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Abstract

In this work, we propose a new framework for recog-
nizing RGB images captured by the conventional cameras
by leveraging a set of labeled RGB-D data, in which the
depth features can be additionally extracted from the depth
images. We formulate this task as a new unsupervised do-
main adaptation (UDA) problem, in which we aim to take
advantage of the additional depth features in the source
domain and also cope with the data distribution mismatch
between the source and target domains. To effectively uti-
lize the additional depth features, we seek two optimal pro-
jection matrices to map the samples from both domains
into a common space by preserving as much as possible
the correlations between the visual features and depth fea-
tures. To effectively employ the training samples from the
source domain for learning the target classifier, we reduce
the data distribution mismatch by minimizing the Maximum
Mean Discrepancy (MMD) criterion, which compares the
data distributions for each type of feature in the common
space. Based on the above two motivations, we propose a
new SVM based objective function to simultaneously learn
the two projection matrices and the optimal target classifier
in order to well separate the source samples from differ-
ent classes when using each type of feature in the common
space. An efficient alternating optimization algorithm is de-
veloped to solve our new objective function. Comprehensive
experiments for object recognition and gender recognition
demonstrate the effectiveness of our proposed approach for
recognizing RGB images by learning from RGB-D data.

1. Introduction
With the rapid adoption of affordable equipments (e.g.,

Kinect sensors) for capturing depth information, there is an
increasing research interest in developing new technologies
for various visual recognition tasks (e.g., object recogni-
tion, face and gender recognition) using depth images. One
common assumption in most visual recognition methods in-
cluding the recent works using both color and depth im-
ages [23, 21] is that the training and testing samples come

from the same data distribution. If one dataset is used for
training and another dataset is used for testing, the perfor-
mances of most existing visual recognition methods will
degrade significantly [28] because the feature distributions
of samples from different datasets may have very different
statistical properties. Meanwhile, to cope with the consid-
erable variation in feature distributions, new domain adap-
tation methods were recently developed for different com-
puter vision applications [15, 22, 14, 16, 7, 6, 10, 8, 13, 1].

In this work, we propose a new framework for recogniz-
ing RGB images captured with the conventional cameras by
leveraging a set of labeled RGB-D data, in which the depth
features can be additionally extracted from the depth im-
ages. Our work is based on the observation that several la-
beled RGB-D datasets were recently released for various vi-
sion recognition tasks [23, 21] as well as the recent progress
on learning using privileged information [29, 26], which
shows the additional features (i.e., privileged information)
that are not available at the testing stage are still useful for
many classification tasks. We formulate our task as a new
unsupervised domain adaptation (UDA) problem, in which
we have the single-view visual features extracted from the
RGB images in the target domain while we have both the
visual features and the depth features in the source domain.

Specifically, to effectively utilize the additional depth
features in the source domain, we seek two optimal pro-
jection matrices to map the samples from both domains
into a common space such that we can preserve as much
as possible the correlations between the visual features and
depth features. To effectively employ the source samples
for learning the target classifier, we reduce the data dis-
tribution mismatch between two domains by minimizing
the Maximum Mean Discrepancy (MMD) criterion [17] for
each type of feature in the common space, which com-
pares the data distributions based on the distance between
the means of samples from two domains. Motivated by
the above two aspects, we propose a new SVM based ob-
jective function to simultaneously learn the two projection
matrices and the optimal target classifier, in which we ex-
pect the source samples from different classes can be well
separated when using each type of feature in the common
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space. We also develop an efficient alternating optimiza-
tion algorithm to solve this non-trivial optimization prob-
lem. Our comprehensive experiments for object recogni-
tion and gender recognition demonstrate that our approach
(referred to as domain adaptation from multi-view to single-
view or DA-M2S in short) outperforms several state-of-the-
art methods including the existing UDA methods as well as
SVM+ [29] and Rank Transfer [26] that use the depth fea-
tures as privileged information without coping with the data
distribution mismatch.

We summarize the main contributions of this paper as
follows: 1) we propose a new framework for recognizing
RGB images by leveraging a set of labeled RGB-D data.
From our framework, we formulate a new domain adapta-
tion problem, where we have the additional features in the
source domain that are not available in the target domain; 2)
We propose a new UDA method DA-M2S and the extensive
experiments demonstrate its effectiveness for recognizing
RGB images by learning from RGB-D data.

2. Related Work
Domain Adaptation: Our work is related to domain

adaptation, in which the distribution of test data is differ-
ent from that of training data [20, 16, 15, 14, 13, 1, 7].
The existing unsupervised domain adaptation (UDA) meth-
ods assume there are no labeled data in the target domain
and these methods can be generally divided into three cate-
gories: sample reweighting approaches, feature (transform)
based approaches and classifier based approaches. The
sample reweighting approaches like kernel mean match-
ing (KMM) [20] aim to reduce the domain distribution
mismatch by reweighting the samples in the source do-
main. The feature (transform) based approaches seek new
domain-invariant features or learn new feature transforma-
tions for domain adaptation. For example, SGF [16] and
GFK [15] were proposed based on the Grassmann man-
ifold assumption, and GFK was further extended in [14]
by selecting the landmarks from the source domain. Re-
cently, the domain invariant projection (DIP) [1] method
was proposed to learn a domain invariant subspace, while
the subspace alignment (SA) method [13] was developed to
align two subspaces from two domains to reduce the domain
distribution mismatch. The classifier based approaches di-
rectly learn the target classifiers (e.g., SVM based classi-
fiers) for domain adaptation. For example, Duan et al. [7]
proposed a learning method called DAM by using the vir-
tual labels generated from pre-learnt classifiers. However,
the existing UDA methods assume the samples from the
source domain share the same feature representation with
those from the target domain. For these methods, it is un-
clear how to effectively utilize the additional depth features
in the source domain.

Recently, heterogeneous domain adaptation (HDA)

Figure 1. Object recognition in RGB images by using labeled
RGB-D data, where we have two views of features (i.e., visual
features and depth features) in the source domain, and a single
view of visual features in the target domain. Grey color and black
color respectively denote the projected nonlinear visual and depth
features in the common space. The source domain samples from
different categories are represented by different shapes and the un-
labeled samples from the target domain are with question marks.

methods [9, 24, 22] were also proposed, in which the sam-
ples from different domains are generally represented by
different types of features. However, labeled samples in the
target domain must be provided in the existing HDA meth-
ods [9, 24, 22], while we do not require any labeled target
domain samples in this work. Moreover, the samples in the
source domain are represented by using only one type of
features in the existing UDA and HDA methods. In con-
trast, in this work we have both visual and depth features in
the source domain, while the depth features are not avail-
able at the testing stage.

Our work is also different from the existing multi-
view domain adaptation methods [31] and the recent work
called multi-domain adaptation from heterogeneous sources
(MDA-HS) [3]. In [31], all the samples in the source and
target domains have multiple types of features, while in [3]
the samples from the target domain have all types of fea-
tures from all the source domains. In contrast, in our work
we only have single-view features in the target domain.
Our work is different from existing multi-domain adapta-
tion methods [7, 4], because we have additional depth fea-
tures in the source domain.

Learning Using Privileged Information: Our work is
also related to the recent progress on learning using priv-
ileged information [29, 26], in which training data con-
tains additional features (i.e., privileged information) that
are not available at the testing stage. However, these works
[29, 26] assume that the training and testing samples come
from the same data distribution. In contrast, our work ex-
plicitly copes with the data distribution mismatch between
two domains.



3. The Proposed Approach
In this paper, we denote a vector/matrix by a lower-

case/uppercase letter in bold. The transpose of a vector or a
matrix is denoted by the superscript ′. We define In as the
n × n identity matrix and On×m as the n × m matrix of
all zeros. We also define 0n,1n ∈ Rn as the n× 1 column
vectors of all zeros and all ones, respectively. For simplic-
ity, we use I, O, 0 and 1 when the dimension is obvious.

3.1. Problem Setup

In our problem, given a set of labeled RGB-D data in
the source domain and unlabeled RGB images in the target
domain, we aim to learn a robust classifier to predict the
class labels of RGB images in the target domain.

We extract visual features and depth features from the
RGB images and depth images, respectively. The source
domain samples can be represented as {(zi,xsi , yi)|

ns
i=1}

where zi and xsi are respectively the depth feature and the
visual feature and yi ∈ Y is the label for the i-th source
domain sample with Y = {1, . . . ,K} being the set of all
possible labels and ns is the total number of samples in the
source domain. We also denote y = [y1, ..., yns ]′ as the la-
bel vector for the source domain samples. Similarly, the tar-
get domain samples can be represented as {xti|

nt
i=1} where

xti is the visual feature for the i-th target domain sample and
nt is the total number of samples in the target domain.

As shown in Fig. 1, the major challenges are from dif-
ferent features and the data distribution mismatch between
two domains. To handle the first challenge, we propose to
project different features into a common space by learning
two projection matrices Pd and Pv for the depth features
(i.e., z) and visual features (i.e., xs and xt), respectively.
The two types of features are transformed to the same rep-
resentation in this common space by using the learnt projec-
tion matrices. Moreover, to handle the data distribution mis-
match between two domains, we also minimize the Max-
imum Mean Discrepancy (MMD) [17] criterion for each
type of feature in the common space. Then we can learn
a robust classifier which aims to well separate all the source
domain labeled samples in this common space. Intuitively,
a suitable common space will be beneficial for learning a
more robust classifier; and the robust classifier can also help
us find a more discriminative common space. Therefore,
we propose to simultaneously seek the projection matrices
and learn the optimal classifier. Based on the empirical risk
minimization (ERM) principle, we formulate our learning
problem as follows:

min
f,Pv,Pd

µΩ(Pd,Pv) + r(f) + C`(f,Pd,Pv), (1)

where f is the target classifier, r(f) is the regularizer term
to control the complexity of the classifier, Ω(·) is the reg-
ularizer term on the projection matrices Pv and Pd, `(·) is

the loss on the training samples, and µ and C are the trade-
off parameters. We will introduce the details of these terms
below.

3.2. The Formulation

For the sake of generality, we consider the kernelized
case in this work, i.e., the projection matrices Pd and Pv

are learnt based on the nonlinear features induced by the
kernels of the depth features and visual features. The linear
case can be easily derived in a similar manner.

Formally, let us denote the nonlinear depth feature as
ψ(z) ∈ Rmd and the nonlinear visual feature as φ(x) ∈
Rmv where md and mv are respectively the dimensions of
the nonlinear depth feature and the nonlinear visual feature,
which are usually unknown. Then the projection matrices
can be defined as Pd ∈ Rmd×m and Pv ∈ Rmv×m, respec-
tively, where m is the dimension of the common space.

Intuitively, we should preserve as much as possible the
useful information from the original features when learning
the projection matrices Pd and Pv . Inspired by the multi-
view learning method KCCA [19], we propose to maximize
the correlation between the two types of features based on
correspondence information between the two views of fea-
tures in the source domain. Namely, we minimize the fol-
lowing regularizer:

Ωkcca(Pd,Pv) = −tr(P′dΨΦ′sPv), (2)

where Ψ = [ψ(z1), . . . , ψ(zns
)] ∈ Rmd×ns and Φs =

[φ(xs1), . . . , φ(xsns
)] ∈ Rmv×ns are the data matrices of the

nonlinear depth and visual features in the source domain. To
avoid the trivial solutions for Pd and Pv , we also introduce
the constraint P′dΨΨ′Pd + P′vΦsΦ

′
sPv = Im.

Moreover, to handle the distribution mismatch between
the source and target domains, we also expect the distri-
butions of samples from different domains are similar in
the common space. Specifically, we employ the Maximum
Mean Discrepancy (MMD) [17] criterion to measure the
distribution mismatch between two domains. Considering
we have two types of features in the source domain, we ap-
ply the MMD criterion for each type of feature in the com-
mon space, and obtain the following regularizer:

Ωmmd(Pd,Pv)=
1

2

∥∥∥∥∥∥ 1

ns

ns∑
i=1

P′vφ(xsi )−
1

nt

nt∑
j=1

P′vφ(xtj)

∥∥∥∥∥∥
2

+
1

2

∥∥∥∥∥∥ 1

ns

ns∑
i=1

P′dψ(zi)−
1

nt

nt∑
j=1

P′vφ(xtj)

∥∥∥∥∥∥
2

.

Then, our regularizer Ω(Pd,Pv) in (1) can be obtained by
combining the two regularizers:

Ω(Pd,Pv) = Ωkcca(Pd,Pv) + λΩmmd(Pd,Pv), (3)



where λ is a tradeoff parameter for balancing the two terms.
Now we develop the detailed form of our DA-M2S

method1 based on multi-class SVM [5]. For ease of pre-
sentation, we denote one training sample in the common
space as x̃, which can be P′dψ(z) or P′vφ(xs). So in total
we have 2ns labeled samples in the source domain, where
ns samples are based on the visual features and the other
ns samples are based on the depth features. We define the
decision function as f(x̃) = argmaxk=1,...,K w′kx̃ with wk

being the weight vector for the k-th class. By defining a ma-
trix W = [w1, . . . ,wK ], we write the objective function in
(1) as follows:

min
(Pd,Pv)∈P,

W,ξi

µΩ(Pd,Pv) +
1

2
‖W‖2F + C

n∑
i=1

ξi, (4)

s.t. w′yi x̃i −w′kx̃i ≥ eki − ξi, (5)
∀i = 1, . . . , 2ns, k = 1, . . . ,K,

where ‖W‖2F is the regularizer to control the complexity
of the classifier f , eki is an indicator which equals to 0 if
yi = k and 1 otherwise, P = {(Pd,Pv)|P′dΨΨ′Pd +
P′vΦsΦ

′
sPv = Im} is the feasible set of (Pd,Pv), and µ

and C are the tradeoff parameters as defined in (1).

3.3. The Duality

Since the dimensions of the nonlinear features ψ(z) and
φ(x) (i.e., md and mv) are usually unknown, in this sec-
tion, we derive the kernel form of the problem in (4) us-
ing the Lagrangian method. First, similar as in KCCA, we
represent the projection matrices as the combination of the
nonlinear features, i.e., Pd = ΨAd, Pv = ΦsAv where
Ad,Av ∈ Rns×m are the combination coefficient matrices.
We also define a matrix A = [A′d,A

′
v]
′ ∈ R2ns×m, and

then the regularizer in (2) becomes,

Ωkcca(A) = −1

2
tr(A′BkccaA), (6)

where
Bkcca =

[
O KdK

s
v

Ks
vKd O

]
,

with Kd = Ψ′Ψ ∈ Rns×ns being the kernel matrix for the
source domain depth features, and Ks

v = Φs
′Φs ∈ Rns×ns

being the kernel matrix for the source domain visual fea-
tures.

Similarly, the regularizer Ωmmd(Pd,Pv) can be repre-
sented as

Ωmmd(A) =
1

2
tr(A′BmmdA), (7)

where

Bmmd =

[
Kd O
Ks
v 2Kst

v

]
ss′
[
Kd O
Ks
v 2Kst

v

]′
,

1Note our method can be readily extended to other SVM based formu-
lations.

with Kst
v = Φ′sΦt ∈ Rns×nt being the kernel matrix be-

tween the source data and target data based on the visual
features, Φt = [φ(xt1), . . . , φ(xtnt

)] ∈ Rmv×nt being the
data matrix of nonlinear visual features in the target domain,
and s = [ 1

ns
1′ns

,− 1
nt

1′nt
]′ ∈ R(ns+nt).

Let us define B = Bkcca − λBmmd ∈ R2ns×2ns . Com-
bining (6) and (7), we represent our regularizer Ω(Pv,Pd)
in (3) w.r.t. A as follows:

Ω(A) = −1

2
tr(A′BA).

Moreover, the feasible set P in (4) becomes A = {A =
[A′d,A

′
v]
′|A′dKdKdAd + A′vK

s
vK

s
vAv = Im}.

By introducing one dual variable αki for each constraint
in (5) and defining a matrix Γ ∈ R2ns×K with its (i, k)-th
entry as γki = 1− eki −αki , we write the dual form of (4) as
follows:

min
A∈A

{
µΩ(A) + max

Γ∈M
J(A,Γ)

}
, (8)

where J(A,Γ) = − 1
2 tr(Γ′KAΓ) − tr(E′Γ), and E ∈

R2ns×K is a matrix with its (i, k)-th entry as eki , M =
{Γ|Γ1K = 02ns

, γki ≤ C(1− eki )} is the feasible set of Γ,
and KA ∈ R2ns×2ns is the kernel matrix for the samples in
the common space, which is defined as follows:

KA =

[
Kd O
O Ks

v

]
AA′

[
Kd O
O Ks

v

]
.

Note that the similarities between the depth features and vi-
sual features are also integrated in KA by associating with
the combination coefficient matrix A.

4. Solution
The problem in (8) is a non-convex problem w.r.t A and

Γ. Therefore, we propose an alternating optimization algo-
rithm to solve it, in which we use line search when solving
for A at each iteration to ensure the decrease of the objec-
tive in (8).

Specifically, given the combination coefficient matrix A,
the optimization problem in (8) becomes

max
Γ∈M

−1

2
tr(Γ′KAΓ)− tr(E′Γ), (9)

which is a multi-class SVM problem, and can be solved ef-
ficiently by using the existing solver2 in LIBLINEAR [11].

On the other hand, when we fix Γ, the optimization prob-
lem w.r.t. A can be written as

min
A∈A

−1

2
tr(A′B̃A), (10)

2Note KA can be treated as a linear kernel with the data matrix as

A′
[
Kd O
O Ks

v

]
∈ Rm×2ns .



where B̃ = µB + GG′ with G =

[
Kd O
O Ks

v

]
Γ ∈

R2ns×K . It shares the similar formulation with KCCA
which can be solved by using the generalized eigen-
decomposition. It is worth mentioning that the matrix B
in our problem integrates the unlabeled samples from the
target domain [see (7)], and the matrix G also integrates the
dual variables of the classifier f in Γ, which indicate that the
target domain unlabeled samples and the classifier learnt at
the previous iteration also contribute to the learning of the
common space in (10).

4.1. Line Search when Solving for A

Due to the non-convexity of (8), the optimal solution
A∗ from (10) cannot ensure the objective of (8) decreases.
Therefore, at the t-th iteration, we need to search for a fea-
sible At ∈ A between the optimal solution A∗ and the so-
lution At−1 at the previous iteration. In the following, we
first briefly introduce how to solve for the optimal solution
A∗ to the problem in (10), then we present our line search
method.

4.1.1 Solving for A∗

The problem in (10) can be reformulated as a generalized
eigen-decomposition problem [19] as follows:

B̃v = σDv, (11)

where D =

[
KdKd O

O Ks
vK

s
v

]
∈ R2ns×2ns , v is the eigen-

vector and σ is the corresponding eigenvalue. The optimal
solution to (10) is obtained by combining the m leading
eigenvectors corresponding to the largest eigenvalues.

To solve (11), we first perform the incomplete Cholesky
decomposition on D as D = C′C as suggested
in [19]. Then, we can rewrite (11) as a standard eigen-
decomposition problem, (C−1)′B̃C−1u = σu, where u =
Cv is the eigenvector of (C−1)′B̃C−1.

Let us denote the eigen-decomposition of (C−1)′B̃C−1

as UΣU′ where U is the eigenvectors and Σ is a diago-
nal matrix with the diagonal entries being the eigenvalues.
We also define Ũ∗ ∈ R2ns×m as the matrix containing the
m leading eigenvectors in U corresponding to the largest
eigenvalues. Then, the optimal solution to (10) can be ob-
tained as A∗ = C−1Ũ∗.

4.1.2 Line Search for At

The major challenge in line search is to ensure that the solu-
tion satisfies the constraint At ∈ A. Note that the feasible
A is given in the form of A = C−1Ũ where Ũ ∈ R2ns×m

is an orthogonal matrix. Let S = span(Ũ) be the subspace
spanned by Ũ. Obviously, all basis matrices of the subspace
S are feasible, and produce equal objective value in (8).

Algorithm 1 The algorithm for our DA-M2S
Input: The label vector y, and the kernel matrices Kd, Ks

v

and Kst
v as defined in Section 3.3.

1: Initialize t = 0.
2: Solve (8) with only the first term [i.e., Ω(A)] to obtain

an initial A0 = C−1Ũ0.
3: Solve for Γ0 in (9) based on A0 by using the existing

solver in LIBLINEAR [11].
4: repeat
5: Set t = t+ 1.
6: Solve the problem in (11) to obtain A∗ = C−1Ũ∗.
7: Find the optimal basis Ũ(τ) in the geodesic path

such that the objective in (8) is minimized.
8: Solve Γ based on A(τ) = C−1Ũ(τ) by using the

existing solver in LIBLINEAR [11].
9: Set At = A(τ), Γt = Γ.

10: until The objective in (8) converges.
Output: A = At and Γ = Γt.

Let us denote At−1 = C−1Ũt−1 as the solution to
(10) at the previous iteration, and A∗ = C−1Ũ∗ as the
optimal solution at this iteration, respectively. Recall that
all 2ns-by-m subspaces reside on a Grassmann manifold,
so our line search problem becomes to find a new sub-
space St along the geodesic path between two subspaces
St−1 = span(Ũt−1) and S∗ = span(Ũ∗), whose basis
Ũt makes the objective of (8) decrease.

As shown in [16], the geodesic path between St−1 and
S∗ can be represented as S(τ) with 0 ≤ τ ≤ 1, and we
have S(0) = St−1 and S(1) = S∗. Then, we perform
line search using different τ ’s to find a subspace S(τ) =
span(Ũ(τ)) according to the method in [16] such that the
projection matrix A(τ) = C−1Ũ(τ) leads to the minimal
objective in (8).

Finally, the details of our algorithm for solving (8) are
listed in Algorithm 1. We first initialize the combination
coefficient matrix A by solving (8) with only the first term
[i.e., Ω(A)]. Then, we iteratively solve (9) by using the
existing solver in [11] and solve the eigenvalue decompo-
sition problem in (11). Then we perform the line search
between St−1 and S∗ to find a better subspace St, such
that At = C−1Ũt leads to the minimal objective in (8).
The above procedure is repeated until the objective value
no longer decreases. In our experiments, the algorithm con-
verges after about 10 iterations.

By using the learnt A = [A′d,A
′
v]
′, any test data xt from

the target domain can be projected into the common space
as x̃t = P′vφ(xt) = A′vΦ

′
sφ(xt). Then we can use the

learnt classifier to predict its class label. The final classifier
is given by f(x̃t) = argmaxk=1,...,K w′kx̃

t, where each
wk =

∑2ns

i=1 γ
k
i x̃i, in which γki is the (i, k)-th entry of Γ

from Algorithm 1, and x̃i is the i-th training sample from
the source domain in the common space.



5. Experiments
In this section, we evaluate the effectiveness of our

DA-M2S for object recognition and gender recognition.

5.1. Baseline Approaches
To the best of our knowledge, there is no previous work

specifically designed for recognizing RGB images by learn-
ing from RGB-D data. Thus, we extend a broad range of
existing works as the baselines for fair comparison, which
can be divided into four categories as follows:
Naive Approach: The naive approach SVM A is trained by
using the visual features in the source domain without con-
sidering the domain distribution mismatch and exploiting
the additional depth features.
Multi-view Learning: The multi-view learning approaches
include KCCA [19] and SVM2K [12], in which the two-
view data in the source domain are used for training. For
SVM2K, two classifiers are trained by using the two-view
data in the source domain, and we use the one based on
visual features to predict the target domain visual features.
For KCCA, we train two SVM classifiers by using the pro-
jected depth and visual features in the common space and
the decision values of target domain samples based on the
projected visual features are equally fused for prediction.
Learning Using Privileged Information: For the learn-
ing approaches using privileged information such as SVM+
[29] and RankTransfer (RT) [26], we use the additional
depth features in the source domain as privileged informa-
tion for learning the visual feature based classifier.
Unsupervised Domain Adaptation: The domain adapta-
tion approaches include KMM [20], DAM [7], SGF [16],
TCA [25], Landmark (LMK) [14], Subspace Alignment
(SA) [13], and Domain Invariant Projection (DIP) [1], for
which the visual features from both domains are used for
training the classifiers and we predict target domain data
based on the visual features. We do not compare our
DA-M2S with GFK [15], because the subsequent work
LMK from the same group is shown to be better (see [14]).

Note that the semi-supervised multi-view learning meth-
ods [27] and the multi-view domain adaptation ap-
proaches [31] cannot be applied for our problem, because
we only have single view of features for the samples in the
target domain. Moreover, the heterogeneous domain adap-
tation (HDA) methods [22, 24] also cannot be used because
the labeled samples in the target domain are required in
these HDA methods.

5.2. Object Recognition
Experimental Setup: We evaluate our proposed DA-M2S
for object recognition by using the RGB-D Object
dataset [23] as the source domain and the Caltech-256
dataset [18] as the target domain. The RGB-D Object
dataset contains the color and depth images of different ob-
jects from 51 categories. The Catech-256 dataset contains

only color images. In this work, we use the 10 common
categories3 between the two datasets. As the RGB-D Ob-
ject dataset is recorded in the form of video sequences, we
uniformly sample the frames with an interval of two sec-
onds, leading to a total number of 2059 training images.
All the target domain samples are also used as unlabeled
data in the training stage for the baseline domain adaptation
methods and our DA-M2S.

We use kernel descriptors (KDES) features [2] in this
work, which have shown promising recognition results on
this dataset. Specifically, we extract Gradient KDES and
LBP KDES features from each RGB/depth image by us-
ing the software4 provided by the authors. Then, we fol-
low [2] to aggregate the kernel descriptors into object-level
features, in which we set the vocabulary size as 1000 and
use three level of pyramids (i.e., 1x1, 2x2, 3x3). The ob-
ject level features respectively constructed from the Gradi-
ent KDES and LBP KDES features are concatenated into
one feature vector for each RGB/depth image. Note the
features for RGB and depth images are different, because
we use different vocabularies. We use the same method to
extract the visual features for the RGB images in the target
domain.

We use the multiclass classification accuracy as the eval-
uation criterion, which is the average of the accuracies over
all the classes. For all the kernel-based approaches, Gaus-
sian kernel is used as the default kernel with the bandwidth
parameter set as the mean of the distances between any two
samples. We use the default tradeoff parameter C = 1 for
all methods. Moreover, for our DA-M2S, we empirically
fix the parameters as µ = 0.1ns and λ = 104. For all other
methods, we tune their parameters based on the test dataset
and report their best results from the optimal parameters.
Experimental Results: The results of all methods are re-
ported in Table 1. From this table, we observe that our
newly proposed DA-M2S outperforms all other baseline
methods. It demonstrates the effectiveness of our DA-M2S
by employing the additional depth features in the source do-
main and simultaneously reducing the domain distribution
mismatch between the source and target domains.

Specifically, by utilizing the additional depth features,
the multi-view learning approaches KCCA and SVM2K as
well as the privileged learning approach SVM+ achieve bet-
ter results when compared with the naive approach SVM A.
RT is worse than SVM A, possibly because it is based on
RankSVM, which is designed for the ranking task rather
than the classification task. Among these methods, SVM2K
achieves the best result, as it can more effectively exploit
depth information by learning two classifiers for both vi-

3The 10 common categories between the two datasets are calculator,
cereal box, coffee mug, keyboard, flashlight, lightbulb, mushroom, ball,
soda can, tomato.

4The code is available at http://www.cs.washington.edu/ai/Mobile Robo
tics/projects/kdes/.



Table 1. Comparison of recognition accuracies (%) for object recognition. The RGB-D object dataset is used as the source domain and the
Caltech-256 dataset is used as the target domain.

SVM A SVM+ RT KCCA SVM2K KMM DAM SGF LMK TCA SA DIP DA-M2S
18.19 18.59 17.16 18.23 20.83 18.10 18.19 19.25 19.45 25.07 21.09 25.47 30.06

Table 2. Recognition accuracies (%) of domain adaptation meth-
ods for object recognition using the feature representations in the
common space learnt by KCCA.
KMM-C DAM-C SGF-C LMK-C TCA-C SA-C DIP-C

18.47 17.50 19.38 19.72 27.48 21.25 24.76

sual and depth features. Nevertheless, all these methods
do not cope with the distribution mismatch between the
source and target domains, thus they are much worse than
our DA-M2S.

The domain adaptation methods SGF, LMK, TCA, SA
and DIP are also better than SVM A, which shows it is
beneficial to reduce the domain distribution mismatch be-
tween the source and target domains by using these meth-
ods. When compared with SVM A, KMM and DAM are
only comparable or even worse, possibly because both ap-
proaches cannot effectively handle the significant domain
distribution mismatch in this application. Moreover, our
proposed DA-M2S outperforms all those methods by addi-
tionally exploiting the depth features in the source domain.
KCCA + UDA Approaches: We additionally report more
results for object recognition by using the domain adapta-
tion methods in the common space learnt by using KCCA,
which are referred to as KMM-C, DAM-C, SGF-C, LMK-
C, TCA-C, SA-C and DIP-C. Specifically, we first learn the
projection matrices by using KCCA and project both visual
and depth features into the learnt common space. Then,
we apply these domain adaptation methods using the pro-
jected depth and visual features in the common space to
learn two classifiers and equally fuse the decision values
of target samples from two classifiers using the projected
visual features. The results are shown in Table 2. We ob-
serve that most UDA methods are improved by utilizing the
additional depth features, when compared with their corre-
sponding results in Table 1. Our DA-M2S still outperforms
those baselines, which again demonstrates it is beneficial
to simultaneously employ the additional depth features and
reduce the domain distribution mismatch.

5.3. Gender Recognition

Experimental Setup: We also evaluate our DA-M2S
for gender recognition by using the RGB-D face dataset
EURECOM [21] as the source domain, and the RGB dataset
Labeled Faces in the Wild-a (LFW-a) [30] as the target do-
main. The EURECOM dataset [21] contains the RGB and
depth images captured by using the Kinect sensor. There
are totally 728 pairs of RGB and depth images from 196 fe-
males and 532 males. The LFW-a dataset contains a total
number of 13, 144 images from 2, 960 females and 10, 184
males, which are collected under the uncontrolled environ-

ment.

All face images in two datasets are aligned and cropped
to a fixed size of 120×105 pixels according to the positions
of two eyes. The images in the LFW-a dataset have been
aligned according to the eye-positions (see [30] for details).
For the EURECOM dataset, the manually annotated eye-
positions are provided, and the images with only a single
eye-position (i.e. the profile face images) are not included in
our experiments as suggested in [21]. Then, we uniformly
divide each face image into 8 × 7 non-overlapping subre-
gions with the size of each subregion being 15× 15 pixels.
After that, we extract the Gradient-LBP feature [21] from
each subregion for both color and depth images, as it has
been shown to be effective for gender recognition [21]. Fi-
nally, for each face image, the Gradient-LBP features from
all 56 subregions are concatenated into a single feature vec-
tor. The same Gradient-LBP features are also extracted for
the RGB images in the LFW-a dataset.

Because there are much more male faces than female
faces in the EURECOM dataset, we randomly sample 196
male faces from this dataset to balance the positive and neg-
ative training samples. We also randomly sample 3,000
samples from a large number of target samples as unlabeled
data for the baseline domain adaptation methods and our
DA-M2S. The mean recognition accuracy and the standard
deviation over ten rounds of experiments are reported for all
the methods for gender recognition. The rest of the settings
are the same as in object recognition.

Experimental Results: The results of SVM+ and RT are
64.24±1.66 and 64.22±1.76 respectively, and the results
of all other methods are shown in Table 3. We have simi-
lar observations as in the object recognition. While other
methods generally outperform SVM A by exploiting the
additional depth features or reducing the domain distribu-
tion mismatch, our DA-M2S outperforms all the baseline
methods by simultaneously considering both aspects in one
formulation.

We also observe that SVM2K is much better than
SVM A, demonstrating that it is beneficial to use the ad-
ditional depth features in the source domain for this appli-
cation. However, KCCA, SVM+ and RT are not as effective
as SVM2K, and they are only comparable to or even worse
than SVM A. Most of the domain adaptation approaches
such as SGF, LMK, TCA, SA and DIP are also better than
SVM A. However, KMM and DAM are only comparable
or even worse than SVM A in this application.



Table 3. Comparison of recognition accuracies (mean ± standard deviation %) for gender recognition. The result in bold is significantly
better than the others judged by the significant test with a significance level of 0.05.

SVM A KCCA SVM2K KMM DAM SGF LMK TCA SA DIP DA-M2S
64.22±1.6 63.60±1.34 67.33±1.92 64.25±1.43 63.91±1.57 67.22±1.38 65.02±1.55 65.24±0.88 67.38±1.39 64.84±4.80 68.44±1.44

Table 4. Comparison of recognition accuracies (%) between
DA-M2S and its special cases.

Gender Object
DA-M2S (w/o depth) 67.57±1.68 28.45
DA-M2S (init) 67.39±1.02 28.43
DA-M2S 68.44±1.44 30.06

5.4. Analysis on DA-M2S
For a better understanding of our DA-M2S, we investi-

gate two special cases of our DA-M2S.
In the first special case, denoted as DA-M2S (w/o

depth), we do not consider depth information. Namely,
we remove Ωkcca(Pd,Pv) as well as the second term of
Ωmmd(Pd,Pv) in the regularizer Ω(Pd,Pv) in (4). Note
Ω(Pd,Pv) becomes Ω(Pv) with Pv ∈ P , where P =
{Pv|P′vΦsΦ

′
sPv = Im}. We also remove the ns con-

straints related to the depth features in (5). As shown in Ta-
ble 4, the results are worse than our DA-M2S, which shows
it is beneficial to exploit the additional depth features for
learning a more robust classifier.

We also report the results of our DA-M2S at the first it-
eration, which is denoted as DA-M2S (init). As show in Ta-
ble 4, its performances are also worse than DA-M2S, which
demonstrates the effectiveness of our alternating optimiza-
tion technique for iteratively learning the classifier and the
projection matrices.

6. Conclusions
In this paper, we have proposed a new framework for

recognizing RGB images by learning from a set of labeled
RGB-D data. We formulate this task as a new UDA prob-
lem, in which we have both visual and depth features in
the source domain, while we only have the visual features
in the target domain. An effective method called DA-M2S
is proposed to solve this problem by taking advantage of
the additional depth features in the source domain and si-
multaneously reducing the distribution mismatch between
the source and target domains. Comprehensive experiments
for object recognition and gender recognition have clearly
demonstrated the effectiveness of our proposed DA-M2S
approach for recognizing RGB images by learning from
RGB-D data.
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