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Abstract

Action analysis in image and video has been attracting
more and more attention in computer vision. Recognizing
specific actions in video clips has been the main focus. We
move in a new, more general direction in this paper and ask
the critical fundamental question: what is action, how is
action different from motion, and in a given image or video
where is the action? We study the philosophical and vi-
sual characteristics of action, which lead us to define ac-
tionness: intentional bodily movement of biological agents
(people, animals). To solve the general problem, we pro-
pose the lattice conditional ordinal random field model that
incorporates local evidence as well as neighboring order
agreement. We implement the new model in the continuous
domain and apply it to scoring actionness in both image and
video datasets. Our experiments demonstrate not only that
our new model can outperform the popular ranking SVM
but also that indeed action is distinct from motion.

1. Introduction
Human and other biological motion, such as a cat climb-

ing a tree, present an intricate visual pattern that is of far
higher complexity than most non-biological motion, such
as a rolling ball or car, or simple bar and dot stimuli used
in many psychophysical studies [15]. Indeed these intri-
cate visual patterns are complex (and apparently important)
enough that we humans have highly specialized parts of our
brain dedicated specifically to biological motion perception
(the superior temporal sulcus) [25].

Likewise, the computer vision community has achieved
marked success in automatic action recognition from video.
Notable examples include the introduction of local action
features with bags-of-words framework [35], such as spatio-
temporal interest points [21], trajectory-based representa-
tions [23, 34], and motion interchange patterns [17] and the
more holistic action bank representation which embeds a
video into an action space by responses of individual action
detectors [31]. These methods are enabling futuristic vision
applications like automatic video-to-text [5, 18] and smart
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Figure 1: The key idea in our paper is to distinguish inten-
tional action of an unknown agent (the kids in this exam-
ple) from various other motions, such as the rolling ball,
the crashing waves and the background motion from the
panning camera. Our paper proposes a self-ordering CRF
model that ranks regions of the image/video according to
its agent and category independent “actionness.”

classrooms [28].
However, in all of this so-called action recognition work

in our field, the very notion of action has not been care-
fully defined or explicitly studied, although a hierarchy of
actions and activities has been discussed [24]. Instead, ac-
tion is defined implicitly by examples in a dataset. UCF
Sports [29], for example, emphasizes olympic sports as ac-
tion whereas HMDB51 [19] focuses more on everyday hu-
man actions such as brushing hair and hugging.

There are more explicit general notions of action [6];
most commonly, an action involves intentional biological
motion. In other words, action is a specific subclass of gen-
eral motion requiring an agent who has a particular goal or
intention and is moving to achieve the goal. See Fig. 1,
for example, where the two kids are chasing a beach ball
near the crashing waves. There are four distinct motions in
the scene but only one action: the kids running. The crash-
ing waves, the panning camera and the rolling ball are all
various motions.
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Furthermore, it may be beneficial simply to detect action
in a way agnostic to the specific agent carrying out the ac-
tion as well as the type of action itself. For example, it has
been empirically demonstrated that action classifiers per-
form better when they use features from foreground moving
regions rather than the full video [17].

To these ends, our paper seeks to extract a rank order-
ing of video regions according to the degree to which they
contain an action. We call this notion actionness. We tar-
get a rank ordering of actionness by regions rather than a
direct classification of whether or not a region contains an
action for two primary reasons. First, the foundational no-
tion of action as an agent’s intentional motion immediately
presents a difficulty: agent (e.g, person, animal) detection
remains a challenging and open problem [8]. There exist
comparatively strong methods like deformable parts mod-
els [9], but the average precision remains too low for robust
use (e.g., about 49.5 for person is the state of the art [11]).
Ranking makes it plausible to forego agent detection and
segmentation prior to actionness classification; rather, di-
rectly ranking various regions of the image/video is more
robust. Second, in any given image or video there may be
more than one agent performing an action. Ranking which
is more likely an action is hence more informative than sim-
ple classification.

To accomplish the actionness ranking, we first propose
an explicit definition of action that is based on the philoso-
phy of action [6]. Then, we propose and implement a novel
self-ordering conditional random field model that can ex-
tract the actionness ranking. Our model, called the lattice
conditional ordinal random field (L-CORF), solves the lin-
ear ordering problem approximately using local features to
score a given region by a generalized Hough voting frame-
work and an unary classifier as well as pairwise relation-
ships between neighboring regions. The pairwise term uses
an AdaBoost classifier to predict the local ranking prefer-
ence of two regions and penalizes the current ranking when
it violates the classifier prediction. To provide an effective
situation for learning and inference, we relax the discrete or-
dering problem in the random field to a continuous one and
derive exact solutions for inference and a gradient descent
method for learning.

We implement and test our model on both images and
videos. In video, the agent’s intentional bodily movement
can be directly observed; in images, we need to rely instead
on the appearance of the agent’s body (i.e., the pose [39])
to infer actionness because static images have no observable
motion information. In summary, action understanding ben-
efits from motion information. However, not all motion in-
formation contributes to action understanding. Distinguish-
ing meaningful and meaningless motion is important and
will lead to better video understanding methods [12, 17].

Although we were inspired by the recent work in rank-

ing category independent objects proposals [1, 7], our pa-
per is the first to work on this important problem of agent
and category independent actionness. Furthermore, our lat-
tice conditional ordinal random field is an innovation on top
of the conditional ordinal random field [16] that takes into
account the spatial relations of regions in the lattice. Our
results on both image and video actionness demonstrate the
benefit of this spatial information in actionness against all
baselines.

2. Actionness: What is an Action?
In this paper, we propose the notion of actionness, which

seeks to distinguish different motions (intentional motion
from general motion). Before concretely formulating the
problem, we first make a definition of action suitable for
computer vision, which cares more about what visual pat-
terns an action may present than the philosophy of action.

There are four aspects to define action in the philosophy
of action [6]: first, action is what an agent can do; second,
action requires an intention; third, action requires a bodily
movement guided by an agent or agents; and fourth, action
leads to side-effects. For example, playing with a ball is
an instance of action. A person is able to play with a ball.
Doing this action needs the movement of the human body;
the person moves the ball by moving his or her hands and/or
feet. When a person plays with a ball, a ball movement from
left to right and up to down is just a side-effect since the ball
has no intention. Its movement is barely the result of the
action (playing) of the person.

Above, we highlighted the key words for the four aspects
of action: agent, intention, bodily movement, side-effects.
Two of these are directly observable in video: agent and
bodily movement (in an image, one can only observe agent
pose but not the bodily movement). Intention is not directly
observable but not irrelevant from a computer vision point
of view: a non-biological agent, such as a bicycle can not
have intention, and hence the agents we care about are peo-
ple and animals. We note the discussion made in the intro-
duction regarding the current reliability of person detectors
in images. Finally, side-effects may be directly observed in
images, but these would involve a complex inference even
farther beyond the reliable capability of our field than per-
son and animal detection. Therefore, we define actionness
as intentional bodily movement of biological agents. Ac-
tionness is a subclass of general motion and a direct presen-
tation of action.

Actionness provides a non-specific definition for action
that does not rely on an absolute scale for action nor a cer-
tain type of action, which is well beyond the scope of this
paper. Here, we formulate the useful goal of ranking im-
age/video regions according to their actionness, or the de-
gree to which an agent is doing intentional bodily move-
ment within them. In the next section, we make this prob-



lem statement more concrete and then further develop a new
self-ordering CRF model to perform the ranking task.

3. Lattice Conditional Ordinal Random Field
Problem Statement Given an image or video V , letR .

=
{ri}ni=1 be a partitioning of V with n regions in the parti-
tioning. Strictly,R is a partitioning of the pixel/voxel lattice
underlying V . The partitioning can easily be computed by
rectilinear patches or cubes, which we do in this work, or by
common superpixel [10] or supervoxel [37] methods, which
is not the main emphasis of our work.

Given any two regions ri and rj , we seek an ordering
of them according to their relative actionness. Although we
do not seek the absolute actionness score of a region, let
A(ri) denote the actionness of region ri. Define a predicate
function λij to represent the local actionness ordering of
regions ri and rj :

λij =

{
1 A(ri) > A(rj)

0 otherwise
. (1)

And define the ordering predicate matrix Λ as the dense or-
dering matrix for all pairs of regions. There are 2n
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possi-
ble Λ matrices but only a (still very large) fraction of these
(2(n2−n)/2) are valid orderings of the regions. A valid or-
dering is captured by two properties on Λ. First, Λ is anti-
symmetric, i.e., λij + λji = 1 for all regions i 6= j. Sec-
ond, there exists a permutation matrix P that will reorder
the rows, λi, such that Λ is a strictly upper triangular binary
matrix U : P · Λ = U .

Our problem is thus to seek a valid Λ given the video V
and its partitioningR under a local ordinal model φ:

Λ∗ = arg max
Λ,P

∑
i,j

φ(ri, rj , λij) (2)

s.t. λij ∈ {0, 1}, P · Λ = U ,

where the ordinal model φ captures the local ordering com-
patibility of λij with the evidence in ri and rj . This local
ordinal model φ pushes the ordering to obey the dataR and
the two constraints maintain a valid ordering.

However, the program in Eq. 2 is an instance of the lin-
ear ordering problem, which is known to be NP hard [13].
To understand this point, consider the impact of changing
only one off-diagonal entry of Λ. If the entry in question
relates, say, the first and second ordered regions then this
is an easy and local swap with no global impact. On the
other hand, if the entry relates the first and the last ordered
regions then this has maximal impact (although it remains
a valid ordering, every other region is now is potentially in
conflict with the ordering). In general, the longer the dis-
tance in the ordering between the entry in Λ that would be
swapped, the more global the impact on the ordering Λ.

3.1. The Model

Consider again the relationship upper triangular con-
straint: i.e., there exists a strictly upper triangular binary
matrix U such that P · Λ = U . This constraint implies two
facts that will lead us to making an approximation to the NP
hard problem. First, clearly there is a one-to-one relation-
ship between Λ and P . Second, the sum of any row λi is
its ordinal index oi =

∑
j λij . Equation 1 specifies that if

λij = 1 then A(ri) > A(rj). So, when A(ri) is the highest
actionness, then each element of row λi will be one (except
for λii, which is always 0). In this case, oi = n− 1. A sim-
ilar exercise can be conducted to demonstrate this for other
ordinal indices: i.e., if region rj is the kth index, then row
λj will have k − 1 entries that are 1.

Therefore, we can reformulate our original objective to
directly seek the ordinal index in a manner more readily
soluble. Inspired by the recent conditional ordinal ran-
dom fields [16, 30], which are defined on one-dimensional
streams, we present a new model called the lattice condi-
tional ordinal random field (L-CORF).

We propose a conditional random field model M that
captures the ordering as its random variables:

Md({oi}ni=1|V,R, θ) = (3)

1

Z[R]
exp

[∑
i

αfd(oi, ri) +
∑
i,j

βgd(oi, oj , ri, rj)

]
,

where Z[R] is the normalization function and θ = (α, β)
are model parameters. Recall, oi is the ordinal index of
region ri; these indices take values from {1, 2, . . . , n} and
satisfy a strict ordering o1 > o2 > · · · > on. Functions
fd and gd capture the unary ordinal preference and pairwise
ordinal agreement, which we will make explicit below.

Satisfying the strict ordering constraint on {oi}ni=1 and
the discrete nature of this ordering make learning and infer-
ence intractable. So, we relax our model to be a continuous
CRF and replace oi with a real-valued variable ai for each
region ri. Furthermore, we relax the strict ordering to be a
partial ordering such that a1 ≥ a2 ≥ · · · ≥ an. The relaxed
model is written

M({ai}ni=1|V,R, θ) = (4)

1

Z[R]
exp

[∑
i

αf(ai, ri) +
∑
i,j

βg(ai, aj , ri, rj)

]
.

Functions fd and gd are continuous version of fd and gd.
In the following subsections, we formulate the terms

of the model and derive a maximum likelihood learning
method for the L-CORF.

3.2. Partitioning and Annotating

To partition each sample V and compute the lattice, we
simply divide the image (video) into a rectilinear set of



patches (cuboids). We also need to associate an action-
ness evidence score with each region. Arbitrarily gathering
actionness ranks / scores from humans would be prone to
noise, so we instead developed an automatic scheme that
requires one or more bounding boxes (or cubes in video)
around the action region. Denote the set of bounding boxes
as {Bj}bj=1. We then define the annotated actionness score
ai for region ri ∈ R as

ai = 1−min
j

(
D (pos[ri],pos[Bj ])

)
, (5)

where pos[·] indicates the centroid of the region or the
bounding box and D(·) is the Euclidean distance. Since the
size of the images/videos can differ, we normalize the dis-
tance of any two bounding boxes between 0 and 1. And this
distance contributes to the actionness score computation.

3.3. Unary Term

The unary term scores the actionness for each region
based on its evidence. A trained AdaBoost classifier [33] is
used to measure the degree that the region includes action-
ness information with local appearance and spatial infor-
mation. Since the underlying appearance of actionness will
greatly vary, we also incorporate the non-parametric gener-
alized Hough transform [2, 36]. Assume we have training
data Tr = {(Vs,Rs, As)}ts=1} with t samples, where each
As is the annotated actionness map (i.e., a known actionness
ai at each region in Rs) from Sec. 3.2. Let (Vq,Rq) de-
note a test image/video and its partitioning. For the general-
ized Hough transform, we define a scoring function h(r

(q)
i )

based on the regions and their relative positions that votes
on a full actionness map Aq for the test data Vq given a
single region r

(q)
i (the superscript (q) denotes which im-

age/video the region is from).
To compute the voting model, we learn a codebook for

each position based on appearance information. Each code-
book entry cj comprises a feature descriptor vcj ; the code-
book C is learned via k-means method. With the learned
codebook C, we define the Hough scoring function as

h
(
r

(q)
i

)
∝ (6)∑

j

mcjp(cj |vri) exp

[
− 1

σ
D2(vri , vcj )

]
,

where mcj corresponds to an actionness map of cj . Finally,
we compute the Hough scored actionness map for the test
data Vq as the mean over region hough scores in Eq. 6:

Âq =
1

|Rq|
∑
r
(q)
i

h
(
r

(q)
i

)
(7)

We define the unary function as

f(ai, r
(q)
i ) = −(ai − â(q)

i )2. (8)

where â(q)
i is the product of the Hough voting actionness

score for region ri in map Âq computed by Eq. 7 and the
normalized AdaBoost classifier response.

3.4. Pairwise Term

The pairwise term enforces a certain ordering locally
between two region ri and rj based on the features at
those regions vi and vj . The local order preference is then
computed by a trained AdaBoost classifier on the possible
neighboring relations on the lattice (horizontal and verti-
cal directions). For each neighboring relation, the classi-
fier takes the relative actionness score for the neighboring
training regions as the label (i.e., 1 if ri has higher action-
ness than rj and 0 otherwise, similar to λij from Eq. 1). It
then trains a classifier based on the features of the regions,
w(vi, vj), to predict the preferred ordered.

The pairwise term penalizes the current actionness
scores of the two regions when they disagree with the pre-
dicted relationship from the AdaBoost classifier w(vi, vj):

g(ai, aj , ri, rj) = Rij(ai − aj)
= δijw(vi, vj)(ai − aj) , (9)

where the δij function is 1 if the regions are neighbors and
0 otherwise. This function operates as desired: when ai is
larger than aj , Rij is greater than 0 and contributes pos-
itively to the difference between ai and aj . When ai is
smaller than aj , Rij should be smaller than 0, and con-
tribute negatively to the difference between li and lj . These
are modulated by the classifier prediction w(vi, vj).

3.5. Learning and Inference

Given the training dataset Tr = {(Vs,Rs, As)}ts=1}
with t samples, where eachAs is the actionness map, we es-
timate the parameters θ = (α, β) by maximum likelihood.
Concretely, the conditional log likelihood of the data is

L(θ|Tr) =
∑
s

logM(As|Vs,Rs, α, β) (10)

=
∑
s

[∑
i

αf(a
(s)
i , r

(s)
i )+

∑
i,j

βg(a
(s)
i , a

(s)
j , r

(s)
i , r

(s)
j )−

∑
i

logZ[Rs]

]

where we use the (s) superscript to denote training sample
s. We seek the parameter θ̂ that can maximize this log like-
lihood function. The key to the solution is to integrate Z(P )
and then use gradient descent to generate the iteration rules
to compute θ̂. By transforming Z to the quadratic formula,



we get (dropping the subscript s onR for clarity)

Z[R] =

∫
z

(
−αz2

i +DT zi + E
)

dz , (11)

D = 2αai + β

∑
j

Rij −
∑
i

Rij

 ,

E = −αa2
i .

Based on the properties of the Gaussian distribution, the in-
tegration result is

Z[R] =
(α
π

) t
2

exp

(
1

4α
DTD −

∑
i

αa2
i

)
. (12)

We then use the gradient descent algorithm to maximize
the log likelihood. By maximizing L(θ|Tr) with respect
to logα and β, the problem is transformed to an uncon-
strained optimization problem, allowing the direct applica-
tion of gradient descent. The derivative of L(θ|Tr) with
respect to logα and β are as follows:

∂L(θ)

∂ logα
= α

∑
s

[∑
i

−(a
(s)
i − â

(s)
i )2 − ∂ logZ[Rs]

∂α

]
(13a)

∂L(θ)

∂β
=

nt∑
s

∑
ij

R
(s)
i,j (a

(s)
i − a

(s)
j )− ∂logZ[Rs]

∂β
)


(13b)

The partial derivative ∂ logZ[Rs]
∂α and ∂ logZ[Rs]

∂β are

∂ logZ[Rs]
∂α

=
t

2α
− DTD

4α2
+
DTai
α
−
∑
i

a2
i (14a)

∂ logZ[Rs]
∂β

=
DT (

∑
j R

(s)
ij −

∑
iR

(s)
ij )

2α
(14b)

We incorporate these derivations into the gradient descent
algorithm to compute α and β according to Algorithm 1.
Inference Inference on our lattice conditional ordinal ran-
dom field is straightforward. Since it is a continuous model,
we apply the learned parameters and input the test data
(Ve,Re) into our model, for a direct solution:

Âe = arg max
Ae

M(Ae|Ve,Re, α, β) . (15)

We can take the derivative of Eq. 15, set it equal to zero and
derive a closed form solution. Each region’s actionness is
then

â
(e)
i =

2h(r
(e)
i )α+ β

(∑
j R

(e)
ij −

∑
iR

(e)
ij

)
α

. (16)

Algorithm 1: Learning Algorithm of L-CORF

1: Input: training data Tr, and its associated Actionness
score A = {As}ts=1, maximal iteration Iter and learn-
ing rate η

2: Output: logα and β
3: for i = 1 to Iter do
4: for k = 1 to t do
5: Compute ∂L(θ|Tr)

∂ logα and ∂L(θ|Tr)
∂β by Eq 13

6: Update logα = logα+ η ∂L(θ|Tr)
∂ logα

7: Update β = β + η ∂L(θ|Tr)
∂β

8: end for
9: end for

3.6. Related Work in Linear Ordering

The linear ordering problem is an NP-hard combinatorial
optimization problem with a number of applications such
as archaeological seriation and aggregation of individual
preferences[13]. Based on the relation between objects to
be ranked, Cao et al. [3] proposes a ranking model for the
ordering problem in document retrieval setting. The ranking
SVM [14] proposes an svm-based ranking method. Both of
these two papers rely on local information only for ranking.
Kim and Pavlovic [16, 30] introduce a conditional ordinal
random field model for dynamic facial emotion prediction
and temporal segmentation. Unlike our lattice conditional
ordinal random field model, their method only works on the
chain-based graphical structure, e.g. temporal segmenta-
tion. Qin Tao et al. [26] also propose a continuous Ranking
CRF model. The motivation of the model is different from
ours and our binary term is more general.

4. Experiments

Data and Features We implement and test our method
L-CORF for actionness on both images and videos. For the
images, we use Stanford 40 Actions [40], and for videos,
we use UCF Sports [29] and Hollywood1 Human Action
(HOHA) datasets [22]. Actionness is a new problem; all of
these datasets were previously used for action recognition,
but they include action bounding boxes and this is what we
use for actionness.

The Stanford 40 Action Dataset contains 9532 images of
humans performing 40 diverse daily actions, such as rid-
ing a bike, playing with guitar and so on. In each im-
age, a bounding box of the person performing the action
is provided. All these images come from web resources.
The UCF Sports dataset contains 150 videos from 10 action
classes, such as diving, golf swinging, walking and so on.
The videos are taken from sports broadcasts. The bound-
ing boxes of actions are provided in [38]. HOHA dataset



Table 1: Quantitative comparisons against baselines (mAP).

Stanford 40 UCF Sports HOHA
L-CORF 72.5 60.8 68.5
DPM [9] 85.6 54.9 60.8

RankSVM [14] 55.8 21.9 26.8
MBS [32] - 22.8 57.4

includes 430 videos with 8 actions, such as answer phone,
get out of a car and so on. This dataset is very challenging;
significant camera motion, rapid scene changes and back-
ground clutter are very common in the videos. Many ac-
tions are performed by multiple agents and involve the in-
teractions of them. The bounding boxes1 of actions in 392
videos are provided by [27]. In these videos, the clips with
interesting agents are selected to train and test all the meth-
ods.

For computing features, we use basic histograms of ori-
ented gradients (HOG) [4]. On video, we apply the HOG
frame-by-frame and the sum and the difference of HOG fea-
tures are used to represent each cuboid. We select only these
features to allow for a fair comparison between our method
and baselines, and to emphasize the power of the ordinal
random field. Our results show that we achieve a greater of
improvement of the proposed models better than the strong
baseline of ranking SVM [14], which was used in the ob-
jectness paper [7] (see below for a discussion).
Evaluation Protocol In order to evaluate the ranking per-
formance of different methods, we select the mean av-
erage precision (mAP) to judge how well the actionness
score agrees with the annotation. First, we score each
patch / cuboid according to the intersection over union w.r.t.
groundtruth (ie, if a patch overlaps the groundtruth by more
than 0.5 then it is scored as positive). Then, PR curves are
generated: a recall of k selects the top k ranked patches /
cuboids. For these k patches, we compute precision. Each
test sample will generate an AP score, which is the area un-
der the PR curve. mAP is the average of all the test samples.

We follow the protocol defined by Stanford 40 dataset to
assign the training and test examples. The splits for UCF
sports and HOHA datasets follows the previous work [20,
22]. In these datasets, we do not distinguish the categories
of actions, all the actions are considered as positive samples,
non-actions are considered as a negative samples. In all the
experiments, we divide the image and video to 16×16 grids
in space. For video data, the cuboid lasts 4 frames.

4.1. Comparisons with Baselines

Table 1 shows the quantitative comparisons of our L-
CORF method against baselines methods. This is the first

1http://vision.ucla.edu/˜raptis/action_part/
hoha1_annotations.tar

Figure 2: Visual examples of actionness on images from
Stanford 40. There are 8 examples (4× 2). For each exam-
ple, the left to right columns are original image, results of
L-CORF, DPM and Ranking SVM. DPM is able to effec-
tively detect the human in the image. However, L-CORF is
good at finding where where the action happens. The bot-
tom left image is not good result of our method.

paper on actionness, so our quantitative comparisons are
against relevant baseline methods that could have been used
in place of pieces of our method. We use the ranking SVM
[14] as a baseline since it was used in a similar visual rank-
ing problem (objectness) [7]. The ranking SVM used the
same features as our L-CORF method for this comparison.
In both the images and videos, there is a 15+% improvement
in our method. For an additional baseline on the video, we
apply the moving background subtraction (MBS) method
from Shiekh et al. [32], which does not seek to differenti-
ate between general motion and action at all. As we would
expect it is unable to perform as well as our method, since
intentional motion does not equate to general motion. But it
does perform better than the ranking SVM method. This re-
sult is also an indicator of the important distinction between
motion and action. DPM is another important baseline for
both images and videos. It is the state of the art human de-
tector and can be viewed as a method to find actionness by
detecting agents. It achieves the best performance on Stan-
ford 40 dataset, so agent detection is useful for actioness
detection, although Stanford 40 has limited pose variability.
However, actionness detection is quite different from hu-
man detection. It does not perform as good as our method
on UCF Sports and HOHA datasets.

We show visual comparisons of our method for both im-
age and video datasets in Figures 2 and 3. We have selected
both good and bad cases for our method to present it fairly.
In these examples, DPM successfully locates the positions
of human, especially for the upright pedestrians, however,
some of these persons are not the ones doing the right ac-
tions. MBS is able to find the place where the motion is



(a) UCF Sports (b) HOHA

Figure 3: Visual examples of actionness on videos from UCF Sports and HOHA. There are 8 examples (4 × 2) for each
dataset. The first row images are 4 sequential frames within the same cuboid. In the second row, the images are results of L-
CORF, DPM, Ranking SVM and MBS from the left to right columns. In these images, we can find that DPM can accurately
locate the person, but without considering who is doing the action. MBS is able to accurately detect the motion, but without
considering intentional motion. The bottom left images are not good results of our method.

intense. However, general motion is far away from inten-
tional motion (actionness). The bottom left images of all
the datasets are bad examples of our method. The one in
HOHA dataset is very interesting. The movement of the
feet leads to standing up action. Agent body detection is
more appropriate here than agent detection. Although DPM
performs better than MBS in all the datasets, MBS performs
well in this case.

4.2. Performance of Unary Term

We analyze the unary term by exploring the impact of
unary AdaBoost classifier and Hough voting. The num-
ber of weak classifiers and the number of the clusters are
key parameters for these two methods. We show the per-
formance on both images and video. Figures 4(a) – 4(c)
plot the mAP for these two methods seperately and their
combination with variant parameters. The variation across
the parameter settings is small. From Figure 4(a) and 4(b),
we can find that both classifier and hough voting works
well for actioness detection on Stanford 40 and UCF Sports
datasets. The performance of unary classifier improves with
more number of weak classifiers. The performance of unary
Hough voting is stable, since it increases slightly with more
clusters. The actionness detection on UCF Sports is more
difficut than on Stanford 40 dataset, since its mAP is lower.
We believe that the actions in UCF Sports have a high vari-
ablity than in Stanford 40. Figures 4(a) shows the mAP
of only the unary term. The combination of these two de-
creases the whole performance, comparing to figures 4(a)
and 4(b). But when increasing these two numbers, the per-
formance of fusion improves. It is possible that both unary

AdaBoost classifier and Hough voting have different advan-
tages.

4.3. Performance of Pairwise Term

An AdaBoost classifier is used to determine the local
ranking preference between neighboring regions based on
their features. In this experiment, we study the contribution
from the binary term for the whole CRF model. We fix the
binary AdaBoost classifier with 8 weak classifiers and inte-
grate it into our CRF model. Figure 4(d) demonstrates that
the binary term is helpful for the whole CRF model. The
improvement is more significant when the unary term has
small numbers of weak classifiers and codebook size.

5. Conclusion

Our paper builds on the marked progress in action under-
standing that has occurred over the last decade. Although
this promising work has led to important new methods, our
community has not yet studied the interplay between gen-
eral motion and action. In this paper, we ask exactly that
question, define a new notion of actionness and then pro-
pose an appropriate ordinal random field model. Our new
model incorporates not only local evidence to score a given
region’s actionness but also takes a rich spatially keyed ap-
proach to pairwise order agreement. We have implemented
the model on both image and video datasets and achieve
strong performance. Our work is the first in this direction
and we expect our paper to pave the way for new works on
class-independent action analysis and video parsing. In the
future, we plan to study the impact of actionness for action



16 32 48 64
0.4

0.5

0.6

0.7

# of Weak Classifiers

m
A

P

 

 

Stanford 40
Ucf Sports

(a) Unary Classifier

16 32 48 64
0.4

0.5

0.6

0.7

# of Clusters

m
A

P

 

 

Stanford 40
Ucf Sports

(b) Unary Hough Voting

16x16 32x32 48x48 64x64
0.4

0.5

0.6

0.7

# of Weak Classifiers x # of Cluster Numbers

m
A

P

 

 

Stanford 40
Ucf Sports

(c) Unary Term

16x16 32x32 48x48 64x64
0.4

0.5

0.6

0.7

# of Weak Classifiers x # of Cluster Numbers

m
A

P

 

 

Stanford 40
Ucf Sports

(d) Pairwise Term

Figure 4: The performance of each element in our method. 4(a) shows mAP of the only AdaBoost classifier in the unary
term with different numbers of weak classifiers. 4(b) shows mAP of the only Hough Voting in the unary term with different
numbers of codebook. 4(c) shows mAP of only the unary term as we variate codebook size and weak classifier numbers.
4(d) shows the performance of our method with binary classifiers, the number of weak classifiers for binary term sets to 8.

detection and recognition tasks. Code for our method and
all experiments is available from the author’s website.
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