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Abstract

Images and videos are often characterized by multiple
types of local descriptors such as SIFT, HOG and HOF,
each of which describes certain aspects of object feature.
Recognition systems benefit from fusing multiple types of
these descriptors. Two widely applied fusion pipelines are
descriptor concatenation and kernel average. The first one
is effective when different descriptors are strongly corre-
lated, while the second one is probably better when de-
scriptors are relatively independent. In practice, however,
different descriptors are neither fully independent nor fully
correlated, and previous fusion methods may not be satis-
fying. In this paper, we propose a new global representa-
tion, Multi-View Super Vector (MVSV), which is composed
of relatively independent components derived from a pair of
descriptors. Kernel average is then applied on these com-
ponents to produce recognition result. To obtain MVSV, we
develop a generative mixture model of probabilistic canoni-
cal correlation analyzers (M-PCCA), and utilize the hidden
factors and gradient vectors of M-PCCA to construct MVSV
for video representation. Experiments on video based ac-
tion recognition tasks show that MVSV achieves promising
results, and outperforms FV and VLAD with descriptor con-
catenation or kernel average fusion strategy.

1. Introduction

Action recognition has been an active research area due
to its wide applications [1, 33, 34, 36]. Early research fo-
cus had been on datasets with limited size and relatively
controlled settings, such as the KTH dataset [26], but later
shifted to large and more realistic datasets such as the
HMDB51 dataset [16] and UCF101 dataset [28]. These
uncontrolled video datasets pose great challenges to the
recognition task, e.g. large amount of intra-class variations,
background clutter and occlusion, camera motions and view
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Figure 1. Different Pipelines for descriptor fusion.

point changes. Recently, significant progresses have been
made to improve the accuracy of action recognition sys-
tem. These progresses should be partly ascribed to the de-
velopment of more elaborately designed low-level feature
descriptors [5, 19, 6], sampling strategy [33, 12] and more
sophisticated developed models for generating video repre-
sentations [23, 14].

To enhance recognition performance, several kinds of
descriptors have been proposed, each of which describes
certain aspects of object feature [5, 19, 33, 22]. In par-
ticular, HOG descriptor characterizes static appearance [5],
while HOF and MBH descriptors capture dynamic motion
[19, 6]. So far, local spatio-temporal descriptors [8] have
exhibited successful performance [1] in action recognition
task. However, outstanding recognition systems rarely rely
on only a single type of them. A complementary line of
work focuses on local features sampling methods, aiming
to augment relevant features and increase features cover-



age. w-trajectory [12] and dense trajectory [33] are exam-
ples of practical feature sampling strategies that enhance
recognition performance beyond the Spatio Temporal Inter-
est Points (STIP) [18].

A standard pipeline of video encoding firstly fit the fea-
tures distribution model based on the local descriptors ex-
tracted from training videos. From each new video, local
features are extracted and furthered pooled into a global rep-
resentation utilizing the statistics of the distribution model.
Finally, this vector representation is fed into the classifier
to produce recognition result. The Bag-of-Visual-Words
(BoVW) representation is a classic example [27] that cap-
tures zero-th order statistics from, and implements video en-
coding based on the distribution of visual vocabulary. More
sophisticated representations beyond BoVW have also been
proposed to describe higher order statistics of features.
Among them, FV [23] and its variant VLAD [14], ini-
tially designed for image classification, have been shown
to achieve promising performances in several action recog-
nition datasets [37, 21, 12].

Recent studies show that combining multiple types of
local descriptors can improve recognition performance e.g.
[33, 12]. Combining methods can be roughly grouped into
three types, namely descriptor-level fusion, kernel-level fu-
sion and score-level fusion, as illustrated in Figure 1. In the
descriptor-level fusion, simple concatenation of weighted
local descriptors is used as a new descriptor for subsequent
processing [37]. Kernel-level fusion utilizes a linear com-
bination of kernel matrices belonging to each local descrip-
tor to capture the structure of video data [12, 33]. Kernel
average is a simple yet representative kernel-level fusion
method. It is equivalent to directly concatenating the global
representations corresponding to each type of descriptor,
and fed the final concatenation into the linear SVM. [4] re-
ported that kernel average is particularly effective compared
to more sophisticated kernel-level fusion methods when
only limited kernels are considered. The last fusion method
is score-level fusion, which trains classifiers for each de-
scriptor and fuses the confidence scores [39, 30, 38]. All
these methods have been extensively evaluated in the con-
text of complex event detection [29, 20].

Descriptor-level fusion and kernel average are widely ap-
plied in action recognition [12, 33]. When the adopted de-
scriptors have strong dependency, descriptor fusion is prob-
ably better, because the correlation among different descrip-
tors are taken into account. In contrast, if different descrip-
tors are relatively independent, kernel average will be par-
ticularly effective, because bias in one type of descriptor
may be corrected by the others. However, in practice, dif-
ferent feature descriptors are neither fully independent nor
fully correlated. As a result, different types of feature de-
scriptors are not completely utilized, and the final recogni-
tion accuracy may deteriorate.
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Figure 2. A graphical interpretation of M-PCCA. Each ellipse rep-
resents a PCCA submodel of the M-PCCA. Observed descriptor
pair is jointly generated by the mixture of K submodels.

Partly inspired by the Gaussian mixture model (GMM)
based Fisher Vector representation [23] and the Factorized
Orthogonal Latent Spaces (FOLS) approach [25] for multi-
view learning, in this paper, we propose a Mixture model of
Probabilistic Canonical Correlation Analyzers (M-PCCA),
and utilize this model to jointly encode multiple types of
descriptors for video representation. Our motivation is to
factorize the joint space of descriptor pair into their shared
component and mutually independent private components,
so that each component has strong inner dependency while
different components are as independent as possible. We
then apply kernel average on these components. In this way,
we make the most of different local descriptors to improve
recognition accuracy. We first derive an EM algorithm for
learning M-PCCA. Each video is encoded based on this M-
PCCA via latent space and gradient embedding [11]. As we
shall see, the resulting video representation is consisted of
two components: one is the latent factors, which encodes in-
formation shared by different feature descriptors; the other
is the gradient vector, which encodes information specific
to each type of them. Interestingly, mathematical formula-
tions of the two components turn out to be the counterparts
of FV and VLAD representations, respectively.

The remainder of this paper is organized as follows.
In Section 2, we revisit Canonical Correlation Analysis
(CCA). In Section 3, we propose the mixture model of
canonical correlation analyzers and its corresponding learn-
ing algorithm. Section 4 presents our video representation
based on M-PCCA. An interpretation and comparison to
other video representations is given at the end of Section
4. The performance of the method are experimentally ex-
amined on the HMDBS51 and UCF101 dataset in Section 5.
We conclude the paper with a discussion on the limitation
and possible extension of the method.



2. Canonical Correlation Analysis revisited

In this section, we briefly review Canonical Correlation
Analysis (CCA) [10] and its probabilistic extension, Proba-
bilistic Canonical Correlation Analysis (PCCA) [3].

For two sets of data, X = {z;}¥, and Y = {y;}}¥,
with dimensions n and m respectively, CCA [10] manage
to find a series of linear projections that maximize the cor-
relation between two projected vectors a.X and bY. Bach
and Jordan [3] gave a probabilistic interpretation of CCA.
They introduced a latent d-dimension vector z, which has
a standard Gaussian distribution p(z) = N(0,1;). They
further assumed linear transformations between x, y and z
as

x=Wiz+ e, (1
y=Wyz+ey, (2)

where W, and W, are matrices with size n x d and m x d
respectively. €, ~ N(uz, ¥y,) and €, ~ N(py, ¥y). «
and y are assumed to be independent given the latent vector
z. Intuitively, z can be considered to capture the essential
information shared by both x and y while €, and ¢, deliver
the private information specific to « and y respectively.
Given z, the conditional distributions of x and y are

p(z[2) :N(Wrz+ﬂxaq}r)v 3)
p(y|2) :N(Wyz+ﬂy,\11y)- “4)

Marginalizing over z, we have
o) = [ Plalo)pe)dz = N WalW] 402, )

p(y) = / P(yl2)p(2)dz = Ny, W, W, +10,). (6)

The joint distribution of x and y is

p(z,y) = / p(xl2)p(yl2)p(2)dz )

which is Gaussian, with mean and covariance matrix
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3. Mixture model of Probabilistic CCA

One limitation of PCCA is that it can only deal with lin-
ear projections. This has naturally motivated researchers
to develop nonlinear CCA. One example is kernel CCA
[17]. An alternative paradigm to simultaneously model non-
linear structures and deal with local correlation is to in-
troduce the mixture of local linear submodels. The effec-
tiveness of mixture model based methods has been demon-
strated in various models such as Mixture of Probabilistic

Principal Component Analysis (M-PPCA) [31], mixture of
experts [15], mixture of Factor analysis [9] etc. In the fol-
lowing section, we present our Mixture model of Probabilis-
tic Canonical Correlation Analyzer (M-PCCA) and its cor-
responding learning algorithm.

3.1. Model formulation

Consider a mixture model for v = (z,y),
pv) = wip(vlk), (10)
k

where the k-th submodel p(v|k) is a PCCA model and wy, =
p(k) is its corresponding weight. Let zj denote the latent
variable in the k-th submodel. As in PCCA, conditional
probability distribution on z; can be derived as

p(xlk, z1) = N(Whzp + pk, U%), (11)
p(ylk, z) = N(Whz, + plb, o), (12)

where latent variable zj, ~ N(0, I) is a d-dimensional vec-
tor. Submodel p(v|k) = [ p(v|k,z)p(z)dz is a Gaussian
distribution A (g, Xy ), where
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Figure 2 gives a graphical illustration of the model. Ob-
served data (in our case, two types of low-level feature de-
scriptors) are sampled from a mixture model of v, where
each submodel is related to a shared latent variable z;. As
we shall see, the shared information between different types
of descriptor represented by 2, and the private information
encoded by A\, and \,, will be utilized to construct Multi-
View Super Vector for video representation.

3.2. Learning algorithm for M-PCCA

Inspired by [31], we adopt EM algorithm to learn
the parameters of M-PCCA from training data {v; =
(xi,yi)}i=1...n. We use k-means algorithm to initialize
W1, ..., pr and the corresponding X1, ..., Xk in each lo-
cal submodel. We then separately learn {W}, W¥},—1 . x
for all K submodels via CCA using {u, Xk =1, Kk as
in [3]. In E-step, we estimate the responsibility -; ; that
k-th submodel contributes to generate the ¢-th sample for
k = 1...K. We then compute posterior distributions
of {z}r=1... k., which is used to estimate latent factors
{#ik}k=1,.. Kk shared by samples z; and y;. In M-step,
we update {wg, f1k, Sk, WE, WE}i—1 .k to maximize the
complete data log-likelihood. Details of the EM-algorithm
are provided in the Appendix. The matlab implementa-
tion of the algorithm is available at http://zhuoweic.
github.io/.
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Figure 3. An interpretation of the MVSV representation. A de-
notes parameters {u, U, W}. Given z, descriptors = and y are
mutually independent. z can thus be utilized as the shared infor-
mation between them, with parameters A\, and )\, as their private
information.

4. Multi-View Super Vector representation

In this section, we derive the MV SV representation from
M-PCCA. Then we present an interpretation of the repre-
sentation and compare it to previous coding methods. Pre-
vious fusion methods such as descriptor concatenation and
kernel average assume that different descriptors are either
fully correlated or fully independent. However, this is not
usually the case in real scenarios. The MVSV represen-
tation is consisted of two components: the latent factors
Z, which is the direct concatenation of estimations for zj
in each submodel, and the gradient vector G of the com-
plete data log likelihood, with respect to parameters A\, and
Ay. This generative embedding technique originates from
[11], and has been applied in Fisher Vector (FV) represen-
tation [23]. While FV embeds GMM into parameter space,
we embed M-PCCA into latent space as well as parameter
space. Figure 3 demonstrates our motivation to design rep-
resentation with such structure. In each local PCCA, latent
vector z characterizes shared information between x and y.
x and y are assumed to be independent of each other given
latent z. This independence is captured by their individual
parameters \; and \,. Intuitively, these parameters encode
private information contained in each one of them.

4.1. Constructing MVSYV representation

Latent factors Z encoding shared information between
x and y are first extracted from the M-PCCA model. For
each feature sample v; = (z;,y;), posterior mean z; , =
E(zk|x;,y;) is used to estimate the latent vector zj, (math-
ematical formulation is given in the appendix). These es-
timations are weighted by their posterior probability, and
integrated to obtain zj using the sum-pooling scheme [37].
Specifically,

2 = WfT,WjT } D Z%k(vi — k) (15)

As shown in Figure 2, our final representation of Z is con-
structed by concatenating {zj }r=1,.. k. In this way, shared
information between = and y is embedded into the Kd-
dimensional latent space.

Gradient vectors G, and G, encoding private information
specific to each type of descriptor are then derived from M-
PCCA. Given latent factors Z, conditional distributions for
z and y are determined by their individual sets of param-
eters A\, = {/Lﬁa Efm quf}kK:I and )‘y = {:ugk;a El@ja V[/;}i(:l’
respectively. They provide a good representation of the pri-
vate information. The generative model is thus embedded
into the parameter space using the gradient vector with re-
spect to A, and \,. To keep the dimension of video repre-
sentations within a reasonable size, we constrain U¥ to be
diagonal, and take derivative of the complete log-likelihood
of M-PCCA with respect to { %, ¥*} to obtain the gradient
vector G. Specifically,

DE(L)
Ok

OE(L) . .
Dok = 2(wp 5y — dlag(zi: 'Vi,kxi,kxzk))/al; (17)

= =2 yixwik/oh, (16)

where wy, = >, Vik, oF = /diag(¥k), & = o —
diag(WfZ’inT), Tip =2 — pk — WFZ . The divi-
sion here is implemented as element-wise division between
vectors. Gradient vector for x is thus

_ [OE(L) O0E(L)
QI—{ oul * ook }k_l,m,K (19

with a dimension of Kn. Formulations for y can be derived
in a similar fashion.

The final Multi-View Super Vector (MVSV) is con-
structed by concatenating the latent factors Z and gradient
vectors G, and G-

MVSV ={Z,G,,G,} 19)

This representation, with a dimension of K (d + n 4+ m), is
firstly power-normalized and L2-normalized as is suggested
in [24]. We then apply intra-normalization for each compo-
nent as in [2].

4.2. Relation to previous methods

We concatenate the estimations of latent vector for each
submodel to recover the shared information. This is closely
related to VLAD [14], a simplied version of FV represen-
tation. In fact, the representation (15) can be interpreted
as separately applying linear transformation on each aggre-
gated vectors of v in the k-th submodel. Similar transforma-
tion based on PCA has been shown to be an effective way to
improve image retrieval performance using VLAD [7]. Our



(a) HMDBS1
Figure 4. Example frames from the HMDBS51 and UCF101 datasets.

latent vector Z can also be extracted via a simplified version
of M-PCCA. k-means is used to learn the local centroids /¥,
/¥ and corresponding local covariance matrix W%, W% For
each submodel, we then estimate W} and W} via CCA as
in [10]. The weighting coefficient +y ;, is set to 1, if the near-
est neighbour of x; is uy, and 0 otherwise. Latent vectors
Z provides a natural way to compress video representation
from multiple feature descriptors, in that its dimension can
be explicitly specified via that of the latent vector z;. This is
to be distinguished with the original VLAD representation,
whose dimension is often compressed using PCA.

As for the gradient vector G, it can be seen as the M-
PCCA counterpart of the original GMM-based Fisher Vec-
tor (FV) [23]. This gradient vector describes the direction
in which parameters should be stretched to best fit the data.
The difference between G and the original FV can be ob-
served from equation (16) and (17), where in the case of
FV, 2, = 2; — pk, 6% = 0% and the final super vector is
normalized by the Fisher Information Matrix.

5. Experiments

In this section, we first describe our implementation de-
tails used in the experiments, namely feature sampling, fea-
ture encoding and dimension specification of latent space.
Then we present recognition results on HMDBS51 and
UCF101 databases, to examine the performance of MVSV.
A comparison to the state-of-the-art methods is given at the
end of this section.

5.1. Datasets

The HMDBS51 dataset [16] is a large collection of un-
controlled videos from various sources, including movies
and YouTube videos. The dataset is consisted of 6,766 clips
from 51 action categories, each category with at least 100
clips. Our experiment follows the original evaluation pro-
tocol using three sets of training/testing splits. Each split
includes 70 video clips for training and 30 video clips for

(b) UCF101

testing. The average accuracy for each category over the
three splits is used to measure the performance.

The UCF101 dataset [28] is the probably largest action
recognition dataset to date. It contains 13,320 video clips
collected from YouTube, with a total number of 101 ac-
tion classes. Videos are grouped into 25 groups. We fol-
low the latest released evaluation protocol with three train-
ing/testing splits [28] in the experiments and report the av-
erage accuracy. Example frames from the two datasets are
shown in Figure 4.

5.2. Experimental setup

We use dense trajectories to sample local features, which
has exhibited outstanding performance in action recogni-
tion task [33]. For each video, three types of features are
extracted with the same setup as [33], namely Histogram
of Oriented Gradient (HOG), Histogram of Optical Flow
(HOF) and Motion Boundary Histogram (MBH). As in
[24], we separately apply PCA on each type of descriptor to
reduce their dimensions by a factor of two. We also whiten
each types of descriptors as is suggested in [13]. The result-
ing descriptors are then L2-normalized. A total of 256,000
descriptors are randomly sampled from training sets. The
VLFeat Toolbox [32] is used to implement baseline meth-
ods. In particular, we employ the built-in FV and VLAD
implementations in the experiments.

5.3. Evaluation of MVSYV representation

To specify the number of components and the dimen-
sion of latent space, we conduct experiments with varied
configurations on the second evaluation split of HMDBS51
database with HOG/HOF descriptor pair. We firstly fix the
dimension of latent space at 45, and vary the number of
components from 16 to 512. Figure 5 (a) shows that the
recognition accuracy of MVSYV, latent factors and gradient
vector increase as the number of mixture components in-
creases. This reflects the effectiveness of mixture model to
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Figure 5. Performance of MVSV with different configurations on
the second evaluation split of HMDBS51 database.

capture the overall non-linear structure in data with increas-
ing number of components. We can see from Figure 5 (a)
that configurations with more than 128 components result
in similar performance. For efficient implementation and
fair comparison with other methods, we fix the number of
components K of GMM and M-PCCA at 256 in all the ex-
periments.

As for the dimension of latent space, we run experiments
with fixed number of components at 256 and varied latent
factors dimensions from 15-d to 45-d, spaced by 5-d. Figure
5 (b) gives us some insight on the ability of latent factors to
incorporate shared information between descriptors. With
increasing dimension of latent space, latent factors become
more capable to capture the shared information, the gradient
vectors have smaller overlap and recognition performance
increases accordingly. As is shown in Figure 5 (b), at 45-
d, the latent factors and gradient vectors have considerable
complementarity and the recognition performance reaches
the peak. So we fix the latent space dimension at 45 in the
subsequent experiments.

We conduct experiments to investigate the performance
of MVSYV representation on HMDBS51. Table 1 compares
recognition accuracy achieved by FV, VLAD and MVSV
representation on HMDBS51. The effectiveness of FV and
VLAD coupled with (linear) kernel average strategy in ac-
tion recognition has been extensively investigated in [21].
As is shown in Table 1, with dense trajectory, kernel aver-
age (k-level) is better than direct concatenation of descrip-
tors (d-level) in most of the cases. HOG is in essence a
descriptor of static images, while HOF and MBH are de-
scriptors of dynamic feature. Recognition system combin-
ing HOG and HOF or MBH can probably benefit from the
complementary information separately encoded in each of
them.

In the first experiment on HMDBS51 database, HOG is
combined with MBH via several fusion methods, as is
shown in Table 1. MBH is treated as an entirety, which
is the concatenation of independently PCAed/whitened
MBHx and MBHy. MVSYV achieves superior performances
compared to FV and VLAD. In particular, MVSV is quite
effective combining HOG and MBH. In the latter experi-

HMDB51 FV VLAD MVSV
Fusion d-level k-level | d-level k-level | k-level
HOG+MBH | 509% 50.4% | 47.0% 48.5% | 52.1%
HOG+HOF | 47.0% 483% | 44.4% 47.7% | 48.9%
MBH(x+y) | 49.2% 49.1% | 452% 47.0% | 51.1%
Combine 524%  532% | 51.5% 52.6% | 55.9%

Table 1. Performance of MVSV on HMDB51 database. d-level
refers to direct concatenation of descriptors. k-level refers to ker-
nel average.

UCF101 FV VLAD MVSV
Fusion d-level k-level | d-level k-level | k-level
HOG+HOF | 76.1% 77.7% | 75.7% 77.5% | 78.9%
MBHx+y) | 789% 78.7% | 75.6% 76.3% | 80.9%
Combine 81.1% 81.9% | 80.6% 81.0% | 83.5%

Table 2. Performance of MVSV on UCF101 database.

ments, we firstly extract MVSYV representation for descrip-
tor pairs HOG/HOF and MBHx/MBHy, and then combine
their final code via linear kernel average. As is shown in Ta-
ble 1 and Table 2, the performance boost of MVSV over FV
and VLAD in both HMDB51 and UCF101 database is con-
sistent with our motivation that making each component of
the representation independent helps improve recognition
results.

We also conduct experiments to separately examine the
recognition performance of the shared and private com-
ponents of MVSV. Take the experiment on HMDBS51
database combining HOG and MBH features as an exam-
ple. The latent factors (LF) encode shared information in
HOG and MBH. It has lower dimensionality (45K) com-
pared to VLAD representation for HOG (48K) and MBH
(96K). However, it achieves a comparative performance on
HMDBS51 database, as illustrated in Figure 6. The coun-
terpart of FV, Gyog (G-HOG) and Gy (G-MBH), achieve
superior performances over FV and VLAD on HMDBS5]1.
MVSYV achieves promising recognition results on HMDBS51
dataset by combining the latent and gradient components.

5.4. Comparison to the state-of-the-art

Table 3 summarizes the performance of several recently
published methods on HMDBS51 and UCF101 datasets. Our
method outperforms previous results on HMDBS51 by 1%.
UCF101 is the latest released action recognition dataset.
Recognition performances obtained by VLAD and FV are
provided for comparisons. Our method still outperforms the
best result using dense trajectories and FV by 2%.

6. Discussion and Conclusion

Video based action recognition benefits from the inte-
gration of multiple types of descriptors. In this paper, we
develop mixture of probabilistic canonical correlation ana-
lyzers (M-PCCA) to jointly model the distribution of mul-
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Figure 6. Performance of different components of MVSV on
HMDBS51. LF refers to the latent factors Z. G-HOG and G-MBH
refer to the gradient vectors Grog and Gumen, respectively.

HMDB51 UCFI01
STIP+BoVW [16] 23.0% | STIP+BoVW [28] 43.9%
Motionlets [35]  42.1% DT+VLAD  79.9%
DT+BoVW [33]  46.6% DT+FV  81.4%
w-traj+VLAD [12]  52.1%
DT+FV+SPM [21]  54.8%
MVSV  55.9% MVSV  83.5%

Table 3. Comparison of MVSV to the state-of-the-art methods.

tiple types of descriptors. The mixture nature of M-PCCA
allows it to capture nonlinear structure and local correlation.
From M-PCCA, we propose Multi-View Super Vector to in-
tegrate different types of local descriptors for action recog-
nition. This representation is consisted of two relatively in-
dependent components: the latent factors encoding shared
information between different types of descriptors, and the
gradient vectors encoding individual information specific to
each type of descriptor. Experimental results on HMDB51
and UCF101 show that the proposed MVSV representation
achieves superior performance than state-of-the-art meth-
ods.

However, the application of MVSV is still limited by
several factors. First of all, the computation of MVSYV in-
volves matrices multiplication, which may not be affordable
in recognition tasks where speed is considered critical. Sec-
ond, the current framework of MVSV can only be applied
on a pair of descriptors. When it comes to three or more de-
scriptors, the fusion procedure becomes tedious. However,
our framework can be easily extended to incorporate arbi-
trary number of descriptors, which will also be the focus of
our future research. Note that the proposed method is not
limited to action recognition. It can also be easily general-
ized to other classification tasks involving the combination
of multiple feature descriptors.
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Appendix. EM-algorithm for M-PCCA model

i,k and +y; ;, here represent new (updated) and old (pre-
vious) variable respectively. Other variables are notated in
a similar fashion. Refer to previous sections for other nota-
tions. Denote Z; 1, = 2; — sz’k — k. Update rules for
M-PCCA are as followed:

e E-step: update posterior distribution of the latent vari-
ables z and ~y;, based on the old M-PCCA model.

g = wip(v;|k)
N > wep(vilk)’

~ Wk T _ T; — k
- () 5 () e

T
Sk _7_ ng w1 wk wk
z = W?f k ( zr "y )

(20)

(22)

FinZig) = 25 + ZuZin (23)

e Ms-step: update model parameters based on the newly
computed posterior distribution. For the sake of
brevity, update rules for only the parameters corre-
sponding to x are given.

1l

W= 37 D2 ik (24)

Pz = "~= (25)
Z,; Yi,k

i {me . ﬁg’z)zzk}
1
1
{Z%k@,k%&)}

> Vi kT kT,
Ei %Jc

Note that we update {ux}1,.. x as in [31] to simplify

M-step update equations and improve speed of conver-

gence. Parameters update rules for y can be obtained
in a similar fashion.

(26)

Uk = + WrVar(Z, ) WET  (27)
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