dataset
and the parameters are estimated from each set of corre-
spondences. Once all the parameters (n, d) are estimated,
the 3D reconstruction can be performed. The results of
“Plane” scene are shown in Fig. 8. From left to right, Fig.
8 shows the captured image, the 3D reconstruction results
when refraction is not accounted for, the results of Case 3
and 5 by applying our method. In the supplemental ma-
terial, the results of all the three datasets including all the
five cases are shown. The “Plane” scene includes a piece of
laminated paper pasted on a glass to show the impact of the
refraction effects. Since we measure the ground truth for
all the parameters (n, d), the “ground truth” of the 3D re-
construction can be obtained by ray-tracing using the estab-
lished pixel correspondences. The ground truth are shown
in red for comparison. To demonstrate that our measure-
ment of ground truth is accurate, we mark two points on the
milk carton. The distance between these two points from
3D reconstruction by using our measured ground truth is
99.0mm, and the distance measured by a ruler is 98.7mm.
The above two numbers indicates that our measurement of
the ground truth for the parameters is very accurate. From
the second column of Fig. 8, we can see that the objects are
larger in 3D reconstruction when the refraction effects are
ignored which is the case in reality. In particular, the dis-
tance between the two points marked on the milk carton is
149.8mm when refraction is not accounted for. We can see
that the error is quite large compared to the one measured
by ruler. Moreover, the reconstruction of the laminated pa-
per is not flat anymore. It demonstrates that the error can
be significant when the refraction effects are not accommo-
dated in 3D reconstruction. By visual comparison with the
ground truth, the results are the best in Case 3 and worst in
Case 5, which is consistent with our conclusion in the simu-
lated experiments. However, the results of all the five cases
are better than that of without accounting for refraction.

Besides the visual comparison of the 3D reconstruction
results between the ground truth and ours, the results for
all the parameters are shown in Fig. 9. Both gray code
dense correspondences and SURF matches are used in our
method. Although different scenes generate different cor-
respondences, the estimated parameters are very close. We
only present the result of “Cave” scene due to the space
limit. The unit for the thickness is mm. Some cells are
filled in with “N/A” because it is not estimated in that case.
For example, nL and nR are assumed to be known in Case
1 and 2. “D” represents the 3D reconstruction error with
unit in mm. We can see that even though the number of
SURF matches is only about 500 pairs, it generates results

that are close to that of using dense correspondences. The
results indicate that most of the parameters are well esti-
mated except the glass thickness where large errors still ex-
ist. Therefore, we strongly recommend researchers to mea-
sure the thickness of the refractive interface when building
the underwater camera systems. Moreover, a checkerboard
pattern is placed in the water and the images are taken by
both cameras in order to apply the method proposed in [1].
Comparing with [1], our method is comparable in Case 4,
while it is worse in Case 5. Nonetheless, [1] requires the
3D geometry of the scene to be known while our method
does not.

Figure 9. Comparison between the estimated parameters by our
method and the ground truth. “GT” denotes the ground truth.

6. Limitation
When solving Eq. 5 which has the same form asAx = b,

an important assumption is thatA has to be full rank. More-
over, any two rays riL and rjL cannot be parallel. Similar
assumption is applied to riR. The second assumption in-
fers that any two layers cannot be the same material. The
following two solutions are proposed to address such limi-
tation. (1) If there are layers of the same material, the sum
of the thicknesses for the same material layers can be com-
puted. However, the thickness for each layer cannot be ob-
tained separately. (2) If the layer material is not known, we
can compute the rank of A. After that, the sum of the thick-
nesses for the layers of the same materials can be computed.

7. Conclusion
We have presented a new method to recover the nor-

mal and thickness of the refractive interface for an under-
water stereo camera system. We first demonstrate that the
thickness of the interface can be estimated when the nor-
mal is given. Then, we show that both the normal and the
thickness of the interface can be estimated by exploring the
search space for the normal and using the reprojection er-
ror as an evaluation metric. Simulated and real experiments
are performed to evaluate the correctness and robustness of
our method. All the experimental results are compared to



Figure 8. Results of the “Plane” scene. From left to right: captured image, 3D reconstruction results for the case when refraction is not
accommodated, results of Case 3 and 5 using the proposed method. The two rows shows the 3D reconstruction results in two different
views. The ground truth is shown in red for comparison.

the ground truth, and some of them are compared with the
state-of-the-art method [1]. The results indicates that the
accuracy of our method is promising and that our method is
practical since it works with any arbitrary 3D scene.

Future work includes three directions. First, we would
like to exam the reprojection error in the normal search
space to find a better optimization strategy instead of us-
ing the binary search which could be time consuming when
extent to multiple view. Second, our method assumes that
the relative pose between the two cameras is known by off-
line calibration in air. We plan to relax such an assumption.
Third, the outlier handling step can be further improved.
Notice that the number of unknown parameters is only 2/4
for one/two refractions in Eq. 5. Therefore, the minimum
number of correspondences required is 2 or 4. In this case,
the RANSAC can run faster and handle more outliers.
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