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Abstract

We describe a simple and fast algorithm for optimizing
Markov random fields over images. The algorithm performs
block coordinate descent by optimally updating a horizon-
tal or vertical line in each step. While the algorithm is not
as accurate as state-of-the-art MRF solvers on traditional
benchmark problems, it is trivially parallelizable and pro-
duces competitive results in a fraction of a second. As an
application, we develop an approach to increasing the ac-
curacy of consumer depth cameras. The presented algo-
rithm enables high-resolution MRF optimization at multiple
frames per second and substantially increases the accuracy
of the produced range images.

1. Introduction
Markov random fields have become a standard represen-

tation for dense optimization problems in computer vision,
including depth reconstruction, image segmentation, image
restoration, image composition, and dense motion estima-
tion [2, 29, 1]. State-of-the-art optimization algorithms for
first-order MRFs are both elegant and highly accurate on
standard benchmark models [13, 14, 11]. In fact, the accu-
racy of the best known algorithms sometimes exceeds the
demands of the application and the accuracy of the underly-
ing model by a wide margin [29]. On the other hand, these
algorithms tend to be slow and are in some cases limited in
the types of potentials they can handle. For example, while
the advantages of MRF models for stereo reconstruction
have been extensively demonstrated by the research com-
munity, practical stereo systems shun such models in favor
of fast algorithms that do not involve global optimization.

In this paper, we describe a fast algorithm for optimiz-
ing Markov random fields over images. We focus on first-
order models with large ordered label sets. Such label sets
generally describe magnitudes, such as image intensities
or depths. They arise naturally in problems such as depth
reconstruction and image restoration. Our algorithm, de-
scribed in Section 2, is not as accurate on standard bench-
mark problems as state-of-the-art solvers such as TRW [13].
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It is, however, extremely simple and trivially parallelizable.
In a fraction of a second, the algorithm produces results
that have substantially lower energy than the energy of the
ground truth labeling [29].

As an application of the presented algorithm, we develop
a global optimization approach to improving the accuracy of
range images produced by consumer depth cameras. Such
cameras have become widely used in computer vision re-
search and applications. The most ubiquitous such devices
use speckle patterns. The range image is computed by com-
paring a stored infrared image of a speckle pattern projected
onto a flat calibration surface with an image of the same
speckle pattern projected onto the present scene [26]. Tens
of millions of depth cameras that operate on this principle
have been shipped [19] and range data acquired by these
sensors is being used in a variety of computer vision appli-
cations [7]. While the data is undoubtedly useful, many
concerns about its quality have been raised. Range im-
ages produced by current speckle-based sensors suffer from
a number of significant defects, including high-frequency
noise, quantization, and missing data [28, 12, 21, 6]. For
this reason, systems that use these images routinely prepro-
cess them using bilateral filtering [20, 21, 7], second-order
smoothness terms [10, 27], or fusion of multiple images
[17]. Other systems are specifically tailored to lower their
susceptibility to the characteristic defects of the data [6].

In Section 4, we develop a global optimization approach
to computing range images from projected speckle patterns.
Current speckle-based range cameras follow a winner-take-
all approach, associating the most likely range value with
each patch in the image. We instead optimize a global ob-
jective that balances local correlations of the projected pat-
tern with a robust regularization term. The MRF optimiza-
tion algorithm described in Section 2 allows this optimiza-
tion to be performed with very high accuracy at multiple
frames per second.

To evaluate the presented depth reconstruction approach,
we have acquired ground-truth three-dimensional models
for five highly detailed objects using an industrial 3D scan-
ner. Extensive experiments with this ground-truth data
demonstrate that our global optimization approach substan-
tially improves the accuracy of range images produced by
consumer depth cameras.
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2. Fast MRF Optimization
Consider an image of size W × H . For each pixel

p = (x, y) in the image, our goal is to assign it a label
lp = l(x,y). Let L be the number of possible labels. For
simplicity of exposition, assume that the labels are natural
numbers from 0 to L− 1. We also restrict the exposition to
first-order models over the 4-connected pixel grid, although
the presented algorithm can be generalized beyond this set-
ting. The MRF optimization problem can be expressed as
follows:

l? = argmin
l

E(l) = argmin
l

(
γEdata(l) +Ereg(l)

)
. (1)

Here l is the set of label assignments for all pixels and l?

is the sought after assignment that minimizes the objective
E(l). The objective consists of a data term Edata(l) and a
regularization term Ereg(l), balanced by a coefficient γ.

The data term expresses the local unary cost incurred by
each pixel under a given label assignment. It can be repre-
sented as a table V of size W ×H×L, such that V(x, y, l)
is the cost of assigning label l to pixel (x, y). This table is
sometimes referred to as the cost volume.

The regularization term associates costs with pairs of
neighboring pixels. These costs are commonly formulated
in terms of differences between the assigned labels:

Ereg(l) =
∑

{p,q}∈N

wpq ρ
(
`p − `q

)
, (2)

where N is the 4-connected pixel grid. ρ is a penalty func-
tion, such as the L1 norm, the L2 norm, the Charbonnier
penalty, or truncated versions of such penalties. wpq is a
weight associated with the edge {p, q}.

The problem can be expressed recursively:

`?p = argmin
`p

(
γV(x, y, `p) +

∑
q

wpq ρ
(
`p − `?q

))
, (3)

where p = (x, y) and the sum is over pixels q such that
{p, q} ∈ N . This expression will be useful in the subse-
quent presentation of our algorithm.

2.1. Block coordinate descent

Our algorithm optimizes the objective E(l) by block co-
ordinate descent. In each step, l is fixed outside a com-
plete horizontal or vertical line in the image. The optimal
label assignment along this line is computed by dynamic
programming, given the fixed assignments along the other
lines. Thus each block coordinate descent step performs an
optimal update of a complete image row or column. We
process the lines in four blocks: even rows, odd rows, even
columns, odd columns. This enables trivial parallelization,
since the lines in each block are not adjacent and can be

processed in parallel. To initialize the algorithm, we pro-
duce two label assignments: one generated by optimizing
all rows independently and the other by independently opti-
mizing all columns. The initial label of each pixel is chosen
randomly from its labels in these two assignments.

Each block coordinate descent step optimizes the com-
plete objective E(l). While most variables are fixed in any
given step, the objective remains the same. Thus the global
objective either decreases or remains unchanged in each
step. When the objective cannot be decreased by any step,
a local minimum has been reached and the algorithm has
converged. The algorithm is thus guaranteed to converge.

To optimize the model along a line in the image as re-
quired in each step of the algorithm, we use dynamic pro-
gramming. A naive application of dynamic programming
would have complexity O(V L2) in each step, where V is
the number of pixels in the line. However, as observed by
Felzenszwalb and Huttenlocher, this can be accelerated to
O(V L) without loss of optimality [5]. The Felzenszwalb-
Huttenlocher acceleration scheme was presented in the con-
text of belief propagation and was formulated for a num-
ber of specific penalty functions ρ. In Section 2.2 we give
a general formulation that clarifies that this acceleration
scheme is applicable to all penalty functions that satisfy a
certain combinatorial criterion. In particular, the acceler-
ation scheme applies to all convex penalties, non-convex
robust penalties such as the Lorentzian and the generalized
Charbonnier, and to truncated variants of these functions.

2.2. Dynamic programming

To avoid notational clutter in this section, we omit the
edge weights wpq , although their incorporation into the pre-
sented algorithms is straightforward. We begin by pre-
senting the naive dynamic programming algorithm, which
runs in time O(V L2). Without loss of generality, as-
sume that we are optimizing the label assignments for row
y in the image. Thus all assignments outside this line(
{`(x,y′) : 0 ≤ x < W, 0 ≤ y′ < H, y′ 6= y}

)
are fixed and

our goal is to compute the optimal assignments along this
line

(
{`(x,y) : 0 ≤ x < W}

)
. The naive dynamic program-

ming algorithm sweeps the row from left to right and com-
putes the following cumulative cost for each x from 0 to
W − 1 and for each possible label l:

C(x, y, l) = γV(x, y, l)

+ ρ
(
l − `(x,y−1)

)
+ ρ
(
l − `(x,y+1)

)
+ min

0≤k<L

(
C(x− 1, y, k) + ρ(l − k)

)
, (4)

with appropriate handling of image boundaries. The
algorithm thus computes WL values that fill the two-
dimensional slice of the volume C that corresponds to row
y. The procedure is initialized by filling in the L values
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Figure 1. Illustration of the dynamic programming algorithm. La-
bel assignments to the grey nodes are fixed. Cumulative costs
C for the red nodes have been computed and the algorithm is
now processing the green node. To compute the cumulative cost
C(x, y, l), the algorithm must minimize over terms involving pos-
sible assignments k to the previous node. Blue nodes will be pro-
cessed subsequently.

for pixel (0, y), for which the recursive term in (4) is inac-
tive. Following this initialization, the L values for pixel
(1, y) are filled in, and so forth by induction. This pro-
cedure is illustrated in Figure 1. To compute each value
C(x, y, l), the procedure needs to minimize over the L val-
ues C(x − 1, y, k) for the previous pixel. Thus the com-
plexity of the naive dynamic programming procedure is
O(WL2).

We now describe how the cumulative costs C can be
computed for all labels l for pixel (x, y) in total time O(L)
instead of O(L2). To this end, let’s define the following
auxiliary functions:

fk(l) = C(x− 1, y, k) + ρ(l − k),
e(l) = min

0≤k<L
fk(l). (5)

Substituting (5) into (4) yields

C(x, y, l) = γV(x, y, l)

+ ρ
(
l − `(x,y−1)

)
+ ρ
(
l − `(x,y+1)

)
+ e(l). (6)

This implies that if e(l) can be evaluated in time O(1)
then the cumulative cost C(x, y, l) can be computed in time
O(1), since all the other terms that make up the cost can be
evaluated in constant time.

The function e is the lower envelope of the set of func-
tions {fk}k. Lower envelopes have been extensively stud-
ied [24]. In particular, it is known that if each pair of func-
tions (fi, fj) intersects at most a constant number of times,
the complexity of the lower envelope e is near-linear, rather
than quadratic as could be naively supposed. Specifically,
the complexity of e is in general O(Lβ(L)), where β is

an extremely slowly growing function related to the inverse
of Ackermann’s function [24]. In our case, the situation
is even more benign because the functions fk have special
structure: they are all shifted copies of the penalty function
ρ. For all penalty functions encountered in the literature,
it can be shown that each pair (fi, fj) intersects at most
twice. This is the case for all convex penalties (L1, L2, Hu-
ber, Charbonnier, etc.) and for non-convex functions such
as the Lorentzian and the generalized Charbonnier penal-
ties. Proofs are provided in supplementary material. In this
case, the complexity of the lower envelope e is strictly linear
(O(L)) without any additional factors. Truncated penalties
can be handled easily by observing that

e(l) = min
0≤k<L

(
C(x− 1, y, k) + min

(
ρ(l − k), T

))
= min

(
min

0≤k<L

(
C(x− 1, y, k) + ρ(l − k)

)
,

T + min
0≤k<L

C(x− 1, y, k)

)
, (7)

where T is the truncation value. Thus the truncated variant
of any penalty ρ can be handled with no increase in compu-
tational complexity.

The lower envelope e can be computed over its entire do-
main 0 ≤ l < L in linear time O(L). The algorithm is a
simple generalization of a procedure described by Felzen-
szwalb and Huttenlocher and can be found in our reference
implementation. This enables us to compute the cumulative
costs C(x, y, l) for all 0 ≤ l < L in total time O(L) as
follows. First we compute the function e(l) for all l in time
O(L). The result of this computation is an array of function
values that enables evaluating e(l) for any given l in time
O(1). As described above, this implies that each cumula-
tive cost C(x, y, l) can now be evaluated in constant time.
Overall, we can compute all C(x, y, l) for 0 ≤ l < L in
time O(L) and thus complete the entire dynamic program-
ming algorithm for row y in time O(WL).

3. Evaluation of MRF Optimization

We evaluate the presented block coordinate descent
(BCD) algorithm on the benchmark problems of Szeliski
et al. [29] that have large ordered label sets. These are
the three stereo matching problems (Tsukuba, Venus, and
Teddy) and the two image restoration problems (Penguin
and House). (These problems are also used in the re-
cent collection of Kappes et al. [11].) The BCD algo-
rithm is compared to the high-performing algorithms iden-
tified by Szeliski et al.: graph cuts with α-expansion moves
(Expansion) and αβ-swap moves (Swap), two imple-
mentations of loopy belief propagation (BP-M and BP-S),
and TRW (TRW-S). We also include the Fast-PD algorithm
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of Komodakis et al. [15], which was developed with an em-
phasis on speed (FastPD).

The results are shown in Figure 2 (left), following the
visualization methodology of Szeliski et al. Note that run-
ning time is plotted on a logarithmic scale. In this experi-
ment and in ones reported in Section 5, running times are
measured on a desktop machine with 16GB of RAM and a
quad-core Intel Core i7-3770K CPU clocked at 3.50GHz.
We use a parallelized implementation of BCD. The BCD
algorithm is not as accurate at convergence as TRW, but is
much faster. On all problems, the BCD algorithm converges
to an objective value that is much lower than the objective
value of the real-world ground truth solution [29].

The performance of different algorithms is affected by
the smoothness terms that are used in the different bench-
mark problems. Three of the problems (House, Penguin,
and Venus) use the L2 norm and two use the L1 norm, all
with different truncation values. To evaluate the robustness
of different algorithms to changes in the smoothness term,
we conducted a second experiment in which the accuracy of
different algorithms is measured as a function of the trunca-
tion distance. The results are shown in Figure 2 (right). The
form of the underlying penalty function ρ remains the same:
L1 or L2, depending on the problem. The corresponding
truncated penalty is defined as ρ′(a) = min(ρ(a), ρ(d)).
Figure 2 (right) shows the objective value of each algorithm
at convergence as a function of the truncation distance d.
TRW is the clear winner in terms of accuracy, at the price
of substantial running times. On the other hand, a num-
ber of algorithms (FastPD, BP-S, and Swap) are clearly
sensitive to the precise shape of the smoothness penalty
and should not be used without consideration of this aspect
of the model. Among the remaining algorithms, BCD and
BP-M are both very robust. BP-M is more accurate on aver-
age, but parallelized BCD is two orders of magnitude faster.

4. Depth Reconstruction
The problem of estimating the true range information

from noisy and incomplete range images has been studied
extensively. A common approach is to rely on a color im-
age that is acquired in tandem with the range image, and to
use information from the color image to rectify the range
image [3, 30, 9, 22, 27, 7, 8, 25]. This approach has a num-
ber of drawbacks. First, range cameras are not always ac-
companied by color cameras. Second, even tightly coupled
RGB-D camera pairs do not produce perfectly compatible
range and color images: the color image is acquired from a
different viewpoint and the shutters are in practice not per-
fectly synchronized, leading to misalignments between the
images. Third, even perfectly aligned color images provide
unreliable information on scene geometry.

In this section, we develop a depth reconstruction ap-
proach that does not require additional information chan-
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Figure 2. Left. The presented BCD algorithm is compared to al-
ternative MRF optimization algorithms on benchmark problems.
Objective value of the solution found by each algorithm is plot-
ted over time. Running time in seconds is shown on a logarith-
mic scale. Objective value is plotted in percentage points, where
100% is set to be the lowest value achieved by any algorithm on
the problem. BCD is not as accurate as state-of-the-art solvers
such as TRW, but is much faster. Right. Evaluation of the robust-
ness of different algorithms to the shape of the smoothness penalty
in the model. Objective value of each algorithm at convergence is
plotted as a function of the truncation distance of the smoothness
term. TRW, BP-M, and BCD are very robust.
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nels and operates directly on the infrared speckle pattern
image produced by consumer depth cameras [26, 16, 28].
These cameras perform triangulation on a pair of infrared
images. Both images are of a fixed speckle pattern pro-
jected by the sensor: one is of the pattern projected onto the
current scene and the other is a fixed calibration image of
the pattern projected onto a flat plane. The goal is to esti-
mate the disparity between the two images for every visible
point in the scene. In currently deployed systems, dispar-
ity is estimated by correlating horizontally aligned patches
in the two images. For concreteness, consider a horizontal
search window of 64 pixels, subpixel disparity estimation
at 1

8 -pixel resolution, patches of size 9x9, and the normal-
ized cross-correlation measure. These details are consistent
with published accounts of deployed systems and are not
essential to any aspect of our technique.

The input can be represented as a cost volume V of
size W × H × L, where W × H is the image size and
L is the number of possible subpixel disparities. The
cost volume stores the computed correlation-based costs
for all pixels and all possible disparities. The basic dis-
parity estimation algorithm used by deployed systems can
be clearly expressed in terms of the cost volume: se-
lect the lowest-cost disparity independently for each pixel,
`?(x,y) = argmin`(x,y)

V(x, y, `(x,y)). In place of this lo-
cal winner-take-all approach, our model integrates pairwise
smoothness terms on neighboring pixels as expressed in
equation (3). A number of penalty functions can be used
and we evaluate different penalty functions in Section 5.
The complete objective is optimized using the algorithm de-
scribed in Section 2.

We adjust the data term V in two ways to model specific
characteristics of our input. First, we have observed that
correlation functions V(x, y, ·) fall into two types. First,
there are high-entropy low-confidence pixels for which the
correlations for all disparities are low (and the associ-
ated costs are high). Second, there are low-entropy high-
confidence pixels for which the correlation function has a
single dominant peak. This is quite unlike the data terms
commonly encountered in passive stereo, where multiple
high-correlation peaks and broad high-correlation plateaus
are common. This is because the projected speckle pat-
tern has the property that the sub-pattern in any local patch
is almost always unique within the search window. Thus
the correlation function generally either encounters a single
strong match or none at all.

This characteristic of the input casts the role of the reg-
ularizer in our model in a new light. The primary role
of the regularizer is to propagate information from high-
confidence pixels to low-confidence ones. In particular, the
influence of the regularizer on the high-confidence pixels
themselves should be significantly weaker, since the data
term at these pixels is extremely informative. There are dif-

ferent ways to accomplish this. An approach that works
well in practice is to simply amplify the high correlation
values at the low-entropy pixels.

The second adjustment to the data term involves occlu-
sion regions. These are parts of the infrared image that are
occluded from the projected speckle pattern and thus have
no projected signal. These regions are easy to detect, since
their infrared intensity is considerably lower. If the model
is applied without modification within occluded regions, it
will lead to smoothing across these regions. A more rea-
sonable assumption is that the depth in the occluded regions
should be consistent with the depth of the farther adjacent
layer. We thus replace the data term V(x, y, ·) for each
occluded pixel (x, y) with a single high-confidence plateau
around the depth of the farthest highly confident pixel near
a corresponding occlusion boundary.

5. Evaluation of Depth Reconstruction
In this section we evaluate the depth reconstruction ap-

proach presented in Section 4. We begin by describing
a new dataset of scanned objects that enables us to pre-
cisely measure the metric accuracy of different depth re-
construction algorithms. We then evaluate the effect of
the MRF smoothness penalty on the accuracy of our ap-
proach, compare the performance of the BCD algorithm
presented in Section 2 to other MRF optimization algo-
rithms on the depth reconstruction problem, and provide an
extensive comparison of our depth reconstruction approach
to range rectification algorithms advocated in prior work.

5.1. Data

Ground truth data. We evaluate the presented depth re-
construction approach on a set of images of five objects for
which we acquired precise three-dimensional models. The
ground-truth three-dimensional models are shown in Figure
3. The objects were purchased from an online retailer. Two
objects, the “lion” and the “fox”, are decorative sculpted
animals, roughly 70cm high. Two objects, the “angel” and
the “gargoyle”, are decorative sculptures of fantastical crea-
tures. They are 77cm and 60cm high, respectively. The fifth
object, the “arch”, is a miniature of the Arc De Triomphe,
originally intended to be used as an end table. It is 50cm
high.

Highly accurate ground truth geometry was acquired
with a GOM ATOS II 3D scanner, developed for appli-
cations in the aerospace, automotive, and other industries.
The ATOS scanner acquires dense depth images with a 0.2
millimeter point spacing and a 25 micron depth accuracy.
Individual depth images were precisely aligned using pho-
togrammetry targets. The application of photogrammetry
targets is apparent in the corresponding 5mm diameter holes
in the ground truth data shown in Figure 3. We did not ap-
ply hole filling or any other post processing to the data.
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Figure 3. Ground truth models acquired using an industrial 3D scanner. From left to right: angel, arch, fox, gargoyle, and lion.

Test data. To evaluate different components of our ap-
proach and to compare our approach to alternatives, we used
a PrimeSense Carmine range camera to acquire images of
each of the five objects. For each object, the camera was
mounted on a tripod and the object was put on a turntable
roughly 1m in front of the camera. We imaged each object
at 12 angular intervals of approximately 30 degrees each.
At each interval, the PrimeSense camera produced three im-
ages: a range image, a color image, and an infrared image
of the projected speckle pattern.

Each approach we evaluate is used to produce a depth
image for each of the 12 poses of each object. To evaluate a
given depth image produced by any of the approaches, the
ground truth three-dimensional model is aligned to the test
depth image using ICP. Points on the ground truth model
that are visible from the camera are then automatically iden-
tified. For each of these visible points, the Euclidean dis-
tance to the closest point on the evaluated depth image is
computed. We use the mean of these distances as our pri-
mary quantitative evaluation measure, reported in millime-
ters.

5.2. Experiments

Penalty function. We begin by evaluating different
penalty functions ρ that can be used in our model. We eval-
uate the truncated L1, L2, and Charbonnier penalties. For
each penalty, we perform five-fold cross-validation on the
parameter γ and the truncation threshold T : in each round
of cross-validation, we train on four of the objects (e.g., fox,
lion, angel, arc) and test on the fifth (e.g., gargoyle). For the
Charbonnier penalty we also cross-validate on the param-
eter ε that is involved in the construction of this function.
The quantitative results are shown in Table 1. The results
indicate that the robust Charbonnier penalty performs best.
We use the truncated Charbonnier penalty henceforth.

Optimization algorithm. We now compare the perfor-
mance of the BCD algorithm presented in Section 2 to

time angel arch fox garg. lion mean
L1 0.23 s 3.84 3.46 3.15 4.71 4.42 3.91
L2 0.28 s 3.93 3.38 3.19 4.79 4.47 3.95

Charbonnier 0.31 s 3.70 2.99 3.08 4.64 4.43 3.77

Table 1. Metric accuracy (in millimeters) obtained with different
penalty functions.

other MRF optimization algorithms on the depth recon-
struction problem. We compare BCD to Swap, Expansion,
and TRW-S. The results are provided in Table 2.

time angel arch fox garg. lion mean
Expansion 112 s 4.45 3.74 3.39 4.94 4.81 4.26

Swap 23 m 4.27 3.51 3.20 4.77 4.51 4.05
TRW-S 83 m 3.71 3.39 3.06 4.49 4.24 3.78
BCD 0.31 s 3.70 2.99 3.08 4.64 4.42 3.77

Table 2. Metric accuracy (in millimeters) of different MRF opti-
mization algorithms on the depth reconstruction problem.

Comparison to range image rectification. A large num-
ber of range image rectification schemes have been advo-
cated in the literature. Some attempt to rectify the origi-
nal range image produced by the camera by filtering, others
make use of a corresponding color image that is assumed
to be provided in addition to the original range image. In
contrast to these approaches, our algorithm operates on the
raw speckle pattern image acquired by the camera and uses
a different model to infer the range image from the speckle
pattern image. The experiments reported below show that
our approach significantly outperforms all range image rec-
tification algorithms, without relying on additional informa-
tion channels such as color. Some additional range images
produced by the presented approach are shown in Figure 4.

The first two approaches we compare to are based on bi-
lateral filtering. It is common in practice to rectify a range
image by applying a bilateral filter [20, 21, 7]. This is thus
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the first approach we evaluate. We cross-validate on the two
standard deviations of the bilateral filter. A more advanced
application of bilateral filtering ideas uses a joint bilateral
filter [30, 4, 23]. This is the second approach we evaluate.
We use the implementation provided by Silberman et al. as
part of the NYU Depth dataset and cross-validate on its pa-
rameters [27]. The third approach we include is an adap-
tation of the colorization algorithm of Levin et al. [18] that
uses second-order smoothness terms to smooth and extrapo-
late the available range data. This is the default range recti-
fication algorithm used in the NYU Depth dataset [27]. We
use their implementation. The fourth algorithm we compare
to is the classical Diebel-Thrun MRF [3]. We use our own
implementation and cross-validate on the parameters. The
fifth algorithm is the nonlocal filtering approach of Park et
al. [22]. The sixth is the Fields of Experts model of Herrera
et al. [8]. For the last two approaches we use implementa-
tions provided by the authors. The results of the experiment
are shown in Table 3.

time angel arch fox garg. lion mean
Original 4.76 3.77 3.55 5.22 5.29 4.52

BF 5.2 s 4.48 3.70 3.27 5.15 4.73 4.27
JBF 1.8 s 4.61 3.61 3.57 5.24 4.91 4.39

Colorization 22 s 4.35 3.45 3.36 5.54 4.57 4.26
DT 3.1 s 4.39 3.47 3.39 5.55 4.57 4.27

Nonlocal 44 s 4.56 3.55 3.50 5.65 4.81 4.42
FoE 79 m 4.22 3.50 3.31 4.95 4.50 4.10
Ours 0.31 s 3.70 2.99 3.08 4.64 4.42 3.77

Table 3. Metric accuracy (in millimeters) achieved by range im-
age rectification algorithms and by our approach. The top row
shows the accuracy of the original range image produced by the
camera. The following rows report the accuracy achieved by bilat-
eral filtering (BF), joint bilateral filtering (JBF), an adaptation of
the colorization approach of Levin et al. [18], the MRF model of
Diebel and Thrun [3] (DT), the nonlocal filtering approach of Park
et al. [22], the Fields of Experts model of Herrera et al. [8] (FoE),
and our approach.

6. Conclusion

We presented a simple algorithm for MRF optimization.
The presented BCD algorithm is not as accurate as state-
of-the-art solvers on standard benchmark problems, but is
trivially parallelizable, producing competitive results in a
fraction of a second. We then developed a new global opti-
mization approach to improving the accuracy of range im-
ages produced by consumer depth cameras. The presented
BCD algorithm allows the approach to be applied at mul-
tiple frames per second. The approach significantly out-
performs all range image rectification algorithms, without
relying on additional information channels such as color.
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