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Abstract

In this work we present Neural Decision Forests, a novel
approach to jointly tackle data representation- and dis-
criminative learning within randomized decision trees. Re-
cent advances of deep learning architectures demonstrate
the power of embedding representation learning within the
classifier – An idea that is intuitively supported by the hier-
archical nature of the decision forest model where the input
space is typically left unchanged during training and test-
ing. We bridge this gap by introducing randomized Multi-
Layer Perceptrons (rMLP) as new split nodes which are ca-
pable of learning non-linear, data-specific representations
and taking advantage of them by finding optimal predic-
tions for the emerging child nodes. To prevent overfitting,
we i) randomly select the image data fed to the input layer,
ii) automatically adapt the rMLP topology to meet the com-
plexity of the data arriving at the node and iii) introduce
an `1-norm based regularization that additionally sparsifies
the network. The key findings in our experiments on three
different semantic image labelling datasets are consistently
improved results and significantly compressed trees com-
pared to conventional classification trees.

1. Introduction
Machine learning is one of the strongest driving forces

behind modern computer vision systems, giving rise to
impressive results on practical tasks like image classifica-
tion [22] and body part recognition [29]. One of the pre-
requisites for making such systems work is the availabil-
ity of large and accurately labelled training data sets. Of
similar importance is how to optimally abstract the data,
i.e. to choose the right data representation for the task at
hand. The rationale behind finding ideal representations is
to make the data more distinguishable which in turn should
facilitate its handling in subsequent learning stages. In the
computer vision community, much effort has gone into the
careful design of appropriate representations (aka features),
i.e. SIFT [24], HOG [11] or Shape Context [1] are examples

of ingeniously engineered representations, exploiting prior
knowledge about the tasks to be accomplished.

The desire to reduce the dependency on properly de-
signed, hand-crafted features has focussed the attention of
the machine learning community on representation learn-
ing (see [3] for a comprehensive introduction). In particular,
recent successes in the field of deep learning [22, 9] con-
firm the motive for joint learning of classifiers and the rep-
resentations they operate on. In such architectures, multi-
ple sequences of non-linear processing stages generate data
representation hierarchies, that are ultimately able to de-
scribe highly complex compositions in the data. However,
deep learning architectures require substantial experience
for hyper-parameter tuning as e.g. highlighted in [6, 2].

In this paper we investigate how to deploy representa-
tion learning within the conceptually simple framework of
decision forests [27, 7, 10]. Decision forests are ensem-
bles of binary decision trees that have become very pop-
ular in computer vision due to their efficiency, flexibility,
good generalization capability and inherent ability to han-
dle multi-class problems. They have been applied to various
tasks including semantic segmentation [30, 20], object de-
tection [15, 20], and edge detection [12]. However, decision
forests have not yet been adopted to account for representa-
tion learning in the previously introduced sense. Typically,
their original input data representations are left unchanged
although recent works [25, 19] have considered enriching
the input space with intermediate predictions of the input
data, which can be regarded as representation learning in a
more general manner. In our opinion, this results in a subop-
timal way of exploiting the hierarchical nature of decision
trees which naturally allows learning cascaded representa-
tions of the data, as we will show in the remainder of this
work.

We introduce Neural Decision Forests (NDF) – A novel
perspective on classification trees for joint learning of data
representations and the decisions taken upon them. The
core of our method is a novel, randomized Multi-Layer Per-
ceptron (rMLP) that we deploy as substitute for the conven-
tional split (or interior) nodes of the trees. Our proposed
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Figure 1. Example input RGB image and learned representations of our rMLP taken from a hidden layer, visualized using heat-maps.
Please note the diverse responses in different areas of the image.

rMLP allows us to jointly learn i) new (and possibly non-
linear) data representations by means of its hidden layers,
based on the discriminatively routed data it is reached by
and ii) optimal predictions for the emerging left and right
child nodes to which the output of our rMLP routes the
data of the parent in a soft way, respectively. An illustra-
tion in Fig. 1 shows an input RGB image with heat map vi-
sualizations of four obtained representations, automatically
learned by our rMLP. In connection to the rMLP we pro-
vide a probabilistic model to describe the splitting process
and design a new split function quality measure, which also
guides the optimization of the network parameters.

Standard MLPs show a strong tendency to overfit to
data [4], consequently giving poor generalization accuracy
and therefore low performance on unseen test data. We
prevent this effect by taking a number of countermeasures.
First, the topology of our rMLP is determined by the distri-
bution of the labels arriving at a node: we impose a higher
complexity when many different classes are present. Sec-
ond, we apply a randomized selection step for choosing the
signals to the input layer of the rMLP. Therefore, we have
no fixed ‘wiring’ of image pixel positions to the network,
which drastically reduces the number of parameters to be
learned but also allows us to interpret our rMLP as repre-
sentation generator that learns weights for non-local kernels
- A desideratum that was highlighted in [3] to exploit the
principle of non-local generalization. Finally, we introduce
an `1-norm based regularization strategy to further escape
the risk of overfitting and to obtain more concise networks
with sparsified connections.

Experiments on semantic segmentation show signifi-
cant improvements over standard decision forests but also
demonstrate comparable or better results to forests trained
with more complex data representations. Another impres-
sive property of our NDF is that our trained trees consist
only of a fraction of nodes compared to standard forests, i.e.
we obtain compression rates of up to a factor of 50 in our
experiments. These findings encourage and support our ini-
tial claim to exploit the hierarchical nature of decision trees
to provide a principled and joint approach of representation
and discriminative learning.

Related Works. We focus on related approaches alter-
ing the split models in decision trees as well as previous
works aiming to combine them with simple neural percep-

trons. Classification trees are typically restricted to use axis-
aligned split models (selecting only one or two dimensions
of the input space where decisions are based on, also known
as decision stumps [34]), motivated by the fact that a hi-
erarchy of such splits is able produce non-linear decisions
and is fast to evaluate. In turn, using generally oriented
hyperplanes [5] (also introduced as Linear Combination-,
multivariate decision-, oblique- [17] or perceptron decision
trees [33, 16]) or quadratic surface models [10] are able to
capture more complex data. Other works [18, 25] inves-
tigated the use of differentiable, softened linear discrimi-
nant functions in the interior nodes. More complex split
models were also using boosting [31, 37] or support vector
machines (SVM) in the splits [36], relying on input rep-
resentations provided from a pre-processing pipeline. De-
spite favorable properties for modeling complex training
data, they may be negatively affecting the generalization ac-
curacy [10] and cannot generate new data representations.
Early works on hybrid models of (multi-layer) perceptrons
and decision trees (as those in [33, 16]), lack to address
problems of overfitting or principled ways to jointly learn
splits and resulting child posteriors and therefore cannot be
applied to computer vision tasks in a straightforward way.

2. Neural Decision Forests
A Neural Decision Forest (NDF) is an ensemble of neu-

ral decision trees, where split functions in each node are
randomized Multi-Layer Perceptrons (rMLP). This change
introduces significant, positive impacts on the final classi-
fier as already mentioned in the introduction. The inference
procedure in NDF, which is described in the next section,
substantially coincides with the one of RF. The learning
phase however, is different and will be addressed in Sect. 3.

2.1. Inference

Inference in NDF takes place like in RF, except for the
way the split function is computed. Let X and Y denote the
input and output space of a classification task. Each tree t ∈
F of a NDF F classifies a sample x ∈ X by routing it from
the root to a leaf node, where the actual classification takes
place. Each leaf is associated with a probability distribution
defined over Y . Decisions about the routing of samples are
taken in the internal nodes, where a neural split function
ψ : X → {L, R} (see, Sect. 2.2) is evaluated to decide
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Figure 2. Example of multi-layer perceptron with 1 hidden layer.

whether a sample x has to be forwarded to the left child
(ψ(x) = L) or to the right one (ψ(x) = R).

Finally, the classification at the forest level is obtained by
combining the predictions delivered by the single trees. If
P[y|x, t] is the probability of sample x to take on class y ac-
cording to tree t ∈ F , then the same probability according
to the whole forest is given by

P[y|x,F ] =
1

|F|
∑
t∈F

P[y|x, t] . (1)

2.2. Neural Split Function

A split function in NDF is a randomized multi-layer per-
ceptron consisting of an input layer that will be connected to
the samples reaching the node, k hidden layers and a single
output unit (see Fig. 2 for an example MLP with 1 hidden
layer). We regard the jth neuron of the ith layer (i > 0)
of the network as a function f (ij)(·;w(ij)) : Rmi−1 → R.
We assume the neural unit to be fully connected to the
(i − 1)th layer consisting of mi−1 units and to an input
unit clamped at +1 (or bias term). Here, w(ij) denotes
the (1 + mi−1)-dimensional vector of synaptic weights of
the neuron and we assume the first entry w

(ij)
0 to be the

synaptic weight of the connection to the +1 unit. Each
unit is a linear model composed with a non-linear activa-
tion function σ, i.e. f (ij)(x;w(ij)) = σ

(
w(ij)>x̃

)
where

x̃ =
[
1 x>

]>
. Similarly, we abstract the ith neural layer

(i > 0) consisting of mi units as a vector-valued function
f (i)(·; W(i)) : Rmi−1 → Rmi defined as

f (i)(x; W(i)) =

 f (i1)
(
x;w(ij)

)
...

f (imi)
(
x;w(imi)

)
 . (2)

W(i) = [w(i1), . . . ,w(imi)] is a matrix holding the synaptic
weights of each neuron of the ith layer, column-wise.

The input layer is represented as a vector-valued func-
tion f (0) : X → Rm0 which maps samples in X to m0-
dimensional feature vectors that will be fed to the subse-
quent layers of the network. We will discuss how we model
the input layer for semantic image labelling in Sect. 4. The
output layer indexed k+ 1 is defined according to (2) and it
consists of a singe neuron, i.e. mk+1 = 1.

The whole MLP network is defined as a function
f(·; Θ) : X → R obtained as the composition of the layer
functions f (i):

f(·; Θ) = f (k+1) ◦ · · · ◦ f (0) , (3)

where Θ holds all the network’s parameters and we wrote
f (i) in place of f (i)(·; W(i)). For convenience, we introduce
an auxiliary function g(i), which is defined inductively as

g(i) =

{
f (i) ◦ g(i−1) if i > 0 ,

f (0) if i = 0 .

The neural network can now be compactly expressed in
terms of g as f = g(k+1).

In the literature, different activation functions have been
proposed. In this paper we will adopt the logistic sigmoid
function defined as σ(z) = [1 + exp(−z)]−1, and we inter-
pret the output of f as the probability that the input sample
is routed left rather than right, i.e. f(x) ≈ P[ψ(x) = L]. It
will become useful later to set fL = f and fR = 1−f . Once
the neural network is trained (as detailed in Sect. 3), the
split function, which returns a hard decision, can be eval-
uated by thresholding the MLP’s output, i.e. ψ(x) = L if
f(x; Θ) ≥ 0.5 and ψ(x) = R, otherwise.

3. Learning in NDF
The standard approach to training a random decision tree

of a RF consists in a recursive procedure that starts from
the root and iteratively builds the tree by splitting the ac-
tual terminal nodes. During this process each sample of
the training set is routed through the tree in such a way
that the whole training set is partitioned across the termi-
nal nodes. We call node sample a sample of the training
set that reached a particular node of the tree. The decision
whether a terminal node should be further split and how the
splitting should be done is taken exclusively based on its
node samples. The splitting condition depends typically on
the depth of the node, the number of node samples or the
entropy of the node sample class distribution. If the node
splitting takes place, a binary decision function defined on
the samples space (split function) is determined in a way
to maximize some class purity measure such as information
gain or Gini impurity, evaluated with respect to the node
samples. This maximization is typically carried out in an
approximate way by randomly creating a pool of split func-
tions among which the best one in terms of class purity is
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Figure 3. Graphical model for the splitting process. Sample xs

takes on the posterior probability in π(L) and π(R) according to
the outcome of the split function ψs parametrized by Θ.

retained. When no node is further grown, the node sample
class distributions are stored in the respective tree leaves.

We introduce the graphical model depicted in Fig. 3 to
give a probabilistic perspective to the local decision that
is taken in the RF at each terminal node to select the best
split function and the best predictions for the children. For
each node sample xs, 1 ≤ s ≤ n, we regard ψs ∈ {L, R}
as a split variable determining whether sample xs should
be routed left or right. This random variable follows a
Bernoulli distribution having as parameter the output of a
routing function f(xs|Θ) ∈ [0, 1], which depends on the
sample and a set of parameters Θ. The routing function in
standard RF comes from a random pool of candidate func-
tions taking on binary values, i.e. f(xs|Θ) ∈ {0, 1}, so that
the split decision ψs has a deterministic outcome, and Θ
could represent, e.g. its index within the pool. In the case
of NDF, instead, f(xs|Θ) can be regarded as the output of
the rMLP given sample xs, where Θ encodes the neural
network’s parameters. The class prediction of sample xs,
modeled by variable ys, depends on the outcome of the split
decision ψs. Depending on whether sample xs is routed
left (ψs = L) or right (ψs = R), we assume ys to be dis-
tributed as π(L) or π(R). In other terms, ys can be regarded
as a mixture of two categorical distributions parametrized
by π(L) and π(R), respectively, where the mixing factor is
determined by the splitting function ψs.

Now, given the graphical model in Fig. 3, we determine
the quality Q(Θ) of a split function by evaluating the like-
lihood of the corresponding parameters Θ under the best
possible choice of π = (π(L),π(R)), i.e.

Q(Θ) = max
π

P[y|X,π,Θ] , (4)

where y = (y1, . . . , yn) denotes the vector of class labels
for the node samples in X = (x1, . . . ,xn). The likelihood
of the observed class labels under i.i.d. assumption is

P[y|X,π,Θ] =

n∏
s=1

P[ys|xs,π,Θ] , (5)

where the per-sample likelihood term is given by

P[ys|xs,π,Θ] =
∑

d∈{L,R}

P[ys|ψs = d,π]P[ψs = d|xs,Θ]

=
∑

d∈{L,R}

π(d)
ys fd(xs|Θ) .

An optimal split function can finally be determined by
finding a parametrization Θ that maximizes the quality mea-
sure in (4), which in turn corresponds to a maximum like-
lihood estimate. In the supplementary material, we show
that our quality measure is substantially equivalent to the
usual information gain criterion used to train RF only if the
routing function is binary. However, the MLP-based rout-
ing function is non-binary and in this case information gain
does not deliver an optimal decision in terms of log-loss.
This is the reason why we propose a different quality mea-
sure. In Sect. 3.1 we will provide also an alternative to (4),
which allows us to introduce priors and thus regularization
terms in the model.

3.1. Regularization

The graphical model introduced in the previous section,
describing the node splitting process, can be further gen-
eralized by imposing prior distributions on the model’s pa-
rameters, namely the neural network’s weights Θ and the
child posteriors π. By doing so, we can introduce addi-
tional, explicit regularization factors in our NDF. In this
work, we introduce a centered Laplace prior PLap[Θ|λ−1]
for the neural network’s weights with scale (hyper-) param-
eter λ−1 in order to both regularize and sparsify the net-
work’s weights. As for the left and right child posteriors, a
natural choice is typically a Dirichlet prior with (hyper-) pa-
rameter α, i.e. P[π|α] = PDir[π

(L)|α]PDir[π
(R)|α]. How-

ever, if on one hand having a regularization on the rMLP’s
weights is beneficial as we will show in the experimental
section, having a simple Dirichlet prior for the child poste-
riors might have a negative impact on the results. This is
due to an excessive dominance of the prior with respect to
the likelihood term when few samples are considered [26].
Therefore, we decided to keep the Dirichlet’s hyperparam-
eter to 1, which coincides with a uniform prior distribution.

In order to account for the Laplace prior during the split
function selection, we consider a posterior-based quality
function as opposed to (4), which was likelihood-based:

QReg(Θ) = max
π

P[π,Θ|y, X, λ−1] , (6)

where the posterior probability is given by

P[π,Θ|y, X, λ−1] ∝ P[y|X,π,Θ]PLap[Θ|λ−1] .

In line with the aforementioned arguments, the uniform
prior on the child posteriors has been absorbed into the con-
stant of proportionality. We can finally find the optimal Θ∗

for the routing function by maximizing QReg, i.e.

Θ∗ ∈ arg max
Θ

QReg(Θ) . (7)

The maximization algorithm, starting from an initial config-
uration of the rMLP network, alternates between updating
the child posteriors (see, Sect. 3.2) and the neural network’s
weights (see, Sect. 3.3).



3.2. Estimation of the Child Posteriors π

In this section we propose a multiplicative update rule
for solving the concave maximization in (6). To our knowl-
edge this is the first time that child posteriors are optimized
in RF in place of taking the node sample’s class distribu-
tion, which would be sub-optimal in our case as mentioned
before, because we are in presence of non-binary routing
functions in the nodes.

In order to compute a global solution to the maximiza-
tion in (6), we make use of the following multiplicative rule:

π(d)
c ← π

(d)
c

Z(d)

n∑
s=1

1ys=c f
s
d

π
(L)
c fsL + π

(R)
c fsR

, (8)

where d ∈ {L, R}, Z(d) is the normalizing factor ensuring
that π(d) remains a probability distribution, and we abbre-
viated fd(xs|Θ) with fsd . The rule in (8) is particularly in-
teresting as it does not require a troublesome step-size to be
specified, still guaranteeing a strict increase of the posterior
probability at each update until a fixed-point is reached (see
proof in supplementary material). The same update rule can
be used for the maximization problem in (4) since we have
imposed uniform prior on the child posteriors.

3.3. Estimation of the rMLP Parameters Θ

In order to find the optimal parametrization for the rMLP
as per (7), we have to address a non-conventional neu-
ral network training, as we do not observe explicitly the
desired output of the rMLP. Additionally, due to the `1-
regularization induced by the Laplace prior, we have to cope
with a non-differentiable objective. For the optimization
we employ a `1-regularized version of the Resilient Back-
Propagation (RProp) algorithm [28] due to its fast conver-
gence properties and dynamic adaptation to the objective’s
surface. We omit the details of the RProp algorithm due
to the limited space, but we report the gradient of the log-
likelihood, which is the most important quantity to be com-
puted during the optimization:

∂ log P[y|X,π,Θ]

∂w(ij)
=

n∑
s=1

∂g
(i)
s

∂w(ij)
δ(i)
s ,

where g(i)
s = g(i)(xs) and δ(i)

s is inductively defined for all
i ≥ 0 as

δ(i)
s =


∂g

(i+1)
s

∂g
(i)
s

δ(i+1)
s if i ≤ k ,

π
(L)
ys − π

(R)
ys

P[ys|xs,π,Θ]
if i = k + 1 .

For the sake of completeness, we provide the formulas of
the remaining gradient terms, i.e.

∂g
(i+1)
s

∂g
(i)
s

= [0|I] W(i+1)G(i+1)
s

(
I− G(i+1)

s

)
,

∂g
(i)
s

∂w(ij)
= g̃(i−1)

s ej
>
G(i)
s

(
I− G(i)

s

)
,

where G
(i)
s is a diagonal matrix with diagonal entries given

by g(i)
s , I is the identity matrix, 0 is a vector of zero entries

and ej is the jth column of the identity matrix.
The gradients can be easily computed by performing

a forward-backward signal propagation, the forward and
backward signals being given by g(i)

s and δ(i)
s for each layer

i > 0 and s ∈ {1, . . . , n}, respectively.

3.4. rMLP’s Topology Selection

A thorny problem that we face at every node going to
be split is the selection of the neural network’s model com-
plexity. The trees, as they develop, decompose an origi-
nally complicated classification task into many small, eas-
ier ones. For this reason, as a rule of thumb, we should
focus on a complex MLP at the root of the tree and grad-
ually take into account simpler models converging towards
single perceptrons close to the leaves. Instead of reducing
the model complexity as a function of the depth, one should
consider rather the number of training samples reaching a
node as well as their class distribution, since a tree could
in general be highly unbalanced. In this work we opt for
a rather simple but effective strategy, which uses only the
information about the node sample’s label distribution. We
create a network having a number of layers proportional to
the support size of the label distribution. Moreover, for each
hidden layer we sample the number of neural units within a
certain range. More details are given in the description of
the experimental setting.

4. NDF for Semantic Image Labelling

Semantic image labelling is the problem of assigning a
categorical label to each pixel in an image, (a per-pixel clas-
sification task) defined over images. A colour image I con-
sists of h × w pixels, each being assigned a 3-dimensional
RGB feature vector so the image can be represented in terms
of a (h × w × 3)-dimensional tensor, i.e. I ⊆ Rh×w×3. A
sample x ∈ X , which is fed to our NDF, is a triplet (u, v, I)
identifying a pixel in position (u, v) in image I , while the
output space Y consists in a finite set of categories to be
assigned to each pixel.

In Sect. 3 we have presented our neural split function,
but we have omitted how the input layer f (0) is actually im-
plemented, as this depends on the type of application. In
the context of semantic image labelling, we define the in-
put layer of the rMLP at each internal tree node as a func-
tion of m0 random box-average features. A box-average
feature provides the mean intensity over an image area hav-
ing a random size, located on a random position relative to
the sample’s center, and involving a random RGB channel.



Once the set of features has been determined, each sam-
ple can be expressed in terms of a m0-dimensional vector
φ(x) ∈ Rm0 . Before feeding the network with this in-
put, we apply a normalizing linear transformation h(z) =

Σ−
1
2 (z−µ), where Σ and µ are the covariance and mean of

the box-average features extracted from the node samples
used to train the rMLP (this is the variable decorrelation
step in [23]). The input layer function can thus be defined
as f (0) = h ◦ φ.

In Fig. 4 we show an example using single-channel im-
ages for better illustration. Given a sample x = (u, v, I) ∈
X to be fed to the rMLP, the mean intensities over the sam-
pled areas are computed for image I , relative to the sample’s
center (u, v). To avoid making a one-shot guess when we
determine the set of box-average features, we re-iterate the
sampling process a fixed number of times and retain the set
of features yielding the best quality according to (4) under
a random weight initialization of the rMLP and binary step
activation functions.

h

φ(x)
Input layer f (0)

x ∈ X

Normalization

Figure 4. Example of how samples reaching a node of the NDF are
mapped to the rMLP’s input layer. For each sample x ∈ X the
mean values over a set of randomly positioned boxes are com-
puted. They will then form the input to f (0) of the rMLP.

5. Experiments
In this section we report experimental results on the fol-

lowing three datasets: Etrims8 [21], CamVid [8] and La-
belled Faces in the Wild [32]. In all our experiments we
compare to a baseline of conventional classification forests
(RF) and to scores reported in literature, where applicable.
For all our provided methods, we train forests comprised
of 8 trees where the inputs are either taken solely from raw
channel RGB intensities or a stack of derived representa-
tions (Lab raw channels, first and second order derivatives
of L-channel and HOG-like features). We fix the maximum
probe offset radius to 30 pixels and only rescale images of
the CamVid dataset by a factor of 0.5. For the RF forest,
we use 300 node tests. For our NDF we compare the effect
of 4 different variants when using RGB inputs: i) NDFP is
always restricted to a single perceptron, while the topology
of the others is selected based on the distribution over la-
bels in the data: ii) NDFMLP uses either a single or two-layer
perceptron, iii) NDFMLPC is at most a 4 layer perceptron and
iv) NDFMLPC−`1 is at most a 4 layer perceptron with addi-
tional `1 regularization on the weights (fixing λ = 1e−4b
and b = 30000 is the maximum number of samples per

node we use to train the rMLP). For results on the de-
rived representations we compare the baseline forest with
NDFMLPC−`1 only. We use the default parameters for RProp
as given in [28]. The actual topology selection is driven by
the support of the class label distribution π of the parent
node, i.e. we gradually simplify the model with descending∑
c 1πc>0 in order not to overfit (which we found perform-

ing better than a selection based on the current depth of the
node to be split). For NDFMLPC and NDFMLPC−`1 we use the
4-layer model if more than 2/3rd of the classes are present,
the 3-layer model if between 2/3rd and 1/3rd of them are
present and the single perceptron instead. If applicable, the
number of hidden units is also randomly selected and varies
between 40-120% of the input layer size, which we fix to 5
probes per color channel. We report three types of scores,
the percentage of all correctly classified pixels (Global), the
class-average score (Class-Avg) defined as TP

TP+FN and the

Jaccard score (Jaccard), defined as TP
TP+FP+FN (where TP,

FP and FN are the number of true positives, false positives
and false negatives, respectively).

5.1. Etrims8 Dataset

To assess the behaviour with respect to overfitting, we
deliberately use this small dataset containing only 60 im-
ages that are annotated into 8 semantic classes and mostly
show views of houses. We have constructed a random, 5-
fold split of the data into 40 train and 20 test images and
provide the results in the first three columns of Table 5.3.

On average and with RGB input only we improve by
5/3.5/4.3% on Global/Class-Avg/Jaccard scores when us-
ing NDFP, NDFMLP or NDFMLPC, indicating that the more
complex node split models cannot improve but instead start
to overfit. However, when we evaluate NDFMLPC−`1, we
find improvements of 7.2/5.7/6.6%, indicating the efficacy
of our regularization scheme. When comparing our best
global score (NDFMLPC−`1≈71.7%) to [13] we find simi-
lar performance with their forest approach using color and
contextual features (70.8%) or colour, context, geometric
and image gradients (72.6%). Also, we are about on par
with a SIFT-based approach, yielding ≈ 71.2% and also re-
ported in [13]. Using the derived representations (middle
part of Table 5.3) we substantially improve over both, our
baseline and previous state-of-the-art in [13, 14], using our
NDFMLPC−`1.

Another very appealing property of our method is that
we can produce much more compressed trees compared
to RF: The average number of nodes per tree in the for-
est gracefully decreases with more sophisticated node splits
models. The average numbers of nodes per tree over all
folds for this dataset are as follows: 42031 (RF), 7970
(NDFP), 3842 (NDFMLP), 2413 (NDFMLPC) and only 1997 for
(NDFMLPC−`1). We can see that with our proposed methods



we can achieve a compression up to a factor of 21. Another
illustration for the quality of the resulting leaves is shown
in the leftmost plot of Fig. 5, where we show average en-
tropy vs. average cardinality of the leaf nodes. Clearly, the
best models should reside on the top left of the plot which
says that many samples are clustered in the leaves but also
that the purity of the leaves is high. We find our proposed
models at the desired locations with low entropy but high
cardinality while the entropy of RF is low, but also the av-
erage leaf cardinality is fairly low. In other words, RF pro-
vides confident predictions which however stem from few
samples while with our proposed NDF we can provide con-
fident predictions based on the statistics of many samples.

5.2. CamVid Dataset

The CamVid dataset [8] contains images from driving
videos (captured at daylight and at dusk) and is segmented
into 32 semantic categories. We follow the standard proto-
col as in [8, 20, 35] and evaluate on the 11 most common
categories, using a training/testing split of 367/233 images,
respectively. We collected samples randomly and homoge-
neously for each class. The results are listed in the mid-
dle columns of Table 5.3, demonstrating again a consider-
ate improvement over the baseline. We can also see that
with RGB input only (top part) we can closely approach
or even surpass the random-forest based scores reported
in [8, 35, 19, 20], although they were using richer image
representations. When using these derived image represen-
tations (middle part), we significantly outperform all com-
parable approaches without however applying an explicit
spatial regularization as e.g. in [19, 19]. In terms of average
nodes per tree in the forest we find the following develop-
ment for RGB input: 328081 (RF), 102588 (NDFP), 58153
(NDFMLP), 42617 (NDFMLPC) and 35992 for (NDFMLPC−`1).
As can be seen, the compression rate is≈ 10 and an impres-
sive ratio of average leaf entropy vs. average leaf cardinality
as shown in the middle plot of Fig. 5.

5.3. Labelled Faces in the Wild Dataset

In our final experiment, we take a random subset of
601 images from the Labelled Faces in the Wild dataset
(LFW) [32] and added ground truth annotation for 8 classes
(BACKGROUND, LEFT/RIGHT EYEBROW, LEFT/RIGHT
EYE, NOSE, MOUTH AND FACE). We split the data into
500 training images and 101 test images and adjusted the
data acquisition strategy to use all foreground samples but
only as many background samples as the cardinality of
the most dominant foreground class per image. With this
setup, we obtain the scores listed in the final columns of
Table 5.3. We can substantially improve over the base-
line RF results with all our proposed variants of NDF us-
ing RGB inputs. The best performing approach in terms of
Class-Avg/Jaccard is again NDFMLPC−`1, yielding impres-

sive gains of 10.4/9.5% with RGB inputs and 18.5/18% with
derived representations, respectively. Moreover, we find
even stronger decrease in the overall number of nodes, on
average over all trees: 501380 (RF), 58790 (NDFP), 35021
(NDFMLP), 21621 (NDFMLPC) and 9456 (NDFMLPC−`1). Here,
we can find a compression rate of ≈ 53, while still main-
taining relatively low average entropy in the leaves (see the
rightmost plot in Fig. 5).

6. Conclusions

In this work we have introduced Neural Decision Forests
(NDF), which are a novel approach to jointly learn a clas-
sification model and the data representation it is based
on, within the decision forest framework. We proposed
randomized Multi-Layer Perceptrons (rMLP) to generate
node-specific, possibly non-linear data representations but
also act as routing instance for samples to the respective
child nodes. We counteract overfitting by using random-
ized inputs, data-complexity dependent network topologies
and an `1-norm based weight regularization in our rMLP.
Moreover, we provide an alternating optimization scheme
to jointly optimize over the child posterior distributions
and the weights in the network. Experimental evaluations
showed promising results when using raw data input and
comparing to forests using well-designed and hand-crafted
data representations. Using derived data representations
as input, our approach yields new state-of-the-art scores
on ETrims8 and CamVid datasets, compared to previous
forest-based methods.
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