
Minimal Scene Descriptions from Structure from Motion Models

Song Cao
Cornell University

caosong@cs.cornell.edu

Noah Snavely
Cornell University

snavely@cs.cornell.edu

Abstract

How much data do we need to describe a location? We ex-
plore this question in the context of 3D scene reconstructions
created from running structure from motion on large Inter-
net photo collections, where reconstructions can contain
many millions of 3D points. We consider several methods
for computing much more compact representations of such
reconstructions for the task of location recognition, with the
goal of maintaining good performance with very small mod-
els. In particular, we introduce a new method for computing
compact models that takes into account both image-point
relationships and feature distinctiveness, and we show that
this method produces small models that yield better recogni-
tion performance than previous model reduction techniques.

1. Introduction
In recent years, the increasing availability of online tourist

photos has stimulated a line of work that utilizes structure-
from-motion techniques to construct large-scale databases
of images and 3D point clouds [18, 1], for a variety of ap-
plications, including location recognition [21, 6, 9, 14, 10].
These location recognition methods often directly match fea-
tures (such as SIFT [11]) in a query image to descriptors
associated with 3D points. These databases of 3D points,
however, can be very large—ranging in size from a few mil-
lion points in a single location, to hundreds of millions when
multiple places are considered together [10]. For purposes
of modeling and visualization, the denser the 3D points the
better. However, for other applications, such as recognition,
there are advantages in having fewer points, such as reduced
memory and computation requirements. This brings up an
interesting question: how much data do we need to describe
a location? What is a minimal description of a place?

One way to make this question concrete is to define it as
a visibility covering problem [9, 12]: every possible image
that one could take of the location should see some minimal
number of 3D points stored in the reconstruction. Such a
covering constraint makes it likely that a new image of the

scene will match a sufficient number of 3D points to enable
pose estimation. Based on this idea, prior methods have
used the visibility relationships between images and points
in the database to compute reduced 3D point sets that cover
the database images. However, another important factor is
distinctiveness: in order to ensure accurate matching, one
should select a subset of points that are distinct (rather than
selecting points with very similar appearance). In this paper,
we show that by computing a reduced scene description
that takes into account both coverage and distinctiveness,
one can compute very compact models that maintain good
recognition performance.

We incorporate these considerations into a new point se-
lection algorithm that predicts how well new images will be
recognized using a probabilistic approach. We evaluate our
algorithm on several standard location recognition bench-
marks, and show that our computed scene representations
consistently yield higher recognition performance compared
to previous model reduction techniques.

2. Related Work
Our algorithm is inspired by the K-covering algorithms

used in prior 2D-to-3D matching-and-pose-estimation sys-
tems [9], but has two key differences compared to this prior
work. First, we consider point appearance in order to select
visually distinctive points; second, our selection algorithm
uses a probabilistic model of visibility as opposed to the
strictly combinatorial methods used in prior work.

Park et al. select a subset of 3D points using mixed-integer
quadratic programming [12]. A limitation of this approach
is the computational hardness of the underlying optimization
problem, making it difficult to scale up to large, world-wide
datasets [10]. Choudhary et al. model point visibility proba-
bilities to guide a 3D matching and pose estimation algorithm
at runtime [4]. Our goal is different in that we aim to select a
subset of database points in advance without knowledge of a
specific query image. Although the probabilistic formulation
in [4] works well for modeling inter-point and inter-image
relationships given a query image, a direct adaptation of
this approach, by modeling inter-point relationships, is com-
putationally prohibitive due to the non-linear composition

1

of probabilities and combinatorial explosion of point sets.
Irschara et al. use synthesized views from a point cloud to
cover a 3D scene [6]. We take a different approach that
directly models image-point relationships, but it is possible
to extend our method by adding synthesized views as an
additional set of “images” to cover in our algorithm.

Our use of distinctiveness as a factor in selecting points
is related to prior work on identifying “confusing” features
for recognition [17, 7]. For instance, Knopp et al. use image
geotags to identify features that appear at multiple disparate
locations, and incorporate this information into a bag-of-
words recognition framework [7]. In our case, we select
individual 3D points rather than visual words, and do not
require GPS information. Hence, we have more fine-grained
control over the set of features to avoid or select. Philbin et
al. use descriptor learning to find a non-linear transformation
of the descriptor space in order to better separate true feature
matches from false ones [13]. Our work is orthogonal in that
it seeks to find a subset of distinctive features in the standard
descriptor space, but our algorithm could easily incorporate
learned distance metrics.

Finally, our method is related to prior work on feature
selection for identifying discriminative features [20]. Li and
Kosecka propose a method for identifying highly discrimi-
native individual features for a discrete set of locations [8].
Doersch et al. propose to use a discriminative clustering
approach to find visual elements that are most distinctive
for a city (such as Paris) [5]. Cao et al. use discriminative
learning on clusters of images to define different distance
metrics representing locations [3]. Turcot and Lowe use
image matching process to select reliable visual words [19].
While we also favor distinctive image descriptors in our ap-
proach, we again do so at a much more fine-grained level
than bag-of-words models, and also seek to maximize cover-
age of the dataset as well as discriminability.

3. Computing Minimal Point Sets
In this section we describe our algorithm for computing

minimal scene representations, starting with background.
We begin by running structure from motion (SfM) to

reconstruct one or more scenes that form a database for use
in recognizing and posing new images [1]. The result of
running SfM on an image set I of size m is a 3D point set P
of size n, (typically n� m), as well as a visibility matrix M
of size m× n defining the visibility relationships between
images and points, where Mij = 1 if point Pj is visible
in image Ii in the reconstructed 3D model, and Mij = 0
otherwise. This matrix can also be interpreted as a bipartite
visibility graph G on images and points, where an edge links
each image to each point visible to that image. In addition
to a 3D location, each point Pj ∈ P also has a feature
descriptor, for instance the average SIFT descriptor of the
features used to triangulate Pj [9]. Such a reconstruction

can be used to recognize the pose of new photos via 2D-to-
3D matching and pose estimation techniques [15, 10]. To
register a query photo, we extract features from the photo,
match them to features in the database using approximate
nearest neighbors [2], and robustly estimate the absolute
camera pose using the matched points. Key to this process
is to find a sufficient number of correct feature matches
between the query image and the database.

Our goal is to compute a more compact database with a
much smaller set of points P ′ ⊂ P , such that P ′ captures
as much of the information in the full model as possible. In
particular, we wish to be able to correctly register as many
new query images to the subset P ′ as possible.

K-cover algorithm. The prior work of Li et al. [9] begins
with the assumption that the distribution of query images
is similar to the distribution of database images. Hence,
they use coverage of the database images as a proxy for
coverage of query images of interest. They formulate this as
a K-cover (KC) problem on the visibility graph G: select a
minimum subset of points such that each database image sees
at least K points in the subset. Finding such a minimum set
is a combinatorially hard problem, and so they use a greedy
algorithm that starts with the empty set, and incrementally
adds the next point Pj that maximizes the gain in coverage
achieved by adding Pj to the current set P ′:

GKC(j,P ′) =
∑

Ii∈I\C

Mij (1)

where C is the set of images that are already “covered” at
least K times by points in P ′, i.e. C = {Ii|

∑
P`∈P′Mi` ≥

K}, and hence do not contribute to the gain of a point. This
algorithm runs until no further point contributes a positive
gain (or until a target percentage of images, e.g. 99%, are
covered). We denote the gain function in Eq. 1 as GKC in
reference to the K-cover algorithm that it corresponds to.
In short, the K-cover algorithm ensures good coverage of
the database images by greedily selecting points that “cover”
the most uncovered images. In what follows, we will define
alternative gain functions that model additional aspects of
the recognition problem.

In order to compute the pose of a query image, a minimum
of three feature matches to 3D points are required (or four,
in case the camera intrinsics are unknown, or six, in case a
full projection matrix is desired). In practice, many more
matches are desirable; hence, Li et al. use large values for
K (e.g., K = 100).

Our approach. Like the K-cover algorithm, we use a
greedy algorithm to incrementally create a compact sub-
set of points. However, we define a different gain function
using a probabilistic framework: we seek to select a subset
of points that maximizes the probability of registering a new
image, while minimizing the number of points selected. At
a high level, our approach considers two aspects:

1. coverage, i.e., the subset covers the scene in that any
new image has a high probability of seeing a large
number of points, and

2. distinctiveness, i.e., the features we select are suffi-
ciently distinct from one another in appearance.

We found that both of these aspects contribute to the goal of
finding good feature matches between a query image and the
database.

3.1. Maximizing expected coverage

We first describe our approach to ensuring coverage. As
in the K-cover algorithm, we want to select points in such
a way that any query image that matches the scene sees a
certain minimum number of points. The K-cover algorithm
treats covering the database in a strictly combinatorial way.
However, because feature detection and matching are noisy
processes, we instead view this problem from a probabilistic
perspective, where the database images are treated as sam-
ples from some underlying distribution of images of a scene.
Hence, we consider points being visible in images as ran-
dom events with certain probabilities, rather than as simply
binary variables. In particular, we define that each point Pj

is visible in each database image Ii with probability pij . We
experimented with different methods for defining these prob-
abilities, such as forms of smoothing the bipartite visibility
matrix M . We found that simply using a constant value p
for Mij = 1 and 0 for Mij = 0 worked well, though we
note that finding better ways to estimate pij is an interesting
avenue for future work.

Given this probabilistic model of point visibility, our goal
is to find a subset of points P ′ that maximizes the proba-
bilities of each image seeing at least K points in P ′. More
formally, let vi,P′ denote the random variable representing
the number of points in the selected set P ′ that are visible in
database image Ii. Our objective is to maximize∑

i∈I
Pr(vi,P′ ≥ K) (2)

i.e., the sum of probabilities that each image Ii sees at least
K points in the selected set P ′. If we assume that each
observation of a point is independent, then the distribution
of each random variable vi,P′ is described by a binomial
distribution if pij is a constant p, or a Poisson binomial
distribution (a generalization of the binomial distribution) if
pij varies for each point observation.

To balance the objective in Eq. 2 with the desire for a
compact model, we set a target probability pmin, and seek
that Pr(vi,P′ ≥ K) ≥ pmin hold for all images Ii, with
|P ′| as small as possible. To achieve this goal, we adopt the
greedy approach of repeatedly selecting the point Pj that

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

distance in SIFT space

pr
ob

ab
ilit

y
di

st
rib

ut
io

n

Distances to NN
Distances to Centroid

Figure 1. Distributions of descriptor distances. The curve in
red shows the distribution of descriptor distances between image
feature descriptors and their associated point descriptor centroids.
The curve in blue shows the distribution of distances between
a point descriptor centroid and its nearest neighbor in the full
database. Note the significant overlap between these distributions.
These distributions are generated from the Dubrovnik dataset by
considering all database points and their associated image feature
descriptors. (Figure best viewed in color.)

maximizes the following gain function:

GKCP (j,P ′) =
∑

i∈I\C

Pr(vi,P′∪{Pj} ≥ K)−Pr(vi,P′ ≥ K)

(3)
Here, KCP refers to our probabilistic K-cover algorithm.
This measures the gain in expected coverage of the database
achieved by adding a point Pj to the selected set. As in Eq. 1,
C is the set of already-covered images, but in a probabilistic
sense: C = {Ii|Pr(vi,P′ ≥ K) ≥ pmin}. In other words,
our algorithm starts with P ′ = ∅, and repeatedly adds the
point Pj that maximizes the expected gain defined in Eq. 3.
We describe this algorithm in more detail in Section 3.3.

However, there is a bootstrapping problem with this for-
mulation. If, at some point in the algorithm (e.g., at the
beginning), an image Ii sees fewer than K − 1 points in
P ′ (i.e.,

∑
j∈P′Mij < K − 1), then the gain for adding

any new point to P ′ w.r.t. image Ii is zero. In this case, we
cannot effectively compute the gain in coverage of image Ii
by adding another point. To avoid this problem, we bootstrap
by first choosing an initial set of points that “K-covers” the
images, i.e. a set P ′ that satisfies

∑
Pj∈P′Mij ≥ K for

each image Ii. We next describe how we select an initial set
of distinctive points in Section 3.2, and then show how to
select a final covering set by maximizing Eq. 3.

3.2. Appearance-aware initial point set selection

We now describe how we select the initial point set that
“K-covers” the images while considering distinctiveness of
appearance. Consider a particular point Pj . Pj is associated

dmin(B)

dmin(A) A

B

Selected Points

Figure 2. An illustration of appearance-aware point selection.
The image above shows points in feature descriptor space (reduced
to 2D for visualization purposes). Blue triangles represent point
descriptors that are already selected by our algorithm, while red
circles represent descriptors of candidate points to select next. Sup-
pose that candidate points A and B cover exactly the same number
of images in I \ C, and thus would lead to equal gains in the
K-cover algorithm. However, since the minimum distance of A to
the selected point set dmin(A) is larger than that of B dmin(B), A
is likely to result in fewer mismatches. during feature matching
if selected. Hence A is preferred by our appearance-aware point
selection algorithm.

with a set of individual SIFT descriptors Dj in two or more
database images; in our work, for compactness, we represent
Pj with the centroid of these descriptors, D̄j . Assuming that
the database descriptors Dj are representative of other query
descriptors that will later match this point, we want these
descriptors D ∈ Dj to be closer to D̄j in SIFT space than to
the descriptor of any other selected point. To motivate this
approach, consider Figure 1, which shows two distributions:
(1) the distribution of distances between image features D ∈
Dj and their centroid D̄j (red), and (2) the distribution of
distances between centroids D̄j and the nearest centroid of
a different point (blue). Although the expected distance
(red) from a given descriptor to its centroid (true match) is
smaller than the expected distance (blue) between two nearby
centroids (false match), there is significant overlap between
these two distributions. While this simple analysis is not a
comprehensive study of feature mismatches, it suggests that
there is significant opportunity for query features to match to
incorrect points (i.e., because a feature is closer to a nearby,
incorrect, database point in descriptor space).

One way to increase the probability of query features
matching to the correct database point is to select points that
are far away from each other in descriptor space. Since our
greedy selection algorithm adds points to P ′ sequentially,
when computing the gain of a point Pj under consideration,
we implement this strategy by down-weighting a point’s
gain according to its minimum distance to the current set of
selected points P ′. Figure 2 illustrates this intuition.

We evaluated a range of options for this weighting ap-
proach. In the end, we found that a simple approach worked
well: let dmin(j) be the minimum distance in descriptor

space between Pj and the already selected point set P ′. We
down-weight the gain of Pj if dmin(j) is lower than a thresh-
old d. Specifically, we define the gain of a point Pj as:

GKCD(j,P ′) = wd(dmin(j))GKC(j,P ′) (4)

where GKC(j,P ′) is defined in Eq. 1, and the weight
wd(dmin(j)) is defined as

wd(dmin(j)) =

{
dmin(j)/d, dmin(j) < d

1, dmin(j) ≥ d
(5)

This weight varies from 0 to 1 linearly in the range [0, d].
One simple interpretation of this weight is as a rough approx-
imation of the chance of a correct feature match for query
features—higher for points that are more distinct given the
current set of descriptors, and lower for points that are less
distinct—and thus the gain function above can be interpreted
as an “expected gain” in image coverage, incorporating the
possibility of a mismatch. Given this interpretation, the
threshold d should be set so as to try and separate the two
distance distributions in Figure 1. We choose d = 180 based
on the empirical overlap of the two distributions.

We use this modified gain function in our greedy K-cover
algorithm (the gain function GKCD in Eq. 4 stands for “K-
cover with distinctiveness”). There is an order dependency
in our greedy algorithm, but since the order in which points
are added depends largely on their coverage, our approach
can be seen as a trade-off between our two main objectives
of coverage and distinctiveness.

Like the K-cover algorithm, our modified covering al-
gorithm terminates if the gain for every point is zero (i.e.,
no unchosen points will cover any not-yet-fully-covered im-
ages). Figure 3 shows the effect of including descriptor
distances into the selection method, by showing distributions
of distances between nearest neighbors in selected point sets
with and without considering distinctiveness. We see that the
point set selected by our method has larger expected nearest
neighbor distances in descriptor space, which will tend to de-
crease the rate of false matches in the feature matching phase
of the recognition pipeline. We use this appearance-aware
selection method to seed our probabilistic point selection
algorithm, which we describe next.

3.3. Probabilistic K-cover algorithm

We now have an initial point set selected by our
appearance-aware selection algorithm (KCD). This allows
us to bootstrap our probabilistic point selection method. Re-
call that rather than treating the visibility matrix as binary,
our probabilistic approach treats this matrix as a set of noisy
observations of visibility, and selects a small number of ad-
ditional points to add to P ′ such that the number of images
that satisfy Pr(vi,P′ ≥ K) ≥ pmin is as large as possible.
That is, unlike the K-cover algorithm, which seeks to com-
binatorially “cover” the images at least K times, we set a

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

distance in SIFT space

pr
ob

ab
ilit

y
di

st
rib

ut
io

n

Distances to NN − KC
Distances to NN − KCD

d=180

Figure 3. Distributions of distances with and without
appearance-aware selection. This plot illustrates the “density”
of two sets of point descriptors, by showing the distribution of
distances between nearest neighbors in SIFT space between points
within each set. The blue plot is for the set selected with the basic
K-cover algorithm (KC), while the green plot is for the set selected
with our appearance-aware selection algorithm (KCD) using the
threshold d = 180. Both point sets contain 311,343 points selected
from the Landmarks dataset [10]. Note that the KCD algorithm
pushes points further away from one another on average.

minimum probability value pmin and our goal is to achieve
Pr(vi,P′ ≥ K) ≥ pmin for each image Ii.

Like the K-cover algorithm, we use a greedy approach,
but choosing the point Pj∗ that maximizes expected gain,
as defined in Eq. 3. This gain function is defined in terms
of probabilistic coverage, Pr(vi,P′ ≥ K), which, in its
simplest form, is a sum over a binomial distribution for
x ≥ K. In particular, given the initial set of points P ′, we
first evaluate Pr(vi,P′ ≥ K) = 1−Pr(vi,P′ < K) for each
image Ii, i.e. the probability that an image Ii sees at least K
points in the selected point set P ′. Suppose Ii is covered Ci

times by the initial point set P ′, and every edge encodes a
point visibility with probability p. Then from the binomial
distribution we have

Pr(vi,P′ = K ′) =

(
Ci

K ′

)
pK
′
(1− p)Ci−K′ . (6)

Hence, we can compute Pr(vi,P′ ≥ K) as

Pr(vi,P′ ≥ K) =

Ci∑
K′=K

Pr(vi,P′ = K ′). (7)

These distributions for images with different levels of cover-
age are illustrated in Figure 4.

To choose the next point to add to P ′, we pick the point
Pj∗ that maximizes the sum of expected gains for all images,
defined in Eq. 3. To compute this expected gain inside our
greedy algorithm, the naive approach is to re-calculate (7)
for all images. However, evaluating (7) can be expensive, as
this must done at each iteration of adding points, once for
each point. In the simple case where pij is constant over the

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

number of points visible in an image in the selected point set

pr
ob

ab
ilit

y
di

st
rib

ut
io

n

0.040
0.488
0.596
0.998

Figure 4. Binomial distributions for images covered by differ-
ent numbers of selected points. The plots above show probability
distributions for number of visible points, vi,P′ , for three differ-
ent images (solid lines). The images corresponding to the green,
red solid, and blue curves are covered by 15, 20, and 35 points,
respectively; in this example the probability of a positive point
observation is set to p = 0.6. The legend shows the probability
mass on the right side of the line K = 12 for each image, i.e.
Pr(vi,P′ ≥ K), the probability that each image sees at least K
points in P ′. As more points are added, the distributions will shift
from left to right (green→ red→ blue). The dotted red distribution
is the red distribution after adding a single new point that is visible
in this image; the corresponding probability value Pr(vi,P′ ≥ K)
has increased from 0.488 to 0.596 (a gain of 0.108). The objective
of our probabilistic point selection algorithm is to select points
that maximize the increase in expected gain Pr(vi,P′ ≥ K) for all
uncovered images.

visibility graph (and hence we the probability distributions
of interest are binomial), we can simply pre-compute all
possible distributions, each with a different Ci, and use these
as lookup tables. However, for better generality and extensi-
bility to Poisson binomial distributions, our implementation
uses a different approach to compute Pr(vi,P′ ≥ K).

First, for each image Ii, we compute and store the full
distribution of vi,P′ once, after the initial points are selected,
using (6). Then we re-use and update the distribution of vi,P′
in later iterations. More specifically, from the independence
assumption, Pr(vi,P′∪{j} ≥ K) can be written as

Pr(vi,P′∪{j} ≥ K) = pij Pr(vi,P′ = K − 1) + Pr(vi,P′ ≥ K).
(8)

Hence, the gain of a point Pj for an image Ii is simply
pij Pr(vi,P′ = K − 1). Hence from Eq. 3, the total gain
GKCP (j,P ′) of a point Pj can be written as

GKCP (j,P ′) =
∑

i∈I\C

pij Pr(vi,P′ = K − 1). (9)

We then choose the point Pj∗ that maximizes
GKCP (j,P ′), add Pj∗ to the set P ′, and update the dis-
tribution of vi,P′∪{Pj∗} for each image Ii that Pj∗ is visible
in, using

Pr(vIi,P′∪{Pj∗} = K ′) =

pij Pr(vi,P′ = K ′ − 1) + (1− pij) Pr(vi,P′ = K ′).
(10)

Discussion. We have considered several variants of our
approach. For instance, it would be natural to add the appear-
ance distinctiveness weighting into the probabilistic K-cover
approach, and to that end, we have tried methods such as
converting the minimum distance to the nearest neighbor to
a probability using a global distribution of such distances.
We found that our simple approach above worked as well,
however, perhaps because the additional points we add are
primarily improving coverage of a set of points that are al-
ready distinctive. However, this is an interesting topic for
further exploration.

3.4. Full point set reduction algorithm

0. Initialize point set P ′ = ∅.
Initial point set selection:
1. Given K and threshold d, select the point Pj∗ ∈ P that

maximizes GKCD(j,P ′) (Eq. 4), and add Pj∗ to P ′.
2. Repeat Step 1 until all images are covered by at least

K points.
Probabilistic K-cover algorithm:
3. Given a parameter pmin, and the point set P ′ gener-

ated from Steps 1 and 2, evaluate Pr(vi,P′ ≥ K) for
each image Ii using (7), and mark those images with
Pr(vi,S ≥ K) ≥ pmin as covered.

4. Select the point Pj∗ that maximizes the gain function
GKCP (j,P ′) defined in (9), and add Pj∗ to P ′.

5. For each image Ii that sees point Pj∗ : update Ii’s dis-
tribution using (10), re-evaluate Pr(vi,P′ ≥ K) using
(7) and mark Ii as covered if Pr(vi,P′ ≥ K) ≥ pmin.

6. Repeat from Step 4 until a specified percentage of im-
ages are covered.

4. Implementation
Efficient descriptor comparisons. Our initial point set se-
lection method requires computing the descriptor distance
between a candidate point and its nearest neighbor for each
point in the selected set, and a naive approach would involve
comparing all candidate descriptors to all selected descrip-
tors.1 However, we note that the expected gain GKCD(j,P)
of a point Pj can only decrease across the iterations of the

1One could use a kd-tree to speed up nearest neighbor computation, but
in our case the tree would have to be dynamic since the selected point set
grows over time.

selection process, because both terms in Eq. 4 are submod-
ular set functions of P , which will only increase in its size.
Hence, our algorithm can maintain an upper bound on the
expected gain GKCD(j,P) for each point Pj . At each it-
eration of searching for the best point to add, we can skip
considering a point if its upper bound is less than or equal to
the gain function value of the current best candidate point.
The upper bound for each point is initialized by that point’s
degree, the maximum possible score for each point. This
bound is updated on any selection iteration where that point
is not skipped. Using this method, a large number of points
can be skipped; we observe empirically that approximately
O(log n) points are evaluated per iteration, where n is the
total number of points in the input set P .

To further speed up our method, for each point Pj we also
store the nearest neighbor and its corresponding distance in
the selected set P so far, as well as the size of P during the
last evaluation of Pj . This allows us to pick up where we
left off when finding Pj’s nearest neighbor the next time
we evaluate Pj . All in all, we found the running time of
our appearance-aware initial point selection process to be
acceptable. For example, for the Dubrovnik dataset with
K < 20, the selection process runs in under a minute. For
K = 80, the process takes about ten minutes. An upper
bound on running time of our KCD algorithm is O(nc),
where n is the number of points in P and c is the number of
selected points (|P ′|), since each selected point is compared
to at most n other points.

Parameters. In all experiments, we define pmin = 0.99 to
be the minimum probability for an image to be “covered”.
We use 99% as the target coverage termination condition:
that is, the K-cover algorithm terminates when 99% images
are covered at least K times, and our algorithm terminates
when 99% images are covered at least K times with proba-
bility greater than pmin. We use a constant value p = 0.6 for
all pij’s 2, and a descriptor distance threshold d = 180 for
Eq. 5. We evaluated several values of d, and found that the
results are fairly insensitive to its value.

5. Experiments

In this section, we evaluate the performance of our algo-
rithm on several datasets, including the Dubrovnik dataset
of Li et al. [9], the Aachen dataset of Sattler et al. [16], and
the much larger Landmarks dataset [10]; these three datasets
are summarized in Table 1.

We evaluate three approaches to computing minimal
scene descriptions: the K-cover algorithm (KC) [9], our
initial point set selection algorithm only (KCD), and our

2We arrived at p=0.6 by considering the empirical ratio between the
number of inlier points when registering a query image and the number of
points seen by that image in the original model; the results across a few
datasets were in the range 0.5-0.6, and 0.6 worked well in practice.

Dataset # DB Imgs # 3D Points # Queries
Dubrovnik [9] 6,044 1,886,884 800
Aachen [16] 4,479 1,980,036 369

Landmarks [10] 205,813 38,190,865 10,000

Table 1. Summary of datasets used in our experiments.

full approach including the probabilistic K-cover algorithm
(KCP). All methods output a list of points to keep in the
original 3D point cloud database. We use each subset of
points to construct a reduced database, and use the algorithm
of [10] to register the query images for each dataset. We
record the percentage of successfully registered images and
use it as a measure of how well the point set represents the
original database. We are particularly interested in very com-
pact scene descriptions (small K), and understanding how
well we can represent scenes with a small fraction of points.

Numbers of points. In order to fairly compare different
methods, it is easiest to compare the performance of scene
descriptions with the same number of points. However,
given a particular K, the number of points required to cover
a database is generally smaller for the K-cover algorithm
(KC) than with KCD, since KC selects points with maximal
coverage without considering point appearance. Hence to
compare performance, we run KCD until it selects the same
number of points as the KC algorithm with the same K
value. This could slightly favor the K-cover algorithm, as
our initial point set selection algorithm is terminating early.

Since our full approach (KCP) consists of two stages, in
which the initial selection KCD alone selects slightly more
points than the KC algorithm, again, more points will be
selected by KCP compared to KC using the same K value.
To account for this, we use a lower value of K to select the
initial point set (around pK), and continue running the KCP
algorithm until it has selected the same number of points as
KC. We show results on all datasets in Table 5.

For each dataset, we plot starting with the smallest K
where we get close to 50% registration rate. Hence the K
values vary for different datasets. Table 5 shows the results
for KC, KCD, and KCP.

Initial point set selection. In all datasets, adding the de-
scriptor distance-based weight w(dmin(j)) in our gain func-
tion (4) for KCD improves the performance compared to the
K-cover algorithm for nearly all values of K. The improve-
ment is especially significant when K is low (and hence
the number of selected points is small). However, as K is
set higher, this advantage becomes less prominent, perhaps
because images see more points and mismatches are less
detrimental (i.e., coverage starts to win out).

Probabilistic K-cover. Table 5 also shows that our full
approach (KCP) consistently outperforms the K-cover al-
gorithm, and further improves on the gains achieved by our

Dubrovnik Dataset [9]
query images: 800, registered by full set: 99.50%
K 12 (9) 20 (12) 30 (20) 50 (35)

points 5,788 10,349 17,241 31,752
% points 0.31% 0.55% 0.91% 1.68%

KC 58.00% 77.06% 86.00% 91.81%
KCD 62.88% 78.88% 87.38% 92.50%
KCP 64.25% 79.13% 87.25% 93.38%

Aachen Dataset [16]
query images: 369, registered by full set: 88.08%
K 30 (20) 50 (32) 80 (52) 100 (65)

points 13,299 23,675 40,377 52,161
% points 0.67% 1.20% 2.04% 2.63%

KC 50.95% 62.06% 66.40% 71.27%
KCD 54.20% 63.14% 69.38% 72.36%
KCP 56.37% 64.23% 70.19% 73.98%

Landmarks Dataset [10]
query images: 10,000, registered by full set: 94.33%

K 6 (4) 9 (6) 12 (9) 20 (12)
points 140,306 222,161 311,035 571,864
% points 0.37% 0.58% 0.81% 1.50%

KC 44.84% 59.86% 69.56% 81.06%
KCD 45.45% 61.26% 70.59% 81.04%
KCP 45.90% 61.50% 71.87% 81.45%

Table 2. Registration performance on Dubrovnik, Aachen, and
Landmarks datasets. KC stands for the K-cover algorithm, KCD
stands for our appearance-aware point selection algorithm, and
KCP stands for our full approach. Point sets of the same size
are selected using the three algorithms, then used in the same
registration algorithm [10] to evaluate the percentages of query
images that are successfully registered to the database. Smaller K
values (in brackets) are used to initialize our KCP method. For each
experiment, we show the number of points in the reduced model, the
percentage of total points this represents, and the performance of
the three methods. For comparison, we also show the performance
of [10] using the full set of input points.

KCD algorithm. For instance, KCD improves recognition
performance on the Dubrovnik dataset by nearly 5% (58%
to 62.9%) when K = 12, and KCP improves performance
further to 64.2%. To check whether KCD is indeed helping,
we tried initializing KCP with KC instead of KCD, but found
that this performs worse than KCP initialized with KCD.

How much performance are we losing with our compact-
ness? Table 5 also shows the performance of state-of-the-art
methods that utilize the full point set [10, 15], which use
full models and have a minimum registration rate of 88% on
these datasets. It is worth noting that although compared to
them, our method has lower raw registration performance
(Table 5), our resulting models are much more compact

(< 3% of the size of the full model). With the limited portion
of database we use, our algorithm still performs surprisingly
well in registering new images. For instance, we can recog-
nize over 70% of the query images in the Aachen dataset
with only 2% of the 3D points in the full model (K = 80).

How much benefits are we getting through compactness?
As well as dramatically improving memory use, we have
also observed reduced registration time. For instance, the
smaller reduced models (K ≤ 30) process queries in about
half the time compared to the full model. This improve-
ments result from the compactness of data structures and
efficiency in rejecting false images, both of which stem from
the compactness of the 3D point set.

6. Conclusions and Discussions

We have proposed a new method for computing com-
pact point models from structure from motion datasets of
3D points, exploring how a little data can often go a long
way. Our method can be used to reduce the memory and
computational cost of a location recognition system. Our
main contribution is to combine two key considerations—
coverage and distinctiveness—in an algorithm for computing
compact models of places. Based on our experiments, we
conclude that both coverage and distinctness are important
considerations, and that our probabilistic approach also aids
in computing representative models. We believe these ideas
could also be used in in other recognition settings where
compact models are sought.

One limitation of our approach is that we require more
pre-computation time than the K-cover algorithm, even with
the optimizations in Section 4, since we compare descriptor
distances between points. However, this can be done as a
batch process once for a dataset. Another limitation is that
we use greedy algorithms to optimize for both coverage and
distinctness; in the future, we hope to investigate more so-
phisticated global selection algorithms. Our probabilistic
model also makes the simplifying assumption that each edge
in the visibility graph for a scene represents a random event
with equal probability p. We have tried some simple variants
that estimate different probability values pij per edge with
similar performance, but we believe that further exploration
of probabilistic models of point visibility can likely improve
performance further. For instance, analyzing negative infor-
mation in a visibility graph—i.e., when a point should be
visible but was not detected in an image—may assist in mod-
eling probabilities. Further, understanding the distribution
of appearance for each individual 3D point could also yield
further improvements.

Acknowledgements. This work was funded in part by
grants from the National Science Foundation (IIS-0964027,
IIS-1149393, and IIS-1111534), and by support from the
Intel Science and Technology Center for Visual Computing.

References
[1] S. Agarwal, N. Snavely, I. Simon, S. Seitz, and R. Szeliski.

Building Rome in a day. In ICCV, 2009. 1, 2
[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and

A. Y. Wu. An optimal algorithm for approximate near-
est neighbor searching fixed dimensions. J. of the ACM,
45(6):891–923, 1998. 2

[3] S. Cao and N. Snavely. Graph-based discriminative learning
for location recognition. CVPR, 2013. 2

[4] S. Choudhary and P. Narayanan. Visibility probability struc-
ture from SfM datasets and applications. In ECCV. 2012.
1

[5] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros.
What makes paris look like paris? SIGGRAPH, 2012. 2

[6] A. Irschara, C. Zach, J. Frahm, and H. Bischof. From
structure-from-motion point clouds to fast location recog-
nition. In CVPR, 2009. 1, 2

[7] J. Knopp, J. Sivic, and T. Pajdla. Avoiding confusing features
in place recognition. In ECCV, 2010. 2

[8] F. Li and J. Kosecka. Probabilistic location recognition using
reduced feature set. In ICRA, 2006. 2

[9] Y. Li, N. Snavely, and D. Huttenlocher. Location recognition
using prioritized feature matching. In ECCV, 2010. 1, 2, 6, 7

[10] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua. Worldwide
pose estimation using 3d point clouds. In ECCV, 2012. 1, 2,
5, 6, 7

[11] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 2004. 1

[12] H. S. Park, Y. Wang, E. Nurvitadhi, J. C. Hoe, Y. Sheikh,
and M. Chen. 3d point cloud reduction using mixed-integer
quadratic programming. In CVPR Workshops, 2013. 1

[13] J. Philbin, M. Isard, J. Sivic, and A. Zisserman. Descriptor
learning for efficient retrieval. In ECCV, 2010. 2

[14] T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based lo-
calization using direct 2D-to-3D matching. In ICCV, 2011.
1

[15] T. Sattler, B. Leibe, and L. Kobbelt. Improving image-based
localization by active correspondence search. In ECCV, 2012.
2, 7

[16] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image re-
trieval for image-based localization revisited. In BMVC, 2012.
6, 7

[17] G. Schindler, M. Brown, and R. Szeliski. City-scale location
recognition. In CVPR, 2007. 2

[18] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: exploring
photo collections in 3d. In SIGGRAPH, 2006. 1

[19] P. Turcot and D. Lowe. Better matching with fewer features:
The selection of useful features in large database recognition
problems. In Workshop on Emergent Issues in Large Amounts
of Visual Data, ICCV, 2009. 2

[20] M. Vidal-Naquet and S. Ullman. Object recognition with
informative features and linear classification. In ICCV, 2003.
2

[21] W. Zhang and J. Kosecka. Image based localization in urban
environments. In Int. Symp. on 3DPVT, 2006. 1

