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Abstract

This paper addresses the large-scale visual font recogni-
tion (VFR) problem, which aims at automatic identification
of the typeface, weight, and slope of the text in an image
or photo without any knowledge of content. Although vi-
sual font recognition has many practical applications, it has
largely been neglected by the vision community. To address
the VFR problem, we construct a large-scale dataset con-
taining 2,420 font classes, which easily exceeds the scale of
most image categorization datasets in computer vision. As
font recognition is inherently dynamic and open-ended, i.e.,
new classes and data for existing categories are constantly
added to the database over time, we propose a scalable so-
lution based on the nearest class mean classifier (NCM).
The core algorithm is built on local feature embedding, lo-
cal feature metric learning and max-margin template se-
lection, which is naturally amenable to NCM and thus to
such open-ended classification problems. The new algo-
rithm can generalize to new classes and new data at lit-
tle added cost. Extensive experiments demonstrate that our
approach is very effective on our synthetic test images, and
achieves promising results on real world test images.

1. Introduction
Typography is a core design element of any printed or

displayed text; graphic designers are keenly interested in
fonts, both in their own works, as well as in those of oth-
ers. Consequently, they frequently encounter the problem
of identifying “fonts in the wild.” For example, a designer
might spot a particularly interesting font on a restaurant
menu and would like to identify it for later use. Currently,
a designer’s best recourse is to take a photo of the text and
then seek out an expert to identify the font, such as on an
online typography forum1.

With hundreds of thousands of possible fonts to choose

1E.g. myfonts.com or www.flickr.com/groups/type

Figure 1. Visual font recognition on two real-world test images.
The algorithm correctly classifies both (top of the list) and re-
turns four other similar typefaces, despite the high level clutter
and noise.

from, it is extremely tedious and error-prone, even for font
experts, to identify a particular font from an image manu-
ally. Effective automatic font identification could therefore
greatly ease this problem, and could also facilitate font or-
ganization and selection during the design process. To ad-
dress this need, we propose the application of computer vi-
sion methods to automatically identify the typeface, weight
and slope of the text in a photo or graphic image. We dub
this problem Visual Font Recognition (VFR), in contrast to
the well-studied problem of Optical Character Recognition
(OCR).2

Remarkably, the computer vision research community
has largely neglected the VFR problem. The few previ-
ous approaches [8, 24, 11, 17, 15, 16, 2] are mostly from
the document analysis standpoint, focusing on small num-
ber of font classes on scanned document images that typi-
cally have high quality, in terms of resolution and contrast,
and low geometric distortion. Consequently, tasks such as
binarization, character segmentation, connected component
analysis, geometric alignment, and OCR can be robustly
applied. Building on these image processing steps, global
texture analysis [24, 15], high-order statistical features [2]
and typographical features [17, 8] have been exploited for

2We note that the two problems are coupled in that accurate VFR has
the potential to greatly improve OCR accuracy, and vice versa.
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Figure 2. Example images of character a and c in different fonts:
(i) Adobe Garamond Pro Bold, (ii) Adobe Calson Pro Bold, (iii)
Adobe Calson Pro SemiBold, and (iv) BauhausStd-Demi.

font recognition. However, such scanned image-based tech-
niques are less applicable to our VFR problem, which needs
to be effective even on very short strings or single words
from noisy web images or photos taken with mobile de-
vices. In particular, photos in the wild suffer from noise,
blur, perspective distortions, as well as complex interactions
of content with background.

Even though there has been great progress in OCR from
photos [4], OCR is generally designed for standard body
text fonts and is not very effective for unusual fonts which
are often the ones designers wish to identify. In our own ex-
periments with state-of-the-art publicly available OCR en-
gine [7] on our VFR-2420 dataset, which contains 2420 font
classes each with 1000 clean English word images, whole
words were correctly recognized only 60% of the time. Fur-
thermore, words from more than 13% of our font classes
were correctly recognized less than 30% of the time. The
poor performance of OCR on wider range of fonts will ad-
versely affect character-based font recognition algorithms.
Therefore, current systems such as whatfontis.com, rely on
humans interactions to solve the character segmentation and
recognition problem for font recognition on photos.

Even with human intervention, these systems are still
not robust enough for practical use. Equipped with re-
cent advances in machine learning and image categorization
[23, 18, 1, 22, 21, 12], we propose to develop an automatic
algorithm that does not rely on character segmentation or
OCR, and therefore, is applicable to the range of inputs
needed for VFR. However, compared with previously stud-
ied image categorization and fine-grained recognition prob-
lems, visual font recognition has the following additional
challenges:
• VFR is an extremely large-scale recognition problem.

For instance, myfonts.com alone claims that they have
more than 100,000 fonts in their collection, which is
much larger than most image recognition problems the
vision community has so far addressed. This is also
dramatically different from previous font recognition
works, where, limited to the scope of scanned docu-
ments, they have only investigated the problem on a
scale of tens of fonts.

• VFR is inherently dynamic and open-ended in that new
font classes need to be continually added to the sys-
tem. It is therefore critical that the algorithm is able to

adapt to new classes with low added cost, and to scale
elegantly with the number of classes.

• VFR is a combination of super fine-grained recogni-
tion and coarse-grained image categorization, and it
is character-dependent. For example, consider Fig. 2,
where fonts (i) and (ii) only differ slightly at the letter
endings (in red rectangles), (ii) and (iii) only differ on
font weight, while all three fonts (i), (ii) and (iii) are
visually distinct from font (iv). However, in all cases,
without knowing the characters, it is very hard to find a
feature space where character a is closer to c from the
same font than to character a from another font.

In this paper, we develop a scalable data-driven approach
to VFR that does not depend on character segmentation or
OCR to address the above challenges. Therefore, our algo-
rithm does not need to know the context of the word when
recognizing the font. Specifically, our contributions are as
follows:

1. Inspired by the recent object recognition and fine-
grained recognition work [18, 22, 21], we propose an
image feature representation called local feature em-
bedding (LFE) that captures salient visual properties
to address the simultaneous fine-grained and coarse-
grained aspects of VFR.

2. Adopting the nearest class mean (NCM) classifier,
we build a scalable recognition algorithm with metric
learning and max margin template selection based on
the LFE representation. Similar to [12], the new algo-
rithm can generalize to new classes at very little added
cost.

3. We have synthesized a large-scale dataset for visual
font recognition, consisting of 2,420 font classes each
with 1,000 English word images. We also collected a
small test set of real world images, each with a known
font class label in the training set.

Fig. 1 shows our visual font recognition on two real world
images, where our algorithm correctly classifies both (top
of the list) and returns four similar other typefaces, even
though the text images have high levels of clutter and noise,
and some perspective distortion (right).

2. A Database for Visual Font Recognition
In this work, we focus on visual font recognition for the

Roman alphabet. As the most common case for font recog-
nition is to identify the font class of short texts in images,
we want to collect images that contain short strings or single
English words as the training data. However, collecting real
world examples for a large collection of font classes turns
out to be extremely difficult because many attainable real
world text images do not have font label information. Fur-
thermore, the error-prone font labeling task requires font



expertise that is out of reach of most people. Instead, we
turn to synthesizing these images for the given fonts to ob-
tain the training data.

In order to get a representative English word set, we ran-
domly select 1,000 English words from the most common
5,000 English words sampled from a large corpus. The En-
glish words have variable lengths, resulting in word images
of different sizes. To capture the variations caused by letter
cases, we randomly divide the selected 1,000 English words
into lower and uppercases with equal probability. We col-
lect in total 447 typefaces, each with different number of
variations resulting from combinations of different styles,
e.g., regular, semibold, bold, black, and italic, leading to
2,420 font classes in the end.

For each font class, we generate one image per English
word, which gives 2.42 million synthetic images for the
whole dataset. To normalize the text size3, we add two
lower case letters “fg” in front of each word when synthe-
sizing the image. This helps us to find the ascender and
descender lines of the text. We then normalize the image
size by fixing the distance between the ascender line and
descender line. The two letters “fg” are then removed from
the synthesized images. After normalization, we obtain all
word images with the same height of 105 pixels.

Besides the synthetic data, we also collected 325 real
world test images for the font classes we have in the train-
ing set These images were collected from typography fo-
rums, such as myfonts.com, where people post these images
seeking help from experts to identify the fonts. Compared
with the synthetic data, these images typically have much
larger appearance variations caused by scale, background,
lighting, noise, perspective distortions, and compression ar-
tifacts. We manually cropped the texts from these images
with a bounding box to normalize the text size approxi-
mately to the same scale as the synthetic data. Figure 6 in
the experiment section shows some real-world test images
from different font classes.

3. Our Approach
In this section, we first present our image feature repre-

sentation for visual font recognition, and then we describe
our large-scale classification algorithm based on local fea-
ture metric learning and max-margin template selection.

3.1. Local Feature Embedding

Most of the current state-of-the-art generic image clas-
sification systems [9, 20, 18] follow the pipeline of first
encoding the local image descriptors (e.g., SIFT [10] or
LBP [1]) into sparse codes, and then pooling the sparse
codes into a fixed-length image feature representation. With

3In font rendering, the same font size may not generate the same text
size in pixels for different fonts.

each image represented as a collection of local image de-
scriptors {xi}ni=1 with xi ∈ Rd, the first coding step
encodes each local descriptor into some code (typically
sparse),

yi = f(xi, T ), (1)

where T = {t1, t2, ..., tK} denotes the template model
or codebook of size K and ti ∈ Rd, f is the encoding
function (e.g., vector quantization [9], soft assignment [13],
LLC [18], or sparse coding [20]), and yi ∈ RK is the code
for xi. Then the pooling step obtains the final image repre-
sentation by

z = g({yi}ni=1), (2)

where g is a pooling function that computes some statistics
from each dimension of the set of vectors {yi}ni=1 (e.g.,
average pooling [9], max pooling [20]), and z ∈ RK is the
pooled feature vector that will later be fed into a classifier.

While the above feature extraction pipeline is effective at
distinguishing different categories of objects, it is not suf-
ficient to capture the subtle differences within a object cat-
egory for fine-grained recognition, e.g., the letter endings
in Fig. 2. Inspired by the recent fine-grained recognition
work [6, 22, 21], we extend the above feature extraction
pipeline by embedding the local features into the pooling
vector, in order to preserve the details of the local letter
parts. Specifically, using max pooling in Eqn. (2), we not
only pool the maximum sparse coefficients, but also record
the indices of these max pooling coefficients:

{z, e} = max({yi}ni=1), (3)

where z contains the max coefficients pooled from each di-
mension of the set {yi}ni=1 and e is its index vector. De-
noting ek = e(k) and zk = z(k), it is easy to see that
zk = yek(k). Instead of using the max pooling coefficients
as the final image feature representation [18], we obtain the
pooling coefficients together with the local descriptor that
fires each of them {zk,xek}Kk=1. We construct the final fea-
ture representation by concatenating these local descriptors
weighted by their pooling coefficients:

f = [z1xe1 ; z2xe2 ; ...; zKxeK ] . (4)

The max pooling procedure introduces a competing process
for all the local descriptors to match templates. Each pool-
ing coefficient zk measures the response significance of xek

with respect to template tk, which is effective at categoriz-
ing coarse object shapes [18, 20], while the pooled local de-
scriptor xek preserves the local part details that are discrim-
inative for classifying subtle fine-grained differences when
the pooling coefficients are similar [6]. Therefore, our fea-
ture representation in Eqn. (4) can capture both coarse level
object appearance changes and subtle object part changes,
and we call this feature representation local feature embed-
ding (LFE).



Our local feature embedding embeds the local descrip-
tors from max pooling into a much higher dimensional
space of RKd. For instance, if we use 59-dimensional LBP
descriptors and a codebook size of 2048, the dimension of
f without using SPM is already 120,832. Although embed-
ding the image into higher dimensional spaces is typically
amenable to linear classifiers [23, 18, 20], training clas-
sifiers for very large-scale applications can be very time-
consuming. What’s more, a major drawback of training
classifiers for large-scale classification is that, when im-
ages of new categories become available or new images
are add to the existing categories, new classifiers have to
be retrained at a very high computational cost [12]. In the
following section, we propose a new large-scale classifica-
tion algorithm based on local feature metric learning and
template selection, which can be easily generalized to new
classes and new data at very little cost. For this purpose, we
modify the LFE feature in Eqn. (4) into a local feature set
representation:

f = {(zk,xek)}Kk=1. (5)

3.2. Large-Scale Classification

In our large-scale visual font recognition task, the dataset
is typically open-ended, i.e., new font categories appear
over time and new data samples could be added to the exist-
ing categories. It is, therefore, important for a practical clas-
sification algorithm to be able to generalize to new classes
and new data at very little cost. Nearest class mean (NCM)
together with metric learning [12] has been explored for
large-scale classification tasks, where each class is repre-
sented by their mean feature vector that is efficient to com-
pute. In this paper, we generalize this idea to NCM based
on pooled local features to form a set of weak classifiers.
Then we propose a max-margin template selection scheme
to combine these weak classifiers for the final classification.

3.2.1 Within-Class Covariance Normalization

Given the LFE feature f = {(zk,xek)}Kk=1 for each im-
age, we would like to learn a Mahalanobis distance metric
for each pooled local feature space, under which we for-
mulate the NCM classifier using multi-class logistic regres-
sion [12], where the probability for a class c given a pooled
local feature xek is defined by

p(c|xek) =
exp(−‖µc

k − xek‖2Wk
)∑C

c′=1 exp(−‖µc′
k − xek‖2Wk

)
, (6)

where µc
k is the class mean vector for the k-th pooled local

features in class c, and

‖µc
k − xek‖2Wk

= (µc
k − xek)TWT

k Wk(µc
k − xek). (7)

Denoting Σ−1k = WT
k Wk, we can see the k-th pooled fea-

ture space (or its projected subspace) is modeled as a Gaus-
sian distribution with an inverse covariance matrix Σ−1k .

To learn the metricWk for the k-th pooled feature space,
we use a simple metric learning method called within-class
covariance normalization (WCCN). First, interpreting zk as
the probabilistic response of xek to template tk, we can
compute the class mean vector µc

k by

µc
k =

1

Zc

∑
i∈Ic

zikx
i
ek
, (8)

where i is the index for the i-th training image with LFE
feature f i = {zik,xi

ek
}Kk=1, Ic denote the sample index set

for class c, and Zc =
∑

i∈Ic z
i
k is a normalization factor.

Then, we compute Σk as the expected within-class covari-
ance matrix over all classes:

Σk = E [Σc′k] ≈
C∑

c′=1

p(c′)Σc′

k , (9)

where

p(c′) =

∑
i∈Ic′

zik∑
i z

i
k

(10)

is the empirical probability of class c′, and Σc′

k is the within-
class covariance for class c′ defined as

Σc′

k ≈
1

Zc′

∑
i∈Ic′

zik(xi
ek
− µc′

k )(xi
ek
− µc′

k )T , (11)

with Zc′ =
∑

i∈Ic′
zik. In practice, empirical estimates of

Σk may be noisy; therefore, we add a certain amount of
smoothness by shrinking it towards the scalar covariance as

Σ̂k = (1− α)Σk + ασ2I, α ∈ [0, 1), (12)

where Σ̂k represents a smoothed version of the empirical
expected within-class covariance matrix, I is the identity
matrix, and σ2 can take the value of trace(Σk). Sup-
pose we compute the eigen-decomposition for each Σ̂k =
UkDkU

T
k , where Uk is orthonormal and Dk is a diagonal

matrix of positive eigenvalues. Then the feature projection
matrix Wk in Eqn (6) is defined as

Wk = D
−1/2
k UT

k , (13)

which basically spheres the data based on the common co-
variance matrix. In the transformed space, nearest class
mean can be used as the classifier, which lays the founda-
tion for the multi-class logistic regression in Eqn. (6).

To further enhance the discriminative power of Wk, we
can depress the projection components with high within-
class variability, by discarding the first few largest eigen-
values in Dk, which corresponds to the subspace where the



feature similarity and label similarity are most out of sync
(large eigenvalues correspond to large within-class vari-
ance). In this case, it can be shown that the solution of
WCCN can be interpreted as the result of discriminative
subspace learning [19].

3.2.2 Max-Margin Template Selection

After we learned the metric for each pooled local feature
space, and assuming the templates in T are independent,
we can evaluate the posterior of a class c for the input im-
age feature representation f by combining the outputs of
Eqn. (6) using a log-linear model:

p(c|f) =
1

H
exp

(
a+

∑
k

wk log p(c|xek)

)
. (14)

where H is a normalization factor to ensure the integrity
of p(c|f), wk weights the contribution of each pooled local
feature to the final classification, and a is a small constant
offset. Here, the weight vector w = [w1, w2, ..., wK ]T ,
shared by all classes, acts to select the most discriminative
templates from the template model T = {tk}Kk=1 for the
given classification task. Then classification for f is simply
to choose the class with the largest posterior:

c∗ = arg max
c′

p(c′|f). (15)

Alternatively, we can treat the multi-class logistic regres-
sion for each pooled local feature as a weak classifier, and
then linearly combine them to obtain a strong classifier:

s(c|f) =

K∑
k=1

wkp(c|xek). (16)

In this way, we can avoid the numerical instability and data
scale problem of logarithm in Eqn. (14). The score function
s(c|f) does not have a probabilistic interpretation any more,
but classification is again simply to find the class with the
largest score output. In practice, we find this formulation
works slightly better than the previous log-linear model, and
we adopt this linear model for all the experiments.

Given the training samples {f i, ci}Ni=1, where ci ∈
{1, ..., C} is the class label for the i-th data sample, we want
to find the optimal weight vector w such that the following
constraints are best satisfied,

s(ci|f i) > s(c′|f i), ∀i, c′ 6= ci, (17)

which translates to

K∑
k=1

wk

(
p(ci|xi

ek
)− p(c′|xi

ek
)
)
> 0, ∀i, c′ 6= ci. (18)

In order to learn w, we define a cost function using a multi-
class hinge loss function to penalize violations of the above
constraints

L(f i, ci;w) =
∑
c′ 6=ci

max{0,−γi(c′) + 1}, (19)

where

γi(c′) =

K∑
k=1

wk

(
p(ci|xi

ek
)− p(c′|xi

ek
)
)
. (20)

Then learning w is simply to solve the following optimiza-
tion:

min
w

λ

N∑
i=1

L(f i, ci;w) + ρ(w), (21)

where ρ(w) regularizes the model complexity. In this work,
we use ρ(w) = ‖w‖22, and Eqn. (21) is simply the classical
one-class SVM formulation. To see this, denoting

pi(c) =
[
p(c|xi

e1); p(c|xi
e2); ...; p(c|xi

eK )
]
, (22)

and qi(c′) = pi(ci) − pi(c′), Eqn. (19) can then translate
to

L(f i, ci;w) =
∑
c′ 6=ci

max{0,−wTqi(c′) · 1 + 1}, (23)

where qi(c′) can be regarded as feature vectors with only
positive label +1. Therefore, the optimization in (21) is
the classical SVM formulation with only positive class and
thus can be readily solved by many existing SVM pack-
ages, e.g., [5]. The regularization term ρ(w) here may also
take other forms, such as ‖w‖1, where the `1-norm pro-
motes sparsity for template selection, which typically has
better generalization behavior when the size K of the tem-
plate model T is very large.

After we learn the WCCN metric for all pooled local fea-
ture spaces and the template weights based on LFE, classi-
fication for a given f is straightforward: first compute the
local feature posteriors using Eqn. (6), combine them with
the learned weights w, and then predict the class label by
selecting the largest score output c∗ = maxc′ s(c

′|f). When
new data or font classes are added to the database, we only
need to calculate the new class mean vectors, and estimate
the within-class covariances to update the WCCN metric
incrementally. As the template model is universally shared
by all classes, the template weights do not need to be re-
trained.4 Therefore, our algorithm can easily adapt to new
data or new classes at little added cost.

4Same as other supervised learning algorithms, if the new added data or
classes change the data distribution substantially, the template model and
their weights need to be retrained.



4. Experiments

We now evaluate our large-scale recognition algorithm
on the collected VFR database. We implement and evaluate
two baseline algorithms: 1) a representative font recogni-
tion algorithm on scanned documents [2]; and 2) a widely
used image recognition algorithm LLC [18]. To get the lo-
cal feature embedding (LFE) representation, we evaluated
several state-of-the-art texture or shape descriptors includ-
ing covariance feature [14], shape context [3], local binary
pattern (LBP) [1] and SIFT [10], which have been exten-
sively verified in many computer vision applications. We
find that SIFT works the best. For the local descriptor en-
coding, we use LLC coding [18] to compare fairly with the
LLC baseline, although other coding schemes can also be
used, such as soft assignment and sparse coding.

Our algorithm has very few parameters. The local de-
scriptors(e.g., SIFT, LBP) are extracted from 12 × 12 im-
age patches sampled from a regular grid on the image with
step size of 6 pixels. The template model T is learned by
kmeans with size 2048. To compute the smoothed version
of the within-class covariance in Eqn. (12), we set α = 0.1
as a constant. When calculating the projection matrixWk in
Eqn. (13), we throw away the first two largest eigenvalues
from Dk to depress the components with high within-class
variability.

4.1. Dataset Preparation

Our experimental dataset consists of three distinct sets:
VFR-447, a synthetic dataset containing 447 typefaces with
only one font variation for each typeface; VFR-2420, a large
synthetic dataset containing typefaces with all variations;
and VFR-Wild, which has 325 real world test images for
103 fonts out of the 2420 classes, each class with the num-
ber of images ranging from 1 to 17. Each class in VFR-447
and VFR-2420 has 1,000 synthetic word images, which are
evenly split into 500 training and 500 testing. There are no
common words between the training and testing images.

To model the realistic use cases, we add moderate distor-
tions and noise to the synthetic data. First, we add a random
Gaussian blur with standard deviation from 2.5 to 3.5 to the
image. Second, a perspective distortion is added by moving
each corner of the image randomly by±5 pixels along x and
y directions (images are pre-normalized to have the same
height of 105 pixels), which defines a perspective transfor-
mation. Third, the foreground (text) and background in-
tensities are randomly perturbed between [0, 255] with the
constraint that the intensity of foreground is at least 20 in-
tensity levels smaller than the background. Finally, some
small Gaussian noise is added to the image, where we as-
sume the noise of a test images will be reasonably reduced
with some simply preprocessing.

Codebook 512 1024 1536 2048
LLC + SVM 64.63 73.04 78.13 82.23
LFE + Naive 76.04 80.20 81.77 84.21
LFE + FS 80.44 85.26 87.73 91.35

Improvements 18.36% 25.56% 32.69% 45.22%

Table 1. The top 1 accuracy of different algorithms with different
template model sizes on VFR-447. “Improvements” shows error
reduction percentage of LFE+FS against LFE + Naive.

Covariance [14] Shape C. [3] LBP [1] SIFT [10]
44.13 54.13 89.02 91.35

Table 2. The top 1 accuracies of different local descriptors with
our proposed LFE+FS algorithm on VFR-447.

4.2. Results on VFR-447

Table 1 shows the recognition results on the VFR-447
synthetic dataset under different template model sizes in
terms of top 1 accuracy. “LFE+Naive” denotes our method
without template selection, i.e., equal weights in Eqn. (16),
and “LFE+FS” denotes our method with template selection.
In all cases, both our methods significantly outperform the
baseline algorithm LLC [18]. Table 2 lists the recognition
results with different local descriptors. We can see that
SIFT performs the best. LBP is slightly worse than SIFT,
but its efficiency justifies itself as a good alternative to SIFT.

In Table 3, we evaluated the top 1, 5, and 10 accura-
cies on the VFR-447 dataset with 2048 templates, in com-
parison with the two baseline algorithms [2] (denoted by
“STAT”) and LLC [18]. In all cases, our algorithm works
the best. The previous font recognition algorithm [2] fo-
cuses on scanned documents. It depends on a large text
sample to extract stable texture statistics for recognition.
Therefore, it won’t work well in our case where the test im-
ages have very short texts with noisy background. Since the
VFR-447 dataset does not have font variations within each
typeface, i.e., most font classes are visually distinct, coarse-
grained techniques such as LLC is still working reasonably
well.

Figure 3 depicts the max-margin template selection re-
sults on the 2,048 template model. The left figure plots
the sorted weights for the 2,048 templates after max-margin
template selection using optimization in Eqn. (21). Al-
though all templates are selected (using ‖w‖22 regulariza-
tion), only a small portion of the templates are selected with
large weights. The right figure illustrates the top 81 selected
templates5, most of which correspond to letters endings and
curvature strokes that are most informative for font recog-
nition.

5The templates are visualized by image patches whose local descriptors
are the nearest neighbors to the selected templates



Methods Top 1 Top 5 Top 10
STAT [2] 25.12 30.30 33.41
LLC + SVM [18] 82.23 93.39 95.32
LFE + Naive 84.20 94.14 95.53
LFE + FS 91.35 98.90 99.62

Table 3. The top 1, 5, 10 accuracies of different algorithms with
template model size 2,048 on VFR-447 synthetic dataset.

Figure 3. Sorted template weights (left) and top 81 selected tem-
plates (right) with largest weights. Many of these selected tem-
plates correspond to letter endings.

4.3. Results on VFR-2420

In Table 4, we report the top 1, 5, and 10 accuracies on
the VFR-2420 dataset with template model of size 2,048
and LBP as local descriptor. Compared with the results on
VFR-447 in Table 1, the top 1 accuracy of our algorithm for
VFR-2420 drops notably, from 91.35% to 72.50%, which
is expected as the problem becomes super fine-grained with
font variations within each typeface. However, the top 5 and
10 accuracies are much better, suggesting that our algorithm
is effective at retrieving similar font classes, even though it
is confused by subtle font variations for top 1 classifica-
tion. In contrast, LLC works much worse than our algo-
rithm on this dataset, due to its ineffectiveness in handling
fine-grained recognition tasks. Again, STAT [2] performs
the worst.

To see that the top-1 accuracy of our algorithm is mainly
affected by font variations within each typeface, fig. 4 plots
a sub-confusion matrix for 100 fonts indexing from 1515 to
1615. The sub-confusion matrix demonstrates a hierarchi-
cal block structure, where large blocks correspond to font
variations within a typeface, e.g., the large dotted rectangle
corresponds to all font variations within typeface Minion
Pro, and smaller blocks correspond to font variations within
a subfamily of a typeface, e.g., the small rectangle corre-
sponds to variations within Minion Pro Bold. Interestingly,
there are many periodic off-diagonal lines inside the blocks,
which are typically caused by one particular font variation.
For example, the line structure in the ellipse is caused by
the similarity of weight variation between bold and semi-
bold, as indicated by their font names listed in the accom-
panying table. Such observations suggest that our confusion
matrix is a good reflection of font similarity, which may be
useful for font organization, browsing, and recommenda-

Methods Top 1 Top 5 Top 10
STAT [2] 15.25 20.50 26.68
LLC + SVM [18] 50.06 72.48 78.49
LFE + Naive 65.20 85.36 89.93
LFE + FS 72.50 93.45 96.87

Table 4. The top 1, 5, 10 accuracies of different algorithms with
template model size 2,048 on VFR-2420 synthetic dataset.

Font list a Font list b
1534: Minion Pro Bold 1581: Minion Pro SemiBold
1535: Minion Pro Bold Caption 1582: Minion Pro SemiBold Caption

.

.

.

.

.

.
1549: Minion Pro Bold Subhead 1596: Minion Pro SemiBold Subhead

Figure 4. The sub-confusion matrix for 100 font classes indexing
from 1515 to 1615.

Figure 5. A clean example of the top-10 predicted fonts for
“MinionPro-MediumCnltCapt”. Most of them are variations
from the same typeface. From top left to bottom right (prefix
“MinonPro-” omited where appropriate): MediumCnltCapt, CnIt-
Capt, CnIt, MediumIt, ItCapt, MediumItCapt, MeliorLTStd-Italic,
It, SemiboldIt.

tion. Fig. 4.3 shows a clean example of the top-10 predicted
fonts for “MinionPro-MediumCnItCapt”.These top-ranked
predictions are visually very similar to the input font and
some are even indistinguishable by human eye.

4.4. Results on VFR-Wild

Table 5 shows the performance of our algorithm on the
real world test images. As introduced in Section 2, all the
real-world images were roughly cropped and oriented man-
ually. Then we only did minimum preprocessing of denois-
ing using a bilateral filter with fixed parameters for all im-
ages. For heavier distortions, more complicated preprocess-
ing is needed, which we leave as future work. As shown in
Table 5, compared to the synthetic data, the performance
drops notably, which is expected because of the mismatch
between training and testing data. Nevertheless, our LFE



Methods Top 1 Top 5 Top 10 Top 20
STAT [2] 4.13 7.30 9.08 10.17
LLC + SVM [18] 26.46 44.00 51.08 57.23
LFE + Naive 29.54 46.15 54.46 62.46
LFE + FS 52.61 58.40 62.14 64.16

Table 5. The top 1, 5, 10, and 20 accuracies of different algorithms
with 2,048 templates on real world dataset.

(a) (b)

Figure 6. (a) Real world images that are correctly classified (rank
one). (b) Real world images that are wrongly classified (fall out of
top rank 20).

combined with template selection again significantly out-
performs both LLC and LFE without template selection.
STAT was developed for scanned documents and performs
very poorly on the wild data. Fig. 6 shows some example
real world test images that are (a) correctly and (b) wrongly
classified by our algorithm. Remarkably, our model, al-
though trained on the synthetic dataset, is robust to clut-
tered background and noise to a large extent shown by (a).
In cases of decorated texts, very low-resolution, extremely
noisy input, and very cluttered background shown in (b),
the algorithm will fail. Better image preprocessing tech-
niques will definitely help in such cases, which we leave
as future work. Considering all these challenging factors in
real world VFR, a recognition rate of 52.61% at top 1 ac-
curacy is very promising. Note that most of our real world
images contain very short strings. In cases where the input
may contain long strings of text, we can cut the them into
short strings and combine the algorithm’s inferences on all
of them.

5. Conclusion
In this paper, we focus on the large-scale VFR prob-

lem that has long been neglected by the vision community.
To address this problem, we have constructed a large-scale
set of synthetic word images for 2,420 font classes, and
collected a small set of real world images. Experiments
on synthetic test data demonstrate the effectiveness of our
approach, and experiments on real test images show very
promising results. For future work, we will continue to
grow the dataset of real test images. We will also explore
the effects of different levels of distortions and noise added
to synthetic data on the final performance on real test im-

ages. Machine learning and computer vision techniques,
e.g., transfer learning and robust local descriptors, will be
exploited to close the gap between synthetic training and
real world testing.
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