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Abstract

We pose unseen view synthesis as a probabilistic tensor

completion problem. Given images of people organized by

their rough viewpoint, we form a 3D appearance tensor in-

dexed by images (pose examples), viewpoints, and image

positions. After discovering the low-dimensional latent fac-

tors that approximate that tensor, we can impute its missing

entries. In this way, we generate novel synthetic views of

people—even when they are observed from just one camera

viewpoint. We show that the inferred views are both visually

and quantitatively accurate. Furthermore, we demonstrate

their value for recognizing actions in unseen views and es-

timating viewpoint in novel images. While existing methods

are often forced to choose between data that is either re-

alistic or multi-view, our virtual views offer both, thereby

allowing greater robustness to viewpoint in novel images.

1. Introduction

Analyzing people in images and video is a central prob-

lem in computer vision, and it is essential to many appli-

cations in surveillance, human-computer interaction, and

video indexing. Over the last decade, learning-based meth-

ods have made good headway on these challenging prob-

lems. A promising paradigm is to extract descriptors of hu-

man appearance or motion, and then use supervised learn-

ing to predict the parameter of interest—such as the per-

son’s activity, orientation, clothing, or identity [33, 17, 11,

39, 42, 5, 44, 34, 22, 6].

In adopting a statistical approach, however, viewpoint

sensitivity can be a major stumbling block.1 A model

trained to recognize an activity performed by a forward-

facing person will fail when presented with the exact same

activity performed by a person viewed from the side—the

overall appearance simply will not match. Conscious of

this problem, a common approach is to train viewpoint-

specific models: using data labeled by both the camera

1Consistent with prior work, and without loss of generality, we focus

on viewpoint in terms of the camera’s azimuth with respect to the human.

By pose we mean the person’s 3D joint configuration due to their action.
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Figure 1. The data dilemma for human images. (a) Single view im-

ages are often realistic and “unstaged”, but populate only a sparse

set of camera viewing angles. (b) Multi-view data give full view

coverage, but are more artificial in terms of acted poses and sim-

plistic backgrounds. Our method makes use of any available im-

ages to envision seen poses in unseen viewpoints.

viewpoint and activity class (or other parameter of inter-

est), the system learns what the activity looks like in each

of the discrete views [33, 11, 42, 5, 44, 34, 22]; usually

this is done only implicitly, by assuming rough viewpoint

consistency (e.g., always frontal). Alternatively, given data

from multiple cameras simultaneously, some methods learn

the statistical connections between viewpoint-specific fea-

tures and then transfer information between views at test

time [8, 13, 18, 20, 45].

For any such learning strategy, having training data from

a variety of viewpoints is essential. Unfortunately, this is

easier said than done. Researchers currently face a data

dilemma. On the one hand, Internet images and Holly-

wood movies offer abundant realistic examples of humans

performing various actions, but they are naturally biased to-

wards certain viewpoints (see Figure 1(a)). This is to be ex-

pected, since humans tend to take photos of other humans as
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Figure 2. Our approach discovers the latent factors that relate

viewpoint and body pose, and uses them to infer unseen views.

For example, despite never seeing a kicking pose from any view

but frontal (top right image), it hallucinates what it will look like

from the side (bottom right). The key is to learn connections be-

tween similar looking parts in different poses (here marked with

lines for illustration only).

they face the camera. As a result, nice “in the wild” exam-

ples are sparse for many other viewpoints, and today’s chal-

lenge datasets (e.g., PASCAL Actions [7]) are restricted to

canonical viewpoints. On the other hand, efforts to collect

data specifically from multiple views are prone to scripted

behavior and artificial lab environments (see Figure 1(b)).

This is also to be expected, since the actors must be in-

structed to do certain actions while in the special synchro-

nized multi-camera rig.

How can we overcome this dilemma? How can we ob-

tain realistic human image data from varied viewpoints?

Rather than physically place more cameras around subjects,

our goal is to use whatever viewpoints we do have to gen-

erate virtual views in those we do not. To this end, we pro-

pose a view synthesis approach based on tensor comple-

tion. The key idea is to recover the latent factors that relate

viewpoint and body pose without observing the two neatly

varying together—that is, without observing each pose in

all views during training. This is critical to utilize existing

single-view data, but why should it be possible? We observe

that from the same viewpoint, people look similar in certain

portions of the image, even when they are performing dif-

ferent actions or poses (see Figure 2). Using a latent factor

model, we aim to discover these relationships and use them

to infer appearance in unseen views.

Our method takes as input images of people organized

by their approximate viewpoint. We construct a 3D tensor

indexed by the image examples, their viewpoints, and the

spatial image positions. Each entry in the tensor records the

appearance observed at those coordinates. Notably, many

entries are unobserved in the input data. We show that

a probabilistic tensor factorization technique can discover

the latent factors governing how all three observed dimen-

sions jointly determine appearance. Intuitively, those fac-

tors might correspond to things like the type of clothing,

body weight, lighting, or partial pose fragments. Using

them, we impute missing entries in the tensor, thereby in-

ferring the image descriptors for unobserved views of peo-

ple that, during learning, may have been observed from just

one camera viewpoint.

We show that the inferred views are accurate, which lets

us expand existing datasets to fuller viewpoint coverage.

Furthermore, we demonstrate the impact for two practical

applications. First, we show that our virtual views let the

system learn an action category in a viewpoint for which

it has never seen any real exemplars, yielding results that

are competitive with recent cross-view recognition meth-

ods. Second, we show that by using the virtual views to

augment real training images, we can predict a person’s ori-

entation more accurately in novel images. In both cases,

the inferred views help make statistical appearance-based

methods robust to viewpoint.

2. Related Work

Image-based rendering for virtual views Existing view

synthesis methods originate from image-based render-

ing [15], where, rather than explicitly construct a 3D

model, new views are synthesized directly frommultiple 2D

views. Typically point correspondences are estimated be-

tween views, and then intermediate views are synthesized

by warping the pixels appropriately, leveraging insights

from projective or multi-view geometry (e.g., [31, 1]). The

resulting virtual views can be used to augment training

data for object recognition [3], or to reposition the view-

point at test time [32, 30]. Image-based models of pedes-

trians using calibrated, synchronized cameras are explored

in [32, 12]. Compared to all such methods, our approach to

view synthesis relies on learning, not geometry and warp-

ing. Our method only implicitly captures geometry through

its knowledge about discrete viewpoints. This lets us forgo

point correspondences, which are difficult to estimate re-

liably. Furthermore, rather than make strong assumptions

about calibrated cameras and/or simultaneous multi-view

capture, our method leverages any available views; some

instances may appear from as few as one viewpoint.

Synthetic data As an application of our view synthesis

idea, we use virtual views to train action and viewpoint de-

tectors. Whereas our virtual views are data-driven, some

research exploits graphics engines to create synthetic data

for pose estimation [33, 34], action recognition [24], and

person detection [26].

Viewpoint-specific human models Viewpoint-specific

models (or mixtures thereof [10]) are common in object



recognition (e.g., [35]). Recent methods to recognize ac-

tions in static images (e.g., [42, 22, 11, 5, 44]) are also im-

plicitly viewpoint-specific, with some robustness to mod-

est viewpoint changes owing to their use of spatial pooling.

Other work develops video features that are robust (even if

not strictly invariant) to viewpoint changes [14, 39, 17]. Our

contribution is unseen view inference; using our method to

expand training sets has the potential to benefit such prior

models as well, as we will see in results.

Viewpoint-invariant human models View-invariant

methods develop features that remain stable across camera

views (e.g., [25, 27, 43, 21]), but they require reliable body

joint detection. When multi-view data is available, 3D

reconstruction can be used to form 3D exemplars [38] or

view-invariant features [41], though their view assumptions

and computational demands may be too high for many

applications. Multiple action recognition methods transfer

features between viewpoints, learning the “domain shift”

between pairs of views [8, 13, 18, 20, 45]. Such methods

require synchronized multi-view data during training,

whereas our method can learn from a set of single-view

snapshots. Furthermore, we stress that none of these

prior methods hallucinate unseen views, as we propose;

our method has applications beyond action recognition,

including visualization (e.g., helping an artist sketch an

actor from a new viewpoint).

Matrix completion Matrix factorization methods are

studied extensively for collaborative filtering [23, 16, 28,

29, 40]. Whereas the standard recommender problem can

be treated in 2D (items vs. users), our problem has an inher-

ent 3D structure; we account for it using a tensor factoriza-

tion approach originally developed to model movie ratings

as trends vary over time [40]. There is limited work ex-

ploring tensor completion for visual data. Existing methods

infer missing pixels in a single source image/video, e.g.,

for in-painting [19], or infer new 3D face meshes captured

with a structured light scanner for video puppetry [36]. In

contrast, our tensor is indexed by intermediate parameters

(pose, view) observed across multiple source images, and

we explore how inferring unseen images helps recognition.

3. Approach

We pose unseen view inference as a tensor completion

problem. Throughout, we consider a set of discrete view-

points consisting of M orientations of the person with re-

spect to the camera (facing front, front-left, etc.). As input,

our method takes cropped images of people organized by

their discrete viewpoint (M = 5 or 8 in our datasets). As

output, our method returns image descriptors capturing the

appearance of those same people in each viewpoint from

which they were not observed.
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Figure 3. Visualizing the 3D tensor X in the synchronized (left)

and unsynchronized (right) cases. (We display a whole image for

visualization purposes, though really its descriptor extends out in

the third dimension of the tensor.)

We consider two scenarios: synchronized and unsyn-

chronized. For the synchronized case, the input images in-

clude (at least some) examples of people observed simulta-

neously by multiple cameras. Any subset of the M views

might be present for a given instance, and the poses in the

examples are not annotated in any way (i.e., no stick fig-

ures are given). See Figure 3(a). For the unsynchronized

case, the input images are single-view snapshots, such as

those one might typically find in online photo collections.

See Figure 3(b). In this case, we assume each training im-

age is annotated with body pose (joint positions). In either

case, we assume the inputs contain a variety of body poses,

though there may be an imbalanced representation of cer-

tain poses and viewpoints.

In the following, we first define the tensor and factoriza-

tion approach for the synchronized case. Then, we general-

ize it to handle unsynchronized single-view inputs.

3.1. Discovering the Latent Factors

Our model represents human appearance as a function

of pose, viewpoint, and position in the image. The goal is

to fit a low-dimensional factor model to the observed data,

such that the spatially varying appearance can be approxi-

mated as a combination of some latent pose and viewpoint

factors. As discussed above, the fact that some local appear-

ance patterns re-occur between different poses suggests that

such latent factors exist. Intuitively, they might correspond

to things like local body configurations (arm outstretched,

knee bent, etc.), lighting conditions, or body types.

For each input image, we first extract its K-dimensional

appearance descriptor. We use Histograms of Oriented Gra-

dients (HOG) [4], which offer robustness to small shifts and

rotations. HOG pools the gradients within a grid of cells,

and histograms the pixels per cell into orientation bins;

each block of HOG descriptor dimensions originates from

a particular spatial region in the image, and adjacent blocks

originate from adjacent regions (except for boundary cells).

Then, we assign each image to one of the M viewpoints.

We currently use ground truth orientation data for this step,



as it is available with multiple public datasets [38, 2]; how-

ever, automatic methods are also possible, e.g., [22].

Let i = 1, . . . , N index the input data, where each i cor-

responds to a unique moment in time—that is, a single snap-

shot, or a set of multi-view images taken simultaneously.

For each of theN inputs, we thus have a descriptor for some

number between 1 and M of the total possible viewpoints.

Each i captures a distinct pose, whatever pose the human is

doing. Thus, we stress that while we refer to the N inputs

as “poses”, if at least some inputs are multi-view, we do not

require pose annotations for the input data.

Using this data, we construct a 3D tensor X ∈
R

N×M×K , where entry xk
ij corresponds to the image de-

scriptor value in the i-th pose, the j-th view, and the k-

th feature dimension (which reflects image position). Let

P ∈ R
D×N , V ∈ R

D×M , and S ∈ R
D×K denote matrices

whose columns are the D-dimensional latent feature vec-

tors for each pose, view, and spatial position, respectively.

We suppose that xk
ij can be expressed as an inner product

of latent factors, xk
ij ≈ 〈Pi, Vj , Sk〉, where a subscript de-

notes a column of the matrix. In matrix form, this means

X ≈
∑D

d=1 Pd,: ◦ Vd,: ◦ Sd,:, where a subscript d, : denotes
the d-th row in the matrix, and ◦ is the outer product.

To recover the latent factors, we use the Bayesian prob-

abilistic tensor factorization approach of [40], which ex-

tends probabilistic matrix factorization [28, 29] to accom-

modate time-evolving consumer data for movie recommen-

dation tasks. To account for uncertainty, we represent the

likelihood distribution for the observed descriptors by

p(X|P,V,S, α) = ΠN
i=1

ΠM
j=1

ΠK
k=1

ˆ

N (xk
ij |〈Pi, Vj , Sk〉, α

−1)
˜Iij ,

where N (x|µ, α) denotes a Gaussian with mean µ and pre-

cision α, and Iij is an indicator variable equal to 1 if pose

i appears in view j, and 0 otherwise. We use Gaussian

priors for each of the latent factors Pi, Vj , Sk. For pose

and viewpoint we use independent Gaussians, while for the

spatial factors we use the prior Sk ∼ N (Sk−1,ΣS), for
k = 2, . . . ,K, which reflects that descriptor values are

likely to vary smoothly in spatially close regions.2 Let Θ
denote a set of random variables comprised of the mean and

covariance of all three factors, including ΣS . For all Gaus-

sian prior hyper-parameters (α and the variables in Θ), we

use conjugate distributions as priors to facilitate subsequent

sampling steps.

Following [29, 40], we integrate out all the model pa-

rameters and hyper-parameters to obtain a predictive distri-

bution for an unseen view given all observed input images:

p(x̂k
ij |X) =

Z

p(x̂k
ij |Pi, Vj , Sk, α)p(P,V,S, α, Θ|X) d{P,V,S, α, Θ}.

2Accounting separately for the boundary cells (which need not be

smooth a priori) would add complexity to the model, and we find it is

sufficient in practice not to.

Compared to solving for a single point estimate for the

MAP factors P
∗, V∗, S∗, this helps prevent overfitting to

poorly tuned hyper-parameters. It is approximated using

Markov chain Monte Carlo (MCMC) sampling:

p(x̂k
ij |X) ≈

L∑

l=1

p(x̂k
ij |P

(l)
i , V

(l)
j , S

(l)
k , α(l)), (1)

where L denotes the number of samples. The samples

{P
(l)
i , V

(l)
j , S

(l)
k , α(l)} are generated with Gibbs sampling

on a Markov chain whose stationary distribution is the

posterior over the model parameters and hyper-parameters

{P,V,S, α,Θ}. Sampling is initialized using the MAP es-

timates of the three factor matrices. See [40] for details.

With this tensor formulation, we capture the global in-

fluence that image position has on all the poses and view-

points, which is very informative for cropped person im-

ages. For example, the model can learn that the presence of

strong -45 degree gradients in cells in the bottom right of

the person bounding box when viewed from the front (due

to an extended left leg) suggests the likely presence of 45

degree gradients within the associated bottom left cells if

he were viewed from behind.

We choose to infer descriptors, rather than raw pixels.

The gradient-based HOGs offer robustness to low-level ap-

pearance differences (e.g., clothing), such that we can ex-

pect to learn latent factors with less input data than would

be needed for raw pixels. Inferring pixel intensities, though

in principle possible with the same approach, would likely

waste modeling effort on unneeded detail (a typical person

bounding box in our datasets contains 6,000 pixels, but only

108 HOG dimensions). In addition, as we demonstrate be-

low, we can use the inferred views directly in later learning

tasks, since most vision methods operate in a feature space

other than pixels. Plus, to visualize the results, we can “in-

vert” HOG descriptors back into image space with [37].

3.2. Learning with Unsynchronized Single­View
Images

Next we generalize our approach to handle the challeng-

ing case where only unsynchronized single-view data is

available. Doing so will allow us to exploit existing realistic

data sources, such as photos on Flickr. Presumably humans

can infer unseen views because they have seen many indi-

viduals in various poses and viewpoints, not because they

have seen carefully orchestrated multi-view examples for

individual people. They understand the pose associations

across individuals. In a similar vein, our idea is to link

snapshots that contain similar 3D body poses, but differ-

ent viewpoints. In this way, a pose “instance” in the tensor

can be comprised of different individual people (as depicted

in Figure 3(b)).

This variant requires pose-labeled training data, using

either manual or automatic annotations. Good tools are
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Figure 4. Visualization of inferred views using inverted HOGs. Best viewed on pdf.

available to semi-automate pose labeling [2], making this

requirement manageable.

Let pq ∈ R
3J denote the normalized body pose configu-

ration for image q. Its 3J elements are the 3D positions of

J body joints, normalized to a common coordinate system

where they can be meaningfully compared. Specifically, we

shift the raw skeleton to place the center of the hips at the

origin, rotate it to align the plane connecting the hips and

neck to be orthogonal to the z axis, and scale it to the av-

erage head-to-toe height. We estimate the pose distance be-

tween two images as d(q, r) = ||pq − pr||2. Then we sort

all training pairs by d(q, r), and take any pairs whose pose

distance is less than 0.2 times the average distance. Each

such pair provides two K-dimensional HOG entries for the

tensor, placed at the appropriate two columns based on their

viewpoints.3 Once the linked pairs are entered into the ten-

sor, we perform inference as described above.

With this extension, even if an “in the wild” snapshot

was observed from just a single viewpoint, we can infer its

appearance in novel views. As such, our method provides

downstream estimation tasks (e.g., action recognition) with

data that is both more complete and realistic. Furthermore,

while our current implementation focuses on the multi-view

and single-view cases separately, our approach naturally

3Preliminary tests in which we link beyond pairs of examples did not

show a noticeable difference in results.

supports a mix of both types of data. In that case, the al-

gorithm will learn the multi-view constraints from synchro-

nized instances and propagate them to single-view instances

during inference.

4. Experimental Results

We validate our approach on two public datasets. The

first, INRIA Xmas Motion Acquisition Sequences (IX-

MAS) [38], contains multi-view synchronized data from

M = 5 cameras, with 11 actions (check watch, cross arms,

kick, etc.) performed by 10 actors, for 16,800 total im-

ages. The second, Humans in 3D (H3D) [2], contains 2,378

single-view Flickr images, with people doing various un-

scripted poses (reaching, walking, riding a bike, etc.), and

has 3D pose annotations for J = 33 joints done by MTurk-

ers. We use the viewpoint annotations of [22].

We extract HOG with 9 cells and 12 bin histograms per

cell, yielding a K = 108 dimensional descriptor per image.

We use the factorization code of [40], and fix the latent fac-

tor dimensionality to D = 500 and the number of samples

L = 500, based on cross-validation on training data, and

α = 2 as default. We clip inferred outputs to [0, 1], the valid
HOG range. With these parameters, and with N = 2, 200
instances, learning the latent factors takes about 6 hours.

Inferring feature values requires only two inner products,

which takes < 1 ms.
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Figure 5. Error in inferred views

We evaluate how well our inferred views match the

(withheld) ground truth images. In addition, we compare

to a variety of state-of-the-art view-invariant recognition

methods as well as two baseline techniques for virtual view

creation: 1) MEMORY, a memory-based tensor completion

approach and 2) COPY, a method that copies observed im-

ages from nearby views. For MEMORY, we adapt a neigh-

borhood approach in collaborative filtering [16] to our prob-

lem setting (see Supp.). For COPY, we find the observed

image in the training data for the very same pose instance

that is nearest in viewpoint to the desired unseen view, and

copy its HOG descriptor. For example, if the needed view j

were frontal, and the view 45 degrees off of frontal appears

in the training set, that would be the estimate. Note that a

traditional warping approach is inapplicable for these tests,

since it demands multi-view calibrated data, and can warp

only to fairly nearby views (i.e., not ground to overhead).

In the following, we first evaluate the inferred views’ ac-

curacy (Sec. 4.1). Then we use the virtual views for two

applications: action recognition (Sec. 4.2) and viewpoint

estimation (Sec. 4.3).

4.1. Accuracy of Inferred Views

Figure 4 visualizes inferred views using the “HOG gog-

gles” inverted-HOG (iHOG) technique, which inverts a

HOG descriptor back to a natural image [37]. Here we use

HOG descriptors with higher dimension (90 cells×12 bins

=2970) to provide detailed visualization. We compare the

view inferred by our method to the iHOG for the real ground

truth (GT) image, which is the upper bound on quality. The

two often look quite similar, which means our method in-

fers the true appearance well. While COPY’s results can

look realistic—after all, they originate from HOGs on real

images—they are not as accurate as ours. This underscores

the value in modeling the latent factors for all observations,

rather than simply matching to the nearest available view.

Our advantage is most striking in the most difficult cases,

such as inferring the overhead view (middle row, right side

of (a)). For poses that appear similar between views (bottom

row, left side of (a)), COPY is competitive, as expected. The

COPY MEMORY Ours Ground truth

15.08 (2.45) 20.39 (2.49) 34.32 (3.47) 60.36 (2.51)

Table 1. Action recognition accuracy (mAP) in an unseen view-

point on IXMAS. Numbers in parens are standard errors.

H3D visualizations (b) are noisier due to fewer observed

features and cluttered backgrounds, yet we still capture the

shape of the person and some articulated details of the pose

(e.g., see the bent arm in far right). (Note, on H3D COPY

simply returns the given iHOG for all other views.) See

Supp. for more examples.

Figure 5 quantifies these observations. We randomly

sample 200 images for each action in IXMAS, for a total

of 2,200 images. Then for each action in turn, we with-

hold all images for that action in a given view, apply fac-

torization, and compare the inferred unseen views to the

withheld ground truth. We plot the Summed Square Dif-

ference (SSD) error between inferred and actual views, for

each view in IXMAS. (H3D lacks the ground truth to make

this evaluation possible.) Our factorization method outper-

forms both baselines. As to be expected, view 5, the over-

head view, is most difficult for all methods; nonetheless, our

inferred views remain 74% better than COPY and 6% better

than MEMORY.

These results validate the main goal of our approach:

to accurately map seen poses to unseen views, even when

training examples are single-view, asynchronous, and cap-

tured in complex environments. In the remaining results,

we will further demonstrate that having estimated the un-

seen views well, we are better positioned to train viewpoint-

sensitive models for recognition tasks.

4.2. Recognizing Actions in Unseen Views

Next, we use our inferred views to train a system to rec-

ognize actions from a viewpoint it never observed in the

training images. As above, for each IXMAS action label in

turn, we hold out all its images in a given viewpoint, and

then infer the unseen views. We use those inferred HOGs to

train a viewpoint-specific one-vs.-rest SVM action classifier

for that action category; the positive exemplars are all syn-

thetic, while the negative exemplars are real images from

all other action labels. We evaluate accuracy on a test set

of single-view static images consisting of 200 real positives

and 2000 real negatives.

Table 1 shows the results. Our method significantly out-

performs the baselines. Compared to MEMORY, our recog-

nition advantage is much greater than our SSD advantage in

Figure 5, which suggests the perceptual quality differences

are greater than what SSD captures. We also show an up-

per bound—the accuracy that would be obtained if the real

images had been available, rather than inferred (“Ground

truth”). Naturally, the accuracy is higher using real training

images; still, we more than double the accuracy of a method

that uses the nearest available real view (COPY).
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Figure 6. Accuracy in unseen views as a function of tensor sparsity.

No occlusions Occluded training Partially visible testing

37.7 (3.06) 36.9 (3.03) 52.6 (2.07)

Table 2. Testing the impact of occlusions (average mAP)

Figure 6 evaluates the impact of input data sparsity. We

repeat the recognition task above, but now with an increas-

ingly sparse set of real input views for training. To increase

sparsity, we remove views at random. Our method’s ac-

curacy is fairly stable up until about 40% (i.e., when 60%

of the tensor is unobserved), showing the power of the la-

tent factors with rather incomplete data. While our accu-

racy starts to decline when the observed features comprise

less than half of the tensor entries, it is still substantially

better than the baselines. With only 20% observed data,

all methods do similarly, indicating insufficient information

about the feature correlations between the views. COPY’s

standard error increases with sparsity; it suffers once fewer

nearby views are available.

Next, we demonstrate how our method can infer missing

views in the face of partial occlusions. Table 2 shows the re-

sults, for action recognition on the first five IXMAS actions.

The columns compare our method’s accuracy in three sce-

narios: 1) with no occlusions, 2) when training examples

are partially occluded, and 3) when test examples are par-

tially visible. To generate the training set occlusions, we

randomly remove 20% of the HOG cells; to generate the test

set occlusions, we omit the lower body region. Comparing

columns 1 and 2, we see our method maintains its accuracy

in spite of occluded training examples, showing the latent

factors have a similar effect for missing data within an im-

age, not just within the viewpoints. Comparing columns 1

and 3, we see that if the unobserved views are partially vis-

ible, our method can even more precisely complete them.

Finally, we use our inferred views to compare to several

existing methods for cross-view action recognition. We fol-

low the standard leave-one-action-out IXMAS protocol [8].

We train an action class using the HOG features from all

frames, and predict the action label of a test clip by voting.

Table 3 shows the results. They are quite encouraging. De-

spite using a rather simple frame-based HOG classifier, our

inferred views lead to recognition accuracy better than four

existing methods that devise sophisticated features or learn-

View 0 View 1 View 2 View 3 View 4

Farhadi 08 [8] 61 67 61 63 40

Junejo 08 [14] 63.0 64.3 64.5 58.9 46.6

Farhadi 09 [9] 74 77 76 73 72

Liu 11 [20] 79.0 74.7 75.2 76.4 71.2

Li 12 [18] 83.4 79.9 82.0 85.3 75.5

Zhang 13 [45] 88.3 83.0 87.7 88.3 81.9

COPY 59.9 56.5 53.4 59.8 41.2

MEMORY 67.7 63.0 58.6 65.0 48.9

Ours 79.9 80.8 79.0 80.2 74.2

Table 3. Cross-view action recognition accuracy on IXMAS

(a) Average mAP, compared to view synthesis baselines

Orig Orig+COPY Orig+MEMORY Orig+Ours

17.29 14.77 19.94 20.30

(b) Classification accuracy vs. state-of-art

Poselet activations+SVM [22] Ours

48.4% 49.9%

Table 4. Viewpoint estimation accuracy on H3D when we augment

real training images with inferred views, compared to alternative

view synthesis methods (a) and a state-of-the-art technique (b).

ing algorithms specifically for this recognition task. This

shows that explicitly estimating missing views can offer ad-

vantages over using view-invariant descriptors. That said,

we do underperform two of the methods. We suspect our

static frame HOG representation is a handicap, as the other

methods use temporal features. It will be interesting future

work to generalize our idea to the temporal domain.

On top of its good performance on this specific task,

our method offers functionality the prior work does not:

1) it can translate seen images to images in new view-

points, whereas the prior methods produce invariant fea-

tures, which cannot be used in support of other prediction

tasks, and 2) it can leverage any available views during

learning, whereas the prior methods focus on learning con-

nections only between pairs of views.

4.3. Estimating Body Orientation

Next we test our unsynchronized method (Sec. 3.2) on

H3D. We quantize the torso orientations into M = 8 dis-

crete views. We use views inferred by our method to aug-

ment a training set of real images, then learn viewpoint clas-

sifiers. We form a 75%-25% train-test split, and balance

the training images per view, since highly imbalanced train-

ing images would favor our approach. We train SVMs with

χ2 kernels for all methods. Given a novel test image, we

need to decide which way the person is facing. Table 4(a)

shows the mAP results. Adding the view-specific training

instances created by our method, accuracy is better than

training with the real images alone. Furthermore, our fac-

torization approach is again stronger than both baselines.

Next, we compare our viewpoint estimation to an exist-

ing method based on poselets [22]. We use the same fea-



tures, classifier, and experimental setup described in that

paper. We train one classifier with the real H3D images, and

another with those same images plus our inferred views. Ta-

ble 4(b) shows the classification accuracy results.4 We see

our virtual views boost the accuracy of this state-of-the-art

approach for viewpoint estimation.

Both these H3D results are encouraging. Not only can

we infer how a person will appear in other viewpoints hav-

ing seen him in only a single view, but doing so improves

robustness for appearance-based viewpoint estimation.

5. Conclusions

We presented a novel approach for inferring human ap-

pearance in unseen viewpoints. Whereas existing methods

tackle the problem using geometry and image warping, we

offer a new perspective based on learning. We show how to

cast the problem in terms of tensor completion, and adapt a

factorization approach to accommodate both synchronized

and unsynchronized single-view images. Our results on two

challenging datasets show that not only can we infer unseen

views, but that doing so is useful for practical human anal-

ysis tasks. In future work, we plan to extend our idea to

handle video data and infer appearance over time.
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