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Abstract

We introduce an online approach to learn possible ele-
mentary groups (groups that contain only two targets) for
inferring high level context that can be used to improve
multi-target tracking in a data-association based frame-
work. Unlike most existing association-based tracking ap-
proaches that use only low level information (e.g., time, ap-
pearance, and motion) to build the affinity model and con-
sider each target as an independent agent, we online learn
social grouping behavior to provide additional information
for producing more robust tracklets affinities. Social group-
ing behavior of pairwise targets is first learned from con-
fident tracklets and encoded in a disjoint grouping graph.
The grouping graph is further completed with the help of
group tracking. The proposed method is efficient, handles
group merge and split, and can be easily integrated into any
basic affinity model. We evaluate our approach on two pub-
lic datasets, and show significant improvements compared
with state-of-the-art methods.

1. Introduction

Multi-target tracking in real scenes has been an active re-
search topic in computer vision for many years, due to its
promising potential in industrial applications, such as visual
surveillance, human-computer interaction, and anomaly de-
tection. The goal of multi-target tracking is to recover tra-
jectories of all targets while maintaining identity labels con-
sistent. There are many challenges for this problem, such as
illumination and appearance variation, occlusion, and sud-
den change in motion [25][27]. As great improvement has
been achieved in object detection, data association-based
tracking (DAT) has become popular recently [12][22][30].
An affinity model integrating multiple visual cues (appear-
ance and motion information) is formulated to find the
linking probability between detection responses or tracklets
(trajectory fragments), and the global optimal solution is of-
ten obtained by solving the maximum a posteriori problem
(MAP) using various optimizaion algorithms.
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Figure 1. Examples of challenging conditions for tracking. The
same color indicates the same target. Note that for both targets
with bounding box there are significant appearance and motion
changes due to occlusions and cluttered background.

Although much progress has been made in building more
discriminative appearance and motion models, problems
such as identity switch and track fragmentation still exist
in current association based tracking approaches, especially
under challenging conditions where appearance or motion
of the target changes abruptly and drastically, as shown in
Figure 1. The goal of association optimization is to find the
best set of associations with the highest probability for all
targets, which makes it not necessarily capable of linking
difficult tracklet pairs. In this paper, we explore high level
contextual information, social grouping behavior, for asso-
ciating tracklets that are very challenging for lower level
features (time, appearance, and motion).

When there are few interactions and occlusions among
targets, DAT gives robust performance. Discriminative de-
scriptors of targets are usually generated using appearance
and motion information from tracklets. Appearance model
often uses global color histograms to match tracklets, and a
linear motion model based on velocity and distance is often
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Figure 2. Overview of the elementary grouping model.

assumed to constrain motion smoothness of two tracklets.
However, these low level descriptors are likely to fail for
tracklets with long time gap. Because the appearance of a
target might change drastically due to heavy occlusion, and
the linear motion model is unreliable for predicting location
of a target after a large time interval.

On the other hand, there is often other useful high level
contextual information in the scene which can be used to
mitigate such confusions. For instance, sociologists have
found that up to 70% of pedestrians tend to walk in groups
in a crowd, and people in the same group are likely to have
similar motion pattern and be spatially close to each other
for better group interaction [17]. It is also shown in many
real world surveillance videos that if two people are walking
together at certain time then it is very likely that these two
people will still walk together after a short time period.

Based on the above obseravations, we propose an el-
ementary grouping model to construct a grouping graph
where each node represents a pair of tracklets that form an
elementary group (a group of two targets) and each edge in-
dicates the connected two nodes (elementary groups) have
at least one target in common. The group trajectories of any
two linked nodes are used to estimate the probability of the
other target in each group being the same subject. The el-
ementary grouping model is summarized in Figure 2. The
size of a group may change dynamically as people join and
leave the group, but a group of any size can be considered as
a set of elementary groups. Therefore, focusing on finding
elementary groups instead of the complete group makes our
approach capable of modelling flexible group evolvement in
the real world. Note that the social group in this paper refers
to a number of individuals with correlated movements and
does not indicate a group of people who know each other.

The contributions of this paper are:

e We propose an approach that estimates elementary
groups online and infers grouping information to ad-
just the affinity model for association-based tracking.
This approach is independent of the detection methods,
affinity models, and optimization algorithms.

e Our approach of elementary grouping is simple and
computationally efficient, while remaining effective
and robust.

2. Related Work

Traditional approaches of multi-target tracking usually
use filtering algorithms to enable time-critical applications,
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where video is processed on frame-by-frame bases [3][31].
Recently, DAT became the major researched area. With the
help of the state-of-the-art tracklet extraction methods such
as those based on human detectors [13], the focus is shifted
to robust tracklet association schemes [27].

To achieve robust association, reliable affinity scores be-
tween tracklets are essential. Such scores are generally
extracted from appearance information such as color his-
tograms and motion features such as motion smoothness. A
discriminative appearance model is learned via combining
multiple features in a boosting framework [14]. Part-based
appearance models has been applied in multi-target tracking
to mitigate occlusions [23].

Given affinity measurements among tracklets, another
research focus is on effective and efficient optimization al-
gorithm for association. Bipartite matching via the Hungar-
ian algorithm is among the most popular and simplest al-
gorithms [13][20]. A lot of other optimization frameworks
have been proposed, such as K-shortest path [5], set-cover
[26], Generalized Minimum Clique Graphs [2].

Most of the work only considers pairwise similarities,
without referring to high level information. Thus, prob-
lems such as unlikely abrupt motion changes cannot be ad-
dressed. In [29] a Conditional Random Field (CRF) is used
for tracking while modeling motion dependencies among
associated tracklet pairs. In [7] a Lagrangian relaxation is
conducted to make higher-order reasoning tractable in the
min-cost flow framework. They focus on higher-order con-
straints such as constant velocity. However, both works con-
centrate on individuals that may possess a lot of freedom.

We focus on utilizing social grouping information for
more natural high level constraints. Social factors have
attracted a lot of attention in multi-target tracking recently.
In [19] a more effective dynamic model leveraging nearby
people’s positions is proposed. In [18] trajectory predic-
tion accuracy is improved by inferring pedestrian groups.
Nearby tracks are also considered as contextual constraints
in [6]. In [21] social grouping information is used as a
higher-level cue to improve multi-target tracking perfor-
mance. They seek a balanced explanation of data between
K-means clustering for group description and tracklet asso-
ciation. However, their grouping is performed at a pedes-
trian level and the number of groups is a fixed value which
might be too rigid (such as when people in groups split).
As a comparison, our grouping scheme is more flexible by
using elementary groups. Also their optimization [21] is
gradient-based and K-means clustering needs multiple ran-
dom initializations. The optimization in our approach is de-
terministic with a closed-form solution.

Some work in computer vision [3][11][24][28] has ex-
plored group discovery and group tracking, while our work
focuses on using social groups to maintain individual iden-
tities in a DAT framework.
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Figure 3. Block diagram of our tracking system. Tracklets with the same color contain the same target. Best viewed in color. For the
legends in this figure please see the box in the upper right hand side.

3. Technical Approach

In this section, we introduce how the elementary group-
ing model is integrated to the basic tracking framework for
tracklet association. An overview is presented in Figure 3.

3.1. Tracking Framework with Grouping

Detection-based tracking finds the best set of associa-
tions with the maximum linking probability given the de-
tection responses of a video sequence. In an optimal associ-
ation, each disjoint string of detections should correspond to
the trajectory of a specific target in the ground-truth. How-
ever, object detector is prone to errors, such as false alarms
and inaccurate detections. Also, linking detections directly
has a high computational cost. Therefore, it is a common
standard to pre-link detection responses with high linking
probabilities to generate a set of reliable tracklets (trajectory
fragments). Then a global optimization method is employed
to associate the tracklets according to multiple cues.

A mathematical formulation of the tracking problem
is given as follows. Suppose a set of tracklets T
{T1,..,T},} is generated from a video sequence. A tracklet
T; is a consecutive sequence of detection responses or in-
terpolated responses that contain the same target. The goal
is to associate tracklets that correspond to the same target,
given certain spatial-temporal constraints. Let association
a;; define the hypothesis that tracklet T; and T contain the
same target, assuming 7; occurring before 7. A valid as-
sociation matrix A is defined as follows:

1 if T; is associated to T';
A =A{ai},ai; = { 0 othérwise !

n n
s.t. 21:1 a;; = 1 and ijl a;; =1

&)
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The constraints for matrix A indicate that each tracklet
should be associated to and associated by only one other
tracklet (the initial and the terminating tracklets of a track
are discussed in Section 4.1).

We define S;; as the basic cost for linking tracklet T;
and T based on low level information (time, appearance,
and motion). It is computed as the negative log-likelihood
of T; and Tj being the same target (explained in detail in
Section 4.1).

Let Q be the set of all possible association matrices, the
multi-target tracking can be formulated as the following op-
timization problem:

X .
A* = argmin E a5 54;
Aca

)

This assignment problem can be solved optimally by the
Hungarian algorithm in polynomial time.

As low level information is not sufficient to distinguish
targets under challenging situations, we consider to inte-
grate high level context into the cost matrix to regularize
the solution. The high level context is obtained by analyz-
ing the elementary grouping structure of the tracklets. Two
tracklets T; and T are likely to correspond to the same tar-
get if they satisfy the following constraints: 1) each of them
forms an elementary group with the same target; 2) the tra-
jectory obtained by linking T; and T} has a small distance
to the group mean trajectory. The first constraint is based on
the observation that if two people are walking together for
a certain time, then there is high probability that they will
still walk together after a short time period. The second
constraint prevents us from linking wrong pair of tracklets.
Let P;; be the inferred high level information for T; and T},
the tracklet association problem can be refined as:
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X .
A arj%grgl;n ; a;;(S;; — aPyj)
where « is a weighting parameter. It is selected by coarse
binary search in only one time window and kept fixed for
all the others.

In the following, we introduce an online learning method
for grouping analysis and obtain F;; by making inferences
from the grouping graph.

3.2. Online Grouping Analysis
3.2.1 Learning of the Elementary Groups

In this section, we explain how the nodes (elementary
groups) of the grouping graph are created. A set of track-
lets is generated after low level association, but only confi-
dent tracklets are considered for grouping analysis, as there
might be false alarms and incorrect associations in the input
tracklets. Based on the observation that inaccurate tracklets
are often the short ones, we define a tracklet as confident if
it is long enough (e.g., it exists for at least 10 frames).

Two tracklets T; and T form an elementary group if they
have following properties: 1) T; and T); have overlap in time
for more than [ frames (I is set to 5 in our experiments); 2)
they are spatially close to each other; 3) they have similar
velocities. Mathematically, we use G;; to denote the prob-
ability of T; and T); forming an elementary group:

Gij = P(T;,Tj) - Py(T3, Ty) - Po(T;, Tj) “4)

where P;(-), Py(+) and P,(-) are the grouping probabilities
based on overlap in time, distance and velocity respectively.
Their definitions are given in Eq. 5, Eq. 6, Eq. 7.

Li:
P(T;, Tj) = —2—
t( (2] J) Lij+l (5)
1 Lij; 2 .
PuTT) = 322, (1= axctan(dists)) - (6)
) -
cosf +1
BT Ty) = —5— @

where L;; is the length of overlapped frames for T; and
T}, dist,, is the normalized center distance for T} and T}
on n'* overlapped frame, 6 is the angle between the av-
erage velocities of the two tracklets during the overlapped
frames. In our experiments, we set dist, = ratio, -
d/0.5(width; + width;), ratio, is computed as the size
of the larger target over the size of the smaller target, d
is the Euclidean distance between the two object centers,
and 0.5(width,; + width;) is the largest distance in the im-
age space for two people that walk side by side. The term
ratio, prevents tracklets like in Figure 4 to be considered
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Figure 4. Examples of generating incorrect elementary groups if
the distances are not normalization.

as a group, where the distance in the image space is small
while the distance in the 3D space is quite large.

We create a node for each pair of tracklets that have non-
zero grouping probability G. Thus, each node contains two
tracklets/targets and is associated with a probability G, its
value indicates the similarity of motion patterns for these
two tracklets during their co-existing period.

Note that even if two tracklets form an elementary group,
the grouping is only meaningful for the overlapped part. For
example, if T,, and T}, are in the same elementary group, this
only indicates that T, and 7} have similar motion pattern
for the period that they have time overlap. During the non-
overlapping period, 7, may form elementary groups with
other tracklets/targets that are even in a different group of
Ty. Such property makes the elementary group flexible to
handle group split and merge easily.

3.2.2 Group Tracking

The relationship between two elementary groups is identi-
fied by group tracking. Inspired by association-based multi-
target tracking, we define our group tracking as a problem of
finding globally optimal associations between elementary
groups based on the three most commonly used features:
time, appearance, and motion. More specifically, given a
set of elementary groups, we compute the cost for linking
any two groups and use Hungarian algorithm to obtain the
global optimal solution.

Let {77, 75"} denotes the two tracklets in an elemen-
tary group g;. Given two elementary groups g; and gj,
assume g; starts before g;, their linking cost based on
time, appearance and motion are denoted as CY(g;, g;).
C3,pr(9i5 95) and C3,,(gs, g5), and the summation of these
three costs is the final cost for linking g; and g;.

The cost for time is defined as:

0
0

g, is not overlapped with g;
otherwise

C{(9i.95) =1 ®)

where the non-overlapping constraint means any tracklet in
g; has no time overlap with any tracklet in g;.



If g; and g; contain the same two targets, there are only
two matching possibilities: 1) 7{* and T;” are the same
target, T5° and T3’ are the same target; 2) 77 and T5”
are the same target, 75" and T;” are the same target. We
explain in detail for matching option 1), the computation
for matching option 2) is similar.

Let S(-) be the appearance similarity for two tracklets,
the group linking cost based on appearance is defined as
Cgppr (gi’ gj) = _ZOQ(S(T{117 Tlgj) + S(Tégl’ CTQg7 )) As
there might be appearance variations in a single tracklet due
to occlusion and lighting changes, it is hard to generate fea-
tures that can well represent the appearance of a target. In
order to get more accurate similarity between two tracklets,
we adopt the modified Hausdorff metric [9] which is able to
compute the similarity of two sets of images. Given a track-
let T; that has length m;, let T; = {d%,d5, ..., d%, } where
di is the z'" estimation of T}. Then S(-) is defined as:

1 ; 1 .
S(T;, Tj) =min(— Y s(di, Ty),— > s(d),T)) )
" g er, " e,

where s(-) is the Hausdorff similarity between an estima-
tion and a tracklet. We use a modified cosine similarity
measure [16] to compute the similarity between two estima-
T
tions. It is defined as s¢os(u, v) = Mﬁ where
u, v are the feature descriptors from two images, |||, is the
l, norm (we set p = 2), and € is a small positive regulariza-
tion number. In our experiments, we use the concatenation
of HSV color histogram and HOG features as the feature
descriptors.
We define the cost based on motion as follows:

2, (0i,97) = Ol (T T) + CL (T3 T8 (10)
where C? ,(-) is the motion model used for estimating the
smoothness of two tracklets (explained in Section 4.1).

For each matching option, we compute the linking cost
based on appearance and motion, and use the one with the
larger sum for C¢,, (i, g;)+Cyh: (s, g5)- Also, the match-
ing option is recorded for each group association.

3.3. Grouping Modeling via Dynamic Graph
3.3.1 Creation of Virtual Nodes

Our goal is to encode grouping structure of the tracklets by
the elementary grouping graph. With elementary groups as
nodes of the graph, we define an edge between two nodes
indicating the existence of at least one common target in
the corresponding two elementary groups. For simple cases
where two nodes have one tracklet in common, we link
these two nodes directly, such as nodes g; and g2, g4 and
gs shown in Figure 3. For difficult cases where there are

4325

T

_’\i‘ T5 T2 T5 N :.. T5 o { 5
=5 13"7~ < i~ < 3 /
8 e ANNE M 8
T4, \ T4, . T4, \\ T4 77\
’
(a) (b) (c) (d)

Figure 5. Inference for each edge in the grouping graph in Fig-
ure 3: (a) edge between g1 and g2, (b) edge between g and v1, ()
edge between g2 and v2, (d) edge between g4 and gs. Black solid
line represents interpolation between the two tracklets that need
inference, black dashed line is the group mean trajectory, and col-
ored dotted line indicates a virtual tracklet.

four different tracklets in two nodes, we use the results of
group tracking to find their relationship.

Suppose g; and g; are associated by group tracking,
namely, these two elementary groups contain the same two
targets. We create two virtual nodes v, and v, set their
grouping probability G to be the same as that of node gj,
and build edges between g; and the virtual nodes. Each vir-
tual node also contains two tracklets, one is a virtual track-
let generated by linking a pair of matched tracklets in g; and
g;, the other is the tracklet left in g;. An example of virtual
node creation is presented in Figure 3. Based on the associ-
ation of g9 and g3, two virtual nodes v, and v, are created
and conneted to gs. Two virtual nodes are used since there
are two pairs of tracklets that need inference (edge for go
and v indicates inference for T and Tg; edge for g, and
v9 indicates inference for 75 and 7%). In the following, we
show that by using the virtual node we can make inference
easily.

3.3.2 Inference from the Grouping Graph

In the grouping graph, each node is an elementary group
and each edge indicates that the two connected elementary
groups have one target in common. According to the ob-
servation that two people walk together at certain time are
likely to walk together after a short period, given two di-
rectly connected groups, we can infer the probability of the
uncertain target in each group being the same.

Suppose there is an edge between nodes g; and g; in the
grouping graph, assuming T/ = TV = Ty, Ti = T}, and
TQj = T, without loss of generality, the probability of 7%
and T} contain the same target is defined as follows:

Pim = 0.5(Gr + Grm) X TSIMi(Ty my, G r,1my) (11)

where T'Simi(Ty1 my, G k,1,m}) is the trajectory similarity
between trajectory T ,,,) (created by linking T; and T},)
and the group mean trajectory Gy ;) (created by com-
puting the mean position of Ty, and T ,,,}). We define the
trajectory similarity as follows:



2
TSimi(T,G) =1 — — arctan(Dist) (12)
™

where Dist is the average Euclidean distance of trajectory
T and group mean trajectory G.

For edges connecting two normal nodes and edges con-
necting to one virtual node the same inference function can
be used, the only difference is that the latter uses one vir-
tual tracklet and two normal tracklets as input. Examples
of making inference for a grouping graph are shown in Fig-
ure 5. Note that there might be multiple inferences related
to the same two tracklets, as the same tracklet may be con-
tained in multiple elementary groups. Therefore, P;; in
Eq. 3 is the sum of all inferences that relate to 7T; and 77},
as shown below:

(13)

P = Z Dij
4. Experiments

We evaluate our approach on two widely used public
pedestrian tracking datasets: the CAVIAR dataset [1] and
the TownCentre dataset [4]. The popular evaluation met-
rics defined in [15] are used for performance comparison:
the number of trajectories in ground-truth (GT), the ratio
of mostly tracked trajectories (MT), the ratio of mostly lost
trajectories (ML), the number of fragments (Frag) and ID
switches (IDS).

We compare our approach with the basic affinity model
(Baseline Model 1), elementary grouping model without
group tracking (Baseline Model 2) and the Social Group-
ing Behavior model (SGB) in [21]. For a fair comparison,
the same input tracklet set, ground-truth, as well as basic
affinity model are used for all methods. All the results for
the SGB model are provided by courtesy of authors of [21].
Both quantitative comparisons with state-of-the-art meth-
ods and visualized results of our approach are presented.

4.1. Implementation Details

Tracklets generation: Two different ways of generating
tracklets are used in order to validate that our proposed
approach is independent of a specific choice. In the first
method, targets on each frame are detected via the discrim-
inatively trained deformable part models [10]. We applied
a detection association method similar to [20] to generate
conservative tracklets. For each unassociated detection a
Kalman filter based tracker is initialized with position and
velocity states. A detection is associated to the detection in
the next frame that has the minimum distance to the pre-
dicted location, and the corresponding Kalman filter is up-
dated. The tracker terminates if no proper association is
found, or one detection is associated by multiple trackers.

In the second method, the popular HOG based human
detector [8] is used. Tracklets are generated by connecting
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Method MT ML | Frag | IDS | Time
Baseline Model 1 | 74.7% | 6.7% 11 12 1.5s
Baseline Model 2 | 78.7% | 6.7% 10 8 4.2s
SGB Model [21] | 89.3% | 2.7% 7 5 50s

Our Model 90.7% | 2.7% 6 5 4.6s

Table 1. Comparison of tracking results on CAVIAR dataset. The
number of trajectories in ground-truth (GT) is 75.

detections in consecutive frames that have high similarity
in position, appearance and size. A simple two-threshold
strategy [13] is used to generate reliable tracklets.

Basic affinity model: In order to produce reasonable ba-
sic affinity for a pair of tracklets, three commonly used fea-
tures are adopted: time, appearance and motion. The time
model constrict that tracklets can only be linked if their
time gap is smaller than a pre-defined threshold. The ap-
pearance model is based on the Bhattacharyya distance of
two average color histograms [25]. We use a linear motion
model [21] to measure the motion smoothness of two track-
lets in both forward and backward directions.

The cost matrix S: Due to the constraints in Eq. 1, the
traditional pairwise assignment algorithm is not able to find
initial and the terminating tracklets. Therefore, instead of
using the cost matrix S (n x n) directly, we use the aug-
mented matrix (2n x 2n) in [21] as the input for the Hun-
garian algorithm. This enables us to set a threshold for as-
sociation, a pair of tracklets can only be associated when
their cost is lower than the threshold.

4.2. Results on CAVIAR dataset

The videos in the CAVIAR dataset are obtained in a
shopping center where frequent interaction and occlusion
occur and people are more likely to walk in groups. We
select the same set of test videos as in [21], which are the
relatively challenging ones in the dataset. We generate in-
put tracklets using the first method described in Section 4.1.
The comparative results are shown in Table 1. Our proposed
model achieves the best performance in all aspects. It is ob-
served that the basic affinity model (Baseline Model 1) can
produce reasonable tracking results, and the performance is
further improved by integrating high-level grouping infor-
mation (Baseline Model 2 and Our Model). The comparison
between Baseline Model 2 and our model demonstrates the
importance of group tracking, as it reveals more grouping
information. Moreover, our model has better performance
compared with the SGB model (better results in MT and
Frag, the same results in ML and IDS), but with much less
computational time. Sample tracking results are shown in
Figure 6.



Method MT ML | Frag | IDS | Time
Baseline Model 1 | 76.8% | 7.7% 37 60 350s
Baseline Model 2 | 78.6% | 6.8% 34 46 457s
SGB Model [21] | 83.2% | 5.9% 28 39 | 4861s

Our Model 85.5% | 5.9% 26 36 465s

Table 2. Comparison of tracking results on TownCentre dataset.
The number of trajectories in ground-truth (GT) is 220.

4.3. Results on TownCentre dataset

The TownCentre dataset has one high-resolution video
which captures the scene of a busy street. There are 220
people in total, with an average of 16 people visible per
frame. We tested all models using the first 3 minutes of the
video, and generate input tracklets using the second method
described in Section 4.1. The comparative results are shown
in Table 2. Results from Table 1 and Table 2 suggest that the
performance of our method is consistent on both datasets,
which further validate the robustness and efficiency of our
model. Sample tracking results are shown in Figure 7.

4.4. Computational Time

The computational time is greatly affected by the num-
ber of targets in a video and the length of the video. We im-
plemented our approach in Matlab without code optimiza-
tion or parallelization and tested it on a PC with 3.0GHz
CPU and 8GB memory. For the comparablely short videos
in CAVIAR, our approach takes 4.6 seconds on the aver-
age. For the video in TownCentre the computational time
is 465 seconds. It is observed that our approach is signifi-
cantly more efficient than the SGB model and produces bet-
ter tracking results. Note that computational time for object
detection, tracklet generation, and appearance and motion
feature extraction are not included.

5. Conclusions

In this work we present an online learning approach that
integrates high level grouping information into the basic
affinity model for multi-target tracking. The grouping be-
havior is modeled by a novel elementary grouping graph,
which not only encodes the grouping structure of tracklets
but is also flexible to cope with the evolution of group. Ex-
perimental results on challenging datasets demonstrate the
superiority of tracking with elementary grouping informa-
tion. When compared to the state-of-the-art social group-
ing model, our approach provides better performance and is
much more efficient computationally.

Acknowledgements This work was supported in part by
NSF grant 1330110 and ONR grants N00014-12-1-1026
and N00014-09-C-0388.

4327

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Caviar dataset. http://homepages.inf.ed.ac.uk/rbf/caviardatal/.
S. Ali and M. Shah. Floor fields for tracking in high density
crowd scenes. In ECCV, 2008.

L. Bazzani, M. Cristani, and V. Murino. Decentralized parti-
cle filter for joint individual-group tracking. In CVPR, 2012.
B. Benfold and I. Reid. Stable multi-target tracking in real-
time surveillance video. In CVPR, 2011.

J. Berclaz, F. Fleuret, E. Tiiretken, and P. Fua. Multiple
object tracking using k-shortest paths optimization. IEEE
TPAMI, 2011.

W. Brendel, M. Amer, and S. Todorovic. Multiobject track-
ing as maximum weight independent set. In CVPR, 2011.
A. A. Butt and R. T. Collins. Multi-target tracking by la-
grangian relaxation to min-cost network flow. In CVPR,
2013.

N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

M.-P. Dubuisson and A. Jain. A modified hausdorff distance
for object matching. In ICPR, 1994.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE TPAMI, 32(9):1627-1645, 2010.

W. Ge, R. Collins, and C. Ruback. Vision-based analysis of
small groups in pedestrian crowds. IEEE Trans. PAMI, 2011.
J. F. Henriques, R. Caseiro, and J. Batista. Globally optimal
solution to multi-object tracking with merged measurements.
In ICCV, 2011.

C. Huang, B. Wu, and R. Nevatia. Robust object tracking
by hierarchical association of detection responses. In ECCV,
2008.

C.-H. Kuo, C. Huang, and R. Nevatia. Multi-target track-
ing by on-line learned discriminative appearance models. In
CVPR, 2010.

Y. Li, C. Huang, and R. Nevatia. Learning to associate:
Hybridboosted multi-target tracker for crowded scene. In
CVPR, 2009.

C. Liu. Discriminant analysis and similarity measure. Pat-
tern Recognition, 2014.

M. Moussaid, N. Perozo, S. Garnier, D. Helbing, and
G. Theraulaz. The walking behaviour of pedestrian social
groups and its impact on crowd dynamics. PLoS ONE, 2010.
S. Pellegrini, A. Ess, and L. V. Gool. Improving data associ-
ation by joint modeling of pedestrian trajectories and group-
ings. In ECCV, 2010.

S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. You’ll
never walk alone: Modeling social behavior for multi-target
tracking. In ICCV, 2009.

A. G. A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and
W. Hu. Multi-object tracking through simultaneous long oc-
clusions and split-merge conditions. In CVPR, 2006.

Z. Qin and C. Shelton. Improving multi-target tracking via
social grouping. In CVPR, 2012.

Z. Qin, C. Shelton, and L. Chai. Social grouping for target
handover in multi-view video. In ICME, 2013.



Frame 200 Frame 220

Frame 260

Frame 290

(a) Track targets (4, 5, 6) when appearances vary a lot due to occlusions

Frame 910

Frame 960 Frame 1000

(b) Successfully tracking targets (11 13) with long time gap

Frame 430 Frame 460

IT‘II "[- 40

4'&4 i

Frame 470 Frame 510

(c) Track targets (4, 5, 6) when sudden motion change and occlusion happen

Figure 6. Examples of tracking results of our approach on CAVIAR dataset. The same color indicates the same target, best viewed in color.

Frame 3380

Frame 3400

Frame 3420

Frame 3460

Figure 7. Examples of tracking results of our approach on TownCentre dataset. With grouping information, targets (199 and 201) pointed
by arrow are correctly tracked under frequent occlusions. The same color indicates the same target, best viewed in color.

(23]

[24]

[25]

[26]

G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah. Part-
based multiple-person tracking with partial occlusion han-
dling. In CVPR, 2012.

J. Sochman and D. Hogg. Who knows who - inverting the
social force model for finding groups. In ICCV Workshops,
2011.

B. Song, T. Jeng, E. Staudt, and A. K. Roy-Chowdhury. A
stochastic graph evolution framework for robust multi-target
tracking. In ECCV, 2010.

Z. Wu, T. H.Kunz, and M. Betke. Efficient track linking
methods for track graphs using network-flow and set-cover
techniques. In CVPR, 2011.

4328

[27]

[28]

[29]

[30]

[31]

J. Xing, H. Ai, and S. Lao. Multi-object tracking through
occlusions by local tracklets filtering and global tracklets as-
sociation with detection responses. In CVPR, 2009.

K. Yamaguchi, A. Berg, L. Ortiz, and T. Berg. Who are you
with and where are you going? In CVPR, 2011.

B. Yang, C. Huang, and R. Nevatia. Learning affinities and
dependencies for multi-target tracking using a CRF model.
In CVPR, 2011.

B. Yang and R. Nevatia. Multi-target tracking by online
learning of non-linear motion patterns and robust appearance
models. In CVPR, 2012.

A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-
vey. ACM Comput. Surv., 2006.



