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Abstract

In this paper, we propose a novel method for image fu-
sion from a high resolution panchromatic image and a low
resolution multispectral image at the same geographical lo-
cation. Different from previous methods, we do not make
any assumption about the upsampled multispectral image,
but only assume that the fused image after downsampling
should be close to the original multispectral image. This is a
severely ill-posed problem and a dynamic gradient sparsity
penalty is thus proposed for regularization. Incorporating
the intra- correlations of different bands, this penalty can
effectively exploit the prior information (e.g. sharp bound-
aries) from the panchromatic image. A new convex opti-
mization algorithm is proposed to efficiently solve this prob-
lem. Extensive experiments on four multispectral datasets
demonstrate that the proposed method significantly outper-
forms the state-of-the-arts in terms of both spatial and spec-
tral qualities.

1. Introduction

Multispectral (MS) images are widely used in many
fields of remote sensing such as environmental monitoring,
agriculture, mineral exploration etc. However, the design of
MS sensors with high resolution is confined by infrastruc-
ture limits in onboard storage and bandwidth transmission
[20]. In contrast, panchromatic (Pan) gray-scaled images
with high spatial resolution can be obtained more conve-
niently because they are composed of much reduced num-
bers of pixels. The combinations of Pan images with high
spatial resolution and MS images with high spectral reso-
lution can be acquired simultaneously from most existing
satellites. Therefore, we expect to obtain images in both
high spatial resolution and high spectral resolution via im-
age fusion (also called pan-sharpening).

Image fusion is a typical inverse problem and generally
difficult to solve. A number of conventional methods use
projection and substitution, which include principal com-
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ponent analysis (PCA) [6], intensity hue saturation (IHS)
[11], wavelet [25] and their combinations. These methods
work in the following scheme: upsampling, forward trans-
form, intensity matching, component substitution and re-
verse transform [2]. Other methods such as Brovey [10],
assume the Pan image is a linear combination of all bands
of the fused image. A detailed survey of existing methods
can be found in [2]. While these previous methods provid-
ed some good visual results, they are very likely to suffer
from spectral distortion since their strong assumptions are
not realistic in remote sensing physics [20].

In order to overcome the issue caused by spectral dis-
tortion, a suite of variational approaches have emerged re-
cently [3][18][9]. Each method formulates an energy func-
tion based on somewhat weak assumptions, and minimizing
such a function leads to the optimum. The first variational
method P+XS [3] is based on the linear combination as-
sumption in Brovey [10] and also assumes the upsampled
MS image is the fusion result after blurring. As an accu-
rate blur kernel is difficult to pre-estimate, AVWP [18] re-
places this term with a spectral ratio constraint to preserve
spectral information. It also forces the fused image to be
close to the wavelet fused image [25]. Another variation-
al model is engaged in estimating the fused image and the
blurring model parameters iteratively [9]. Promising results
have been achieved in these variational methods, especial-
ly they can reduce spectral distortion. However, due to the
lack of an effective model to preserve spatial information,
visible artifacts may appear on the fusion results.

In this paper, we propose a new variational model for im-
age fusion to bridge this gap. Motivated by the geographical
relationship between the fused image and Pan image, a dy-
namic gradient sparsity property is discovered, defined and
then exploited to improve spatial quality. In addition, we as-
sume the fused image after downsampling should be close
the MS image, which is formulated as a least squares fitting
term to keep spectral information. The combined model
does not violate remote sensing physics. This is a key dif-
ference compared with previous methods. Moreover, our
method incorporates the inherent correlation of differen-
t bands, which has not been considered before. To optimize



our entire energy function, a new algorithm is proposed in
the fast iterative shrinkage-thresholding algorithm (FISTA)
[4] framework, with a very fast convergence rate. Exten-
sive experimental results demonstrate our method can sig-
nificantly reduce spectral distortion while preserving sharp
objects boundaries in the fused images.

2. Proposed Method
2.1. Notations

Scalers are denoted by lowercase letters. Bold letter-
s denote matrices. Specially, P ∈ Rm×n denotes the Pan
image and M ∈ Rm

c ×n
c ×s denotes the low resolution MS

image. c is a constant. For example c = 4 when the resolu-
tion of Pan image is 0.6m and that of MS image is 2.4m in
Quickbird acquisition. The image to be fused is denoted by
X ∈ Rm×n×s. || · ||F denotes the Frobenius norm. For sim-
pleness, Xi,j,d denotes the element in i-th row, j-th column
and d-th band in X. And Xd denotes the whole d-th band,
which is therefore a matrix.

2.2. Local Spectral Consistency

All the previous methods [3][18][9] use the upsampled
MS image as prior knowledge to preserve spectral informa-
tion. However, the upsampled MS image is often blurred
and not accurate. Therefore, we only assume the fused im-
age after downsampling is close to the original MS image.
Least squares fitting is used to model this relationship:

E1 =
1

2
||ψX−M||2F , (1)

where ψ denotes a downsampling operator. Local spectral
information is forced to be consistent with each MS pixel.
Similar as in previous works, the input images are assumed
to be geometrically registered during preprocessing. As the
remotely sensed images have geographical coordinates, the
image registration is relatively easier.

Minimizing E1 would be a severely ill-posed problem,
due to the very low undersampling rate (e.g. 1/16 when
c = 4). Without strong prior information, X is almost im-
possible to be estimated accurately. This may be the reason
that all previous methods do not use this energy function.

2.3. Dynamic Gradient Sparsity

Fortunately, the Pan image provides such prior infor-
mation. Due to the strong geographical correlation with
the fused image X, the Pan image has already provided us
with clear boundary information of land objects. Many re-
searchers attempt to build this relationship mathematically.
From recent reviews [2][20], however, no model exists that
can effectively characterize this relationship.

As remotely sensed images are often piece-wise smooth,
their gradients tend to be sparse and the non-zeros corre-
sponds to the boundaries. In addition, the positions of such

boundaries should be the same as those on the Pan image. It
demonstrates that the sparsity property is not fixed but dy-
namic according to a reference image. This property has not
been studied in sparsity theories yet. We call the data with
such a property a dynamic gradient sparse signal/image.

Definition: Let x ∈ RN and r ∈ RN denote the signal
and the reference signal. Ωx and Ωr denote the support
sets1 of their gradients, respectively. The set of dynamic
gradient sparse signals is defined as:
Sx = {x ∈ RN : |Ωx| = K,Ωx = Ωr, with K << N}.

Using similar logic, it can be extended to multi-
channel/spectral signals and images. In previous methods
P+XS [3] and AVWP [18], the `2 norm regularization is
used to exploit the gradient prior information, which does
not induce sparseness and tends to over-smooth the image
by penalizing large values. In Fang’s variational approach
(FVP) [9], the first term is derived from the linear combina-
tion assumption in P+XS; it does not promote sparsity for
each band. Different from previous work, dynamic gradi-
ent sparsity is encouraged in our method. Beside the prior
information that previous methods attempt to use, we also
notice the intra- correlations across different bands as they
are the representations of the same land objects. Therefore,
the gradients of different bands should be group sparse. It
is widely known that the `1 norm encourages sparsity and
the `2,1 norm encourages group sparsity [24]. Thus we pro-
pose a new energy function to encourage dynamic gradient
sparsity and group sparsity simultaneously:

E2 = ||∇X−∇D(P)||2,1 (2)

=
∑

i

∑
j

√∑
d

∑
q(∇qXi,j,d −∇qPi,j)2, (3)

where q = 1, 2 and D(P) means duplicating P to s bands.
∇1 and ∇2 denote the forward finite difference operators
on the first and second coordinates, respectively. Interest-
ingly, when there is no reference image, i.e. P = 0, the
result is identical to that of vectorial total variation (VTV)
minimization [5, 12, 7].

To demonstrate why E2 encourages dynamic gradient s-
parsity, we show a simple example on a 1D multi-channel
signal in Figure 1. We could observe that, if the solution has
a different support set from the reference, the total sparsity
of the gradients will be increased. Cases (a)-(d) have group
sparsity number 8, 4, 4, 2 respectively. Therefore, (a)-(c)
will be penalized because they are not the sparsest solution
in our method.

Combining the two energy functions, the image fusion
problem can be formulated as:

min
X
{E(X) = E1 + λE2

=
1

2
||ψX−M||2F + λ||∇X−∇D(P)||2,1}, (4)

1Here we mean the indices of the non-zero components.
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Figure 1. Illustration of possible solutions for different gradient
based penalties. The black denotes a reference signal. RGB color
lines denotes the solutions of different models. Left: 1D signals.
Right: the corresponding gradients. (a) A possible solution of TV:
the gradients of RGB channels are sparse but may not be correlat-
ed. (b) A possible solution of VTV: the gradients of R, G, B chan-
nels are group sparse, but may not be correlated to the reference
signal. (c) A possible solution of FVP [9]: it does not encourage
sparseness for each channel individually. (d) A possible solution
of dynamic gradient sparsity regularization: the gradients can only
be group sparse following the reference.

where λ is a positive parameter.
Comparing our method with existing methods

[3][18][9], the first benefit of our method comes from
the local spectral constraint. It does not rely on the
upsampled MS image and linear-combination assumption.
Therefore, only accurate spectral information is kept. It can
be further applied to image fusion from different sources
or different time acquisitions. Second, the proposed
dynamic gradient sparsity only forces the support sets to
be the same, while the sign of the gradients as well as the
magnitudes of the signal are not required to be the same.
These properties make it invariant under contrast inversion
[20] and not sensitive to illumination conditions. Last
but not least, only our method can jointly fuse multiple
bands simultaneously, which provides robustness to noise
[15][13]. These advantages exist in our method uniquely.

2.4. Algorithm

It is obviously that problem (4) is convex and has a global
optimal solution. The first term is smooth while the second
term is non-smooth. This motivates us to solve the problem
in the FISTA framework [4, 14]. It has been proven that
FISTA can achieve the optimal convergence rate for first
order methods. That is,E(Xk)−E(X∗) ∼ O(1/k2), where
X∗ is the optimal solution and k is the iteration counter.
We summarize the proposed algorithm for pan-sharpening
in Algorithm 1.

Here ψT denotes the inverse operator of ψ. L is the Lip-
schitz constant for ψT (ψX −M), which can be set as 1 in
this problem. We could observe that the solution is updat-
ed based on both Xk and Xk−1, while the Bregman method
that used in previous methods [3][9] updates X only based
on Xk. This is a reason why our method converges faster.
For the second step, L = 1 and

Xk = arg min
X
{1

2
‖X− Y‖2F + λ||∇X−∇D(P)||2,1}. (5)

Let Z = X−D(P) and we can rewrite the problem:

Zk = arg min
Z
{1

2
‖Z− (Y−D(P))‖2F + λ||∇Z||2,1}. (6)

This alternative problem is therefore a VTV denoising prob-
lem [5, 12, 7] and Xk can be updated by Zk + D(P). The
slow version of the VTV denoising algorithm [5] is accel-
erated based on FISTA framework to solve (6), which is
summarized in [12, 7]. The fast convergence rate O(1/k2)
is theoretically guaranteed by FISTA [19, 4].

Algorithm 1 DGS-Fusion

Input: L, λ, t1 = 1, Y0

for k = 1 to Maxiteration do
Y = Yk − ψT (ψX−M)/L
Xk = arg minX{L2 ‖X−Y‖2F +λ||∇X−∇D(P)||2,1}
tk+1 = [1 +

√
1 + 4(tk)2]/2

Yk+1 = Xk + tk−1
tk+1 (Xk − Xk−1)

end for

3. Experiment
The proposed method is validated on datasets from

Quickbird, Geoeye, SPOT and IKONOS satellites. The res-
olution of Pan images ranges from 0.41 m to 1.5 m. All
the corresponding MS images have lower resolutions with
c = 4 and contain blue, green, red and near-infrared bands.
For convenience, only the RGB bands are presented. Due to
the lack of multi-resolution images of the same scene, low
resolution images are downsampled from the ground-truth.
This strategy is common for comparing fusion algorithms
(e.g. [21][22][3][18][9]).

We compare our method with classical methods PCA
[6], IHS [11], wavelet [25], Brovey [10] and variation meth-
ods P+XS [3], AVWP [18]. The effectiveness of our method
is validated via extensive experiments with visual and quan-
titative analysis. Comparison with P+XS [3] and AVWP
[18] demonstrates its efficiency. The parameters for each
method are tuned individually according to the authors’
suggestion and the best set is selected for each method, re-
spectively. All experiments are conducted using Matlab on
a desktop with 3.4GHz Intel core i7 3770 CPU.
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Figure 2. Fusion Results comparison (source: Quickbird). The Pan image has 200× 160 pixels. Copyright DigitalGlobe.
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Figure 3. The corresponding error images to those in Figure 2. Brighter pixels represent larger errors.

3.1. Visual Comparison

First, we compare the fusion result by our method with
those of previous works [6][11][25][10][3][18]. Figure 2
shows the fusion results as well as the original images cap-
tured by the Quickbird satellite. All the methods can pro-
duce much better visual images than the original MS image.
Obviously, PCA [6] performs the worst. No artifacts can be
found on the images produced by IHS [11] and Brovey [10].
However, a closer look shows that the color on these images
tends to change, especially on the trees and grass. This is
a sign of spectral distortion [20]. Wavelet fusion [25] suf-
fers from both spectral distortion and blocky artifacts (e.g.
on the swimming poor). Blurred edges is a general issue in
the image fused by P+XS [3]. AVWP [18] performs much
better than all of them but it inherits the blocky artifacts of
the wavelet fusion.

For better visualization, the error images compared with
the ground-truth are presented in Figure 3 at the same scale.
From these error images, the spectral distortion, blocky arti-
facts, and blurriness can be clearly observed. These results
are consistent with those presented in previous work [18].
Due to the spectral distortion, the conventional methods are
not adapted to vegetation study [20]. Previous variation-
al methods [3][18] try to break such hard assumptions by
combining a few weak assumptions. However, such combi-
nations involves more parameters that required to be tuned.
Moreover, the fusion from the upsampled MS image often

results in inaccuracy. In contrast, we only constrain the
spectral information of the fused image to be locally con-
sistent with the original MS image. The fusion results are
impressively good from these visual observations.

3.2. Quantitative Analysis

Besides the image used previously, 157 test images of d-
ifferent sizes (from 128×128 to 512×512) are cropped from
Quickbird, Geoeye, IKONOS and SPOT datasets, which
contain vegetation (e.g. forest, farmland), bodies of wa-
ter (e.g. river, lake) and urban scenes (e.g. building, road).
This test set is much larger than the size of all datasets con-
sidered in previous variational methods (31 images in [3],
7 images in [18] and 4 images in [9]). Example images are
shown in Figure 4.

To evaluate the fusion quality of different methods, we
use four metrics that measure spectral quality and one met-
ric that measures spatial quality. The spectral metrics in-
clude the relative dimensionless global error in synthesis
(ERGAS) [1], spectral angle mapper (SAM) [1], univer-
sal image quality index (Q-average) [23] and relative av-
erage spectral error (RASE) [8]. The filtered correlation
coefficients (FCC) [25] is used as spatial quality metric.
In addition, peak signal-to-noise ratio (PSNR), and root
mean squared error (RMSE) and mean structural similari-
ty (MSSIM) [23] are used to evaluate the fusion accuracy
when compared with the ground-truth.

The average results and the variance on this test set are



Method ERGAS QAVE RASE SAM FCC PSNR MSSIM RMSE
PCA [6] 5.67±1.77 0.664±0.055 22.3±6.8 2.11±1.35 0.972±0.014 20.7±2.7 0.799±0.067 24.1±6.7
IHS [11] 1.68±0.86 0.734±0.011 6.63±3.4 0.79±0.54 0.989±0.006 31.2±4.6 0.960±0.035 8.1±4.2

Wavelet[25] 1.18±0.45 0.598±0.113 4.50±1.6 2.45±1.18 0.997±0.002 36.1±3.6 0.983±0.009 4.5±1.9
Brovey [10] 1.22±1.08 0.733±0.011 5.18±4.6 0.61±0.58 0.940±0.170 38.2±5.6 0.989±0.008 9.1±19.7

P+XS[3] 0.89±0.33 0.720±0.036 3.47±1.3 0.66±0.36 0.898±0.024 25.9±3.5 0.854±0.051 14.7±5.4
AVWP[18] 0.46±0.17 0.733±0.013 1.81±0.6 0.69±0.70 0.996±0.002 40.0±3.5 0.991±0.006 2.9±1.0
Proposed 0.07±0.03 0.746±0.004 0.3±0.1 0.18± 0.11 0.997±0.002 47.5±3.6 0.998±0.001 1.1±0.5

Reference Value 0 1 0 0 1 +∞ 1 0

Table 1. Performance Comparison on the 158 remotely sensed images.

Quickbird

Geoeye

SPOT

IKONOS

Figure 4. Example images used in our experiments. Copyright
DigitalGlobe for Quickbird, Geoeye and IKONOS. Copyright C-
NES for SPOT.

listed in Table 2. The ideal value for each metric is shown in
the last row. The results of variational methods [3][18] have
much lower values in ERGAS and RASE than those of con-
ventional methods [6][11][25][10]. From QAVE and SAM,
the results are comparable to conventional methods. We can
conclude that these variational methods can preserve more
spectral information. Due to the blurriness, P+XS has the
worse spatial resolution in terms of FCC. In terms of er-
ror and similarity metrics (PSNR, MSSIM, RMSE), AVWP
and P+XS are always the second best and second worst, re-
spectively. Except for the same FCC as the wavelet fusion,
our method is consistently better than all previous meth-
ods in terms of all metrics. These results are enough to
demonstrate the success of our method, where the dynamic
gradient sparsity can preserve sharp edges and the spectral
constraint keeps accurate spectral information. In terms of
PSNR, it can outperform the second best method AVWP by
more than 7 dB.

If we consider the prior information that is used, the per-
formance of each algorithm is easy to explain. Conven-
tional projection-substitution methods only treat the input
images as vectorial information (i.e. 1D). The difference
is the substitution performed on various projection spaces.
However, 2D information such as boundaries is not uti-
lized. The boundary information has been considered in
both variational methods P+XS [3] and AVWP [18], al-

though their models can not effectively exploit this prior
information. Promising results, especially by AVWP, have
already achieved over conventional methods. By using the
proposed dynamic gradient sparsity, our method has suc-
cessfully learned more prior knowledge provided by the Pan
image. Due to the group sparsity across different bands, our
method is less sensitive to noise. These are why our method
consistently outperforms the others.

3.3. Efficiency Comparison

To evaluate the efficiency of the proposed method, we
compare the proposed method with previous variational
methods P+XS [3] and AVWP [18] in terms of both accura-
cy and computational cost. PSNR is used to measure fusion
accuracy. Figure 5 demonstrates the convergence rate com-
parison of these algorithms corresponding to the images in
Figure 2. Inheriting the benefit of the FISTA [4] framework,
our method often converges in 100 to 150 outer iterations.
AVWP often converges in 200 to 400 iterations. P+XS that
uses classic gradient decent method has not converged even
with 600 iterations. After each algorithm converged, our
method can approximately outperform AVWP by more than
5 dB on this image in terms of PSNR. Note that the later one
is the second best method from previous analysis.
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Figure 5. Convergence rate comparison among P+XS, AVWP and
the proposed method. The Result corresponds to Figure 2.

The average computational costs of these three methods
are listed in Table 3 for different sizes of test images. Both
the proposed method and AVWP terminate when a fixed
tolerance is reached (e.g. 10−3 of the relative change on
X). The computational cost of our method tend to be linear
from these results. Even the second fastest method AVWP



takes about 50% more time than ours on an image of 512 by
512 pixels. These comparisons are sufficient to demonstrate
the efficiency and effectiveness of our method.

128× 128 256× 256 384× 384 512× 512
P+XS 6.7 16.0 48.3 87.4
AVWP 1.7 8.3 28.2 54.7

Proposed 1.4 5.0 19.3 36.8

Table 2. Computational time (second) comparison.

3.4. Discussion

The gradient prior information and joint structure have
been separately utilized in other image enhancement tasks
[16, 17]. Such success further demonstrates the effective-
ness of our modeling. The proposed method is not sensitive
to an exact downsampling scheme. When the actual down-
sampling is cubic interpolation, the same result can be ob-
tained if we use either cubic or bilinear interpolation. It is
only sightly worse when we use an averaging strategy.

4. Conclusion
We have proposed a novel and powerful variational mod-

el for pan-sharpening with local spectral consistency and
dynamic gradient sparsity. The model naturally incorpo-
rates the gradient prior information from a high resolution
Pan image and spectral information from an MS image.
Moreover, our model also exploits the band correlations of
the fused image itself, which has not yet considered in any
previous method. An efficient optimization algorithm has
been devised to solve the problem, with very fast conver-
gence speed. Extensive experiments are conducted on 158
images stemming from a variety of sources. Due to the
proposed unique techniques, our methods is corroborated
to consistently outperforms the state-of-the-arts in terms of
both spatial and spectral qualities.
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