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Abstract

We develop a method for optimization in shape spaces,
i.e., sets of surfaces modulo re-parametrization. Unlike
previously proposed gradient flows, we achieve superlinear
convergence rates through an approximation of the shape
Hessian, which is generally hard to compute and suffers
from a series of degeneracies. Our analysis highlights the
role of mean curvature motion in comparison with first-
order schemes: instead of surface area, our approach pe-
nalizes deformation, either by its Dirichlet energy or total
variation, and hence does not suffer from shrinkage. The
latter regularizer sparks the development of an alternat-
ing direction method of multipliers on triangular meshes.
Therein, a conjugate-gradient solver enables us to bypass
formation of the Gaussian normal equations appearing in
the course of the overall optimization. We combine all of
these ideas in a versatile geometric variation-regularized
Levenberg-Marquardt-type method applicable to a variety
of shape functionals, depending on intrinsic properties of
the surface such as normal field and curvature as well as its
embedding into space. Promising experimental results are
reported.

1. Introduction
1.1. Motivation

Many inference tasks in vision amount to solving inverse
problems, where a solution is understood to be an element
x in a set X which, given some model f : X ×M 7→ M ,
minimizes the residual r(x) = f(x, s) − t between a sig-
nal s and its prediction under f . For instance, in optical
flow, one wishes to minimize the distance between an im-
age Is and a warped version It ◦ w of Is w.r.t. w in the
diffeomorphism group X = diff(D) of the image plane. In
this paper, we are interested in the case where M is a lin-
ear space of functions, e.g., BV (D) or H1(D), over some
geometric domain D, but – quite similar to the example
of diff(D) – the set of latent variables X is not. Instead,

X is a shape space consisting of three-dimensional (3-d)
surfaces up to re-parametrizations. The literature offers a
wealth of first-order numerical methods. But despite their
superior convergence properties, to this date there are no
generally applicable second-order methods for shape op-
timization. This is explained by the difficulties in accu-
rately and efficiently approximating the Hessian. We focus
on a class of separable quadratic functionals to propose a
second-order numerical method for solving visual inference
problems on shape spaces. As shown in Sect. 2.2.2, the
construction suppresses eigenspaces of the Hessian which
are responsible for shrinking biases in traditional gradient
flows. To ensure regularization, we suggest penalizing vari-
ations, not of the iterated surface itself, but deformations
thereof. This leads to a variant of the classic Levenberg-
Marquardt method which can be applied under weak as-
sumptions on f by breaking down the nonlinear and possi-
bly nonconvex global optimization problem into a sequence
of convex subproblems. Depending on the choice of reg-
ularizer, one type of subproblem encountered is equivalent
to the Rudin-Osher-Fatemi (ROF) model for image denois-
ing and segmentation [20]. To solve it numerically, we
develop an extension of the alternating direction method
of multipliers (ADMM) to surfaces represented by trian-

(a) (b)

Figure 1. Application reconstruction of specular surfaces: (a)
Correspondences between camera pixels and scene points viewed
along the surface are established by a structured-light coding tech-
nique. (b) The correspondences can be converted into normal in-
formation which is then integrated into a visible surface recon-
struction by our method.



(a) Noisy cube (b) ML-LMTV denoising (c) ROF-LMTV denoising

Figure 2. Application surface denoising.

gular meshes (Sect. 2.3). We demonstrate that the chosen
class of separable quadratic functions applies to a variety
of problems relevant to vision, from mesh reconstruction
from unorganized point clouds and deflectometric images
(Fig. 1), surface denoising (Fig. 2), to photometric opti-
mization (Fig. 3), which will all be explored in Sect. 3.

1.2. Relation to prior work

The natural question arises of why we should develop
local methods – even of second order – when globally op-
timizable convex programs for many reconstruction tasks
have been proposed, cf. [7, 17]. The short answer is that
first, in these models, convexity originates from embed-
ding the unknown surface into a linear space through some
implicit representation such as a distance or characteristic
function. We would like to avoid such resource-hungry
representations as much as possible and restrict their use
to as-coarse-as-possible initialization. Second, as soon as
visibility, which in turn depends on the optimization vari-
able itself, is fully considered in these models, convexity
will be lost. There are some analogies between the present
paper and [19] in the sense that the problem of interest
is decomposed into a sequence of nondifferentiable sub-
problems: The latter generalizes Candés’ reweighted `1-
algorithm, and the goal of the decomposition is to handle
nonconvex regularizers. Sect. 2.2.2 is an extension of [4],
where a regularization-free Gauss-Newton method was pre-
sented especially for normal field integration. The ADMM
has been adapted to linear spaces over surfaces before, first
by Wu et al. [24], later by Liu and Leung [18]. The au-
thors of the latter paper are concerned with point-based sur-
face models. The former approach is different from ours in
that it explicitly forms Gaussian normal equations at every
iteration. In comparison, we suggest executing a few pre-
conditioned conjugate-gradient steps on the corresponding
overdetermined linear system. A similar trick has been pro-
posed previously for large-scale bundle adjustment [8]. The
optimization framework developed in this paper is fairly
general but applied to the sample problems in Sect. 3, it
inherits some of the ideas found in the specialized litera-
ture: Similar to Avron et al. [1], we couple denoising of
the normal field with subsequent integration for the purpose
of surface fairing (Sect. 3.1) and reconstruction (Sect. 3.2).
Inspired by [16], we consider orientation information for re-

(a) Input images (b) Initialization (c) Optimized mesh

Figure 3. Application photometric optimization: the size of the
shadows in the red-marked region in (c) suggests noticeable
changes of the initial shape.

construction but prefer explicit surface models and account
for the nonlinearity of f , the Gauss map. Geometric ap-
plications of the Split Bregman method have been studied
in [14], but different from Sect. 3.2 within a level set seg-
mentation framework. The body of literature on our third
sample application – photometric optimization from multi-
view stereo images – is too vast to do it justice here. Let us
only explicitly mention the works [10, 15, 23] because they
feature shape optimization albeit of first order.

2. Main result
2.1. From Gauss-Newton to Levenberg-Marquardt

With the notation introduced at the beginning of
Sect. 1.1, any nonlinear least-squares (LS) problem takes
the form

min
x∈X

1

2
‖r(x)‖2L2(D). (1)

The default optimization strategy is the Gauss-Newton al-
gorithm, which exploits the fact that the Hessian of the
L2-energy at some xk ∈ X can be accurately approxi-
mated by the differential Dr of the residual: D2Ed|xk

≈
(Dr|xk

)>Dr|xk
in xk. In combination with the classic

Newton method, this gives the implicit time step

xk+1 = xk + v (2a)

in which the update v solves the linear equation system

Dr>Drv = −Dr>r. (2b)

An illustrative interpretation of (2) is the following: Ap-
proximating r by its first order Taylor expansion r(v) ≈
r(xk) +Dr|xk

v results in a local linear LS problem

min
v

1

2
‖r(xk) +Dr|xk

v‖2L2(D) (3)

whose normal equation is precisely (2b). Returning to the
introductory example of optical flow, the Gauss-Newton
method applied to the nonlinear gray value conservation
law under a translational deformation model, in which w
is assumed spatially constant, is – apart from the multiscale



strategy it adopts to avoid falling into local minima – equiv-
alent to the Lucas-Kanade algorithm [3].

Occasionally, Eq. (2b) becomes underconstrained which
causes ill-conditioning of Dr>Dr by creating zeros among
its eigenvalues. In the Levenberg-Marquardt method in its
original form, the issue is addressed by adding λ

2 ‖v‖
2
L2(D)

to (3). The new local approximation of the energy limits the
step size (i.e., the size of the trust region) inversely propor-
tional to the magnitude of λ. The regularizer appears in the
normal matrix as λ-fold multiple of the identity, and hence,
pushes the spectrum of the former towards positive values
by an amount of λ. When the update step v possesses some
form of spatial regularity, we can punish large variations in
lieu of large magnitudes of v by replacing (3) with

min
v

1

2
‖r(xk) +Dr|xk

v‖2L2(D) +
λ

p
‖Dv‖pLp(D). (4)

For p = 2, the regularizer equals the Dirichlet energy which
maintains linearity of the local LS problem. For p = 1,
Eq. (4) becomes the ROF functional. Bachmayr and Burger
point out this connection in [2]. We will generalize the re-
sulting variation-regularized Levenberg-Marquardt method
consisting of Eqs. (2a) and (4) from vector spaces to sets
of surfaces in 3-d. The necessary theoretical foundations
are laid out in the following section before stating our main
result in Sect. 2.2.2.

2.2. Formulation in shape space

2.2.1 Shape spaces, functions, and gradient flows

When we speak of shape, we mean the trace of a surface,
i.e., the collection of its points in a set-theoretic sense mod-
ulo its symmetry group, which consists of all smoothness-
preserving re-parametrizations. Let S0 be the boundary of
a smooth reference subdomain of R3. The set of all diffeo-
morphic embeddings diff(S0,R3) becomes a shape space
as soon as two embeddings w, z ∈ diff(S0,R3) are con-
sidered equivalent if they differ by some τ ∈ diff(S0, S0),
i.e., w = z ◦ τ . Let us remark that in particular, all ele-
ments of X = diff(S0,R3)/ diff(S0, S0) exhibit the same
topology, namely that of S0. A shape space has the struc-
ture of an infinite-dimensional manifold [11]. We will not
worry about its intriguing geometrical and topological prop-
erties. For all practical purposes, it suffices to acknowledge
that the tangent space of this manifold at a “point” S con-
sists of all infinitesimal normal velocities v in H1(S) re-
spectively BV (S). This is quite intuitive: tangential defor-
mations map surface points to surface points, do not alter
shape, and hence preserve the equivalence class of S. We
can also conduct analysis. An important example of a shape
function is the surface integral

E(S) =

∫
S

φ(S) dS. (5)

We admit costs φ(x,n) depending on x ∈ R3 as well as
the unit surface normal n ∈ S2, but generalizing what fol-
lows to higher-order differential surface properties (e.g, the
Willmore energy, cf. Appx. A in the appending technical
report) is possible. The shape differential of E at some S in
the tangential direction of v is given by

DE(S; v) =

∫
S

(
κφ+ 〈∇φ,n〉 − ∇>S∇S2φ

)︸ ︷︷ ︸
gE

v dS, (6)

where κ denotes the mean curvature and gE the shape gra-
dient of E. A derivation of this formula can be found in
several places, cf. [11, 13, 15, 22], its application in many
more, cf. [9, 10, 23]. Note that the domain of φ may ex-
tend to the embedding space R3 × R3 ⊃ S × S2. Cor-
respondingly, ∇ is the Euclidean nabla operator, whereas
∇S and ∇S2 denote the intrinsic or surface gradient on
S respectively the unit sphere S2. Also note that because
ker∇>S = span(n) pointwise, it is sufficient to calculate
the Euclidean derivative of φ w.r.t. n without reprojecting
onto S2. By evolving some S0 in the steepest descent direc-
tion −gE according to

Sk+1 = Sk − (κφ+ 〈∇φ,n〉 − ∇>S∇S2φ)n(Sk), (7)

we can decrease (5) in two ways: either by reducing the sur-
face area1 via (weighted) mean curvature motion (MCM) in
the direction −κφ; alternatively, we let each point follow
the direction of greatest decrease of the cost function ∇φ
respectively ∇S2φ. The stationary point of the descent, at
which gE = 0, will be determined by the equilibrium be-
tween these two forces. This equilibrium is responsible for
a phenomenon called minimal surface bias: First, whenever
the descent direction w.r.t. φ is uninformative in the sense
that ∇φ = 0 while φ > 0, the evolution will locally favor
surfaces of minimal area. Second, due to the counterforce,
the limit surface cannot fully account for the regularity of
φ leading to visible oversmoothing and retraction of bound-
aries if present. Finally, where both φ and its derivatives
w.r.t. x and n vanish2, the evolution (7) will stagnate.

2.2.2 Hessian-free superlinear optimization

While the computation of first-order shape differentials
like (6) is relatively straightforward, nonzero geodesic cur-
vature of shape spaces significantly aggravates this process
for second-order derivatives [11]. So far, the lack of sym-
metry and positive-definiteness have defeated any attempt
to implement a pure Newton method for (5). Our key in-
sight is that this problem can be circumvented under the

1The area integral measures – up to some material properties inherent
in φ – the tangential strain or membrane energy of a surface.

2As an example, consider the re-projection error of multiple views onto
a homogeneously textured surface region.



condition that φ is separable and quadratic:

φ(x,n) =
1

2
(‖rx(x)‖2 + ‖rn(n)‖2). (8)

The residual rx of φ over R3 arises from the (dis)location
of surface points in space. Note that rx is generally vector-
valued, e.g., to account for multi-channel images or dis-
tances to known points (Sect. 3.2 and 3.3). The shape dif-
ferential of rx, describing the impact of infinitesimal nor-
mal deformations v on the value of rx, is directly given
by Drx(vn). In perfect analogy, the normal error rn is a
map taking n ∈ S2 to the embedding space3 R3 with Ja-
cobian DS2rn : TS2 → TR3. Invocation of the chain rule
yields −DS2rn∇Sv for the shape differential of rn. Here,
we have used the fact that pure infinitesimal rotations of the
normal are related to the velocity v by its negative surface
gradient −∇Sv, cf. [4, Prop. 1]. The shape differentials of
rx and rn enable a local quadratic approximation

Ed(v) :=
1

2
‖rx(x) +Drx(vn)‖2L2(S)

+
1

2
‖rn(n)−DS2rn∇Sv‖2L2(S) (9)

of (5) around S. The equivalence of (4) and (2b) then im-
mediately implies a shape space analogue of (2):

Sk+1 = Sk + vn(Sk) (10a)

where the normal velocity v is the unique minimizer of

Ed(v) +
λ

p
‖∇Sv‖pLp(Sk)

. (10b)

As shown in Sect. 2.3, there are efficient ways of minimiz-
ing this function (for fixed Sk and p = 1, 2).

Remarkably, while the steepest descent (7) used in pre-
vious approaches strives to reduce surface area, the solu-
tion of the local subproblem (10b) does not. The simple
explanation is that minimization is performed w.r.t. the ve-
locity field v and coupled with the properties of the surface
only through the shape differentials of rx and rn. Unfortu-
nately, problems arise if the cost φ = φ(x) is independent
of the normal, like in the applications discussed in Sects. 3.2
and 3.3. When rn = 0, the minimizer of (9) can be obtained
in closed form:

vn = (Drx)−1rx.

This, however, requires Drx to be of full rank, a condi-
tion which can never hold in the vicinity of a stationary
point where Drx should be identically zero. A more intu-
itive explanation is the following: Loss of the mean curva-
ture term in the descent rule cannot remain without conse-
quences. Surface area correlates with surface smoothness.

3The example of the difference between two unit vectors shows that
clearly the image of rn is not necessarily contained in S2.

(a) (b) λ = 10

Figure 4. (a) The cameraman test image with additive Gaussian
noise of standard deviation σ = 20 texture-mapped onto the Stan-
ford bunny. (b) Result of ROF denoising on the surface.

Without the binding influence of κ, points on the surface
will be able to move around separately, quickly compro-
mising its integrity unless rx is unrealistically smooth. The
regularization term in (10b) comes to the rescue by enforc-
ing either harmonic (p = 2) or piecewise constant (p = 1)
descent directions or deformations in (10a). A convenient
side effect is that the regularizer will inpaint nonzero values
of v to regions where both rx and Drx vanish and a gradi-
ent descent would come to a complete halt (as discussed at
the end of Sect. 2.2.1).

2.3. Conjugate gradient ADMM on triangular
meshes

To minimize (10b) efficiently, we now describe a varia-
tion of the ADMM on surfaces. Since, in the end, we are
interested in designing a numerical algorithm, let us con-
sider finite-dimensional representations of S and the func-
tion spaces on it. In particular, let us assume we have a tri-
angulation Sh of S but emphasize that the continuous for-
mulation in Sect. 2.2.2 equally admits other kinds of dis-
cretizations, like e.g. with zero-sets of a scalar-valued func-
tion on R3. The precise details, in particular the lengthy
derivation of the mass matrices Wx and Wn as well as the
discrete nabla operator ∇Sh

on Sh, must be deferred to the
technical report accompanying this paper4. We collect the
Jacobians and residuals from (9) in

A =

(
Wx diag(Drx)

−Wn diag(DS2rn)∇Sh

)
, f =

(
Wxrx
Wnrn

)
.

The upper block-diagonal matrix is assembled from the
values that the corresponding continuous quantities take at
the vertices, the lower half respectively from the values on
the faces. With these abbreviations in place, starting from
v0 = d0 = b0 = 0, the ADMM for minimization of (10b)
iterates the following three steps:

(A>A− λµ∇>Sh
∇Sh

)vk+1 = A>f + λµ∇>Sh
dk, (11a)

dk+1 = prox‖·‖`1 (∇Sh
vk+1 + b, µ−1), (11b)

bk+1 = bk +∇Sh
vk+1 − dk+1. (11c)

Note that the roles of µ and λ have switched opposed to the
4http://arxiv.org/abs/1311.2626

http://arxiv.org/abs/1311.2626


Cube ML Cube ROF Teapot Sphere MVS

n 24, 578 24, 578 17, 974 7, 842 34, 834

GD 0.94 0.89 0.56 0.43 30.9

LMD 0.68 0.67 1.98 0.48 28.4

LMTV 1.52 1.5 7.2 1.41 36.8

Table 1. Execution time for a single step in seconds. The first row
contains the number n of vertices in the optimized mesh.

canonical notation in [14]. The reason is that our focus is on
the Levenberg-Marquardt method here, in which the param-
eter discounting the step length is conventionally referred to
by λ. We make the following modification to the original
algorithm and its surface-based variant proposed in [24]:
First, note that (11a) is the Gaussian normal equation of
the LS problem associated with (9). The only advantage of
working with the normal equation is that therein, A>A be-
comes symmetric and strictly diagonally-dominant. This is
exploited in [14] by invoking a simple and very efficient
Jacobi solver. At the same time, small eigenvalues will
become even smaller with deteriorating influence on the
condition number. Additionally, discrete divergence and
Laplace-Beltrami operators defined by divSh

:= ∇>Sh
re-

spectively ∆Sh
:= ∇>Sh

∇Sh
are inconsistent with discrete

conservation laws, which may lead to numerical instabili-
ties [12]. Last but not least, there is the cost of computing
the matrix product. Therefore, we propose to rearrange the
normal equation of (9) as follows:(

A
λµ∇Sh

)
vk+1 =

(
f

λµdk

)
.

This linear system is now overdetermined but amenable to
the Conjugate Gradients Least-Squares method [6], which
avoids explicit formation of the normal equation. Its itera-
tive nature allows us to preserve the inexactness of the orig-
inal ADMM. When p = 2 and hence (9) is differentiable,
setting µ = 1 and dk = 0, we immediately obtain the up-
date vk+1 from (11a) without the need for shrinkage (11b)
and executing Bregman steps (11c).

3. Applications
All algorithms discussed in the following section were

implemented in C++ and executed on a single 3.4 GHz core
of a commodity computer with 12 GB of main memory.
The source code is available for download on the first au-
thor’s website. To begin with, we showcase the viability of
our ADMM variant at hand of texture denoising (Fig. 4).
Here, the surface remains static so we achieve essentially
the same as [24, 18]. Applications of the method intro-
duced in Sect. 2.2, in which the surface itself plays the
role of the optimization variable, will be presented in the
following sections. Thereby, we abbreviate the Levenberg-
Marquardt method with a TV-regularizer (p = 1) by LMTV

(a) GD (b) Our method

Figure 5. Result from Fig. 1(b) overlayed with the colormapped
error distribution in the interval [0, 0.5].

respectively LMD when (10b) contains the Dirichlet energy
(p = 2). We compare LMTV and LMD with the existing
gradient descent (GD) scheme. Let us remark that its ad-hoc
formulation (7) does not directly lend itself to implementa-
tion because it suffers from numerical stiffness due to the
MCM term. Noticing that κn = ∆S(S), i.e., the mean
curvature vector κn is just the Laplace-Beltrami operator
∆S = ∇>S∇S applied to the functions that embeds S into
R3, we arrive at the backward Euler scheme

Sk+1 + (λ+ φ)∆S(Sk+1)

= Sk − (〈∇φ,n〉 − ∇>S∇S2φ)n. (12)

Additionally, a regularization weight λ has been introduced
as a factor of κ, amplifying the smoothing effect of MCM if
necessary. The price to pay for stability is the inversion of
the matrix id +(λ + φ)∆S at each iteration. Consequently,
the number of floating point operations per GD step is not
significantly smaller than in LMD, see Tab. 1.

3.1. Normal field integration and denoising

Let nd denote some desired normal field. Integration we
understand as finding a surface S such that n(S) = nd(S).
This is an inverse problem in the spirit of Sect. 1.1: noise
in the data prevents the integrability of n and hence the ex-
istence of such a strong solution. Instead, we look for a
minimizer of

En(S) =

∫
S

1

2
‖n− nd‖2 dS. (13)

This energy constitutes a special case of (8) in which
rn(n) = n − nd and rx(x) = 0. It is useful in a variety
of applications which are classified by how they define the
target normal field nd. Take for instance the deflectometric
reconstruction of specular surfaces. In deflectometry, one
measures the correspondence between pixels on the image
plane and points in the scene they see via the specular sur-
face, cf. Fig. 1(a) and [5]. Reconstructions are shown in
Fig. 5. As seen in the convergence plot in Fig. 7(a), despite



(a) Noisy normal field (b) ML denoising (c) ROF denoising

(d) (e)

Figure 6. Integral surfaces of the normal fields in (b) and (c) ob-
tained by LMD are shown in (d) respectively (e) together with the
local residual, also see Fig. 2.

the implicit Euler integration (12), the gradient descent suf-
fers from severe step size restrictions and terminates prema-
turely in a local minimum. Another example is fourth-order
surface denoising [1]. The idea is that instead of smoothing
the surface itself, which would involve a second-order diffu-
sion equation, one first applies the smoothing to the normal
field of the surface and in a second step integrates the re-
sult5 nd. We obtain nd either in terms of a maximum like-
lihood (ML) estimate (Fig. 6(b)) or from the output of our
ADMM variant applied to the ROF-functional (Fig. 6(c))
of the original normal field (Fig. 6(a)). Remarkably, the
convergence rate of GD at integration becomes competi-
tive again given that the input data has undergone the initial
smoothing (Fig. 7(b)).

3.2. Surface reconstruction from point clouds

Here, we are given a set of discrete points in space
P = {pl ∈ R3 | l ∈ N} (Fig. 9(a)), which are the repre-
sentation of choice for many reconstruction methodologies
embracing the triangulation principle. Our goal is to find a
surface S with minimal average distance

Ex(S) =

∫
S

1

2
‖x− x̂‖2 dx (14)

to P where x̂ = arg minpl∈P ‖x − pl‖. Making the sub-
stitution rx(x) = x− x̂ respectively φ(x) = 1

2‖rx‖
2, this

energy can be brought into the form (8) with rn vanishing.
Supposing that P is sufficiently dense, the global minimum
with value 0 is given by the zero-set φ−1(0) of φ(x). This
direct approach requires a representation of the squared dis-
tance function over a Cartesian grid. Regularity and dimen-

5In both steps, a second-order partial differential equation has to be
solved, hence, we have a scheme of total order four.
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(d) Photometric optimization

Figure 7. Convergence rates of first- vs. second-order methods.

sionality of such a representation imply a trade-off between
reconstruction quality and computational efficiency6, mak-
ing it difficult to take advantage of the full resolution of
the raw data. While it lacks fine geometric details, φ−1(0)
generally captures the topology of the surface we wish to
infer, thus providing an adequate initial guess S0 for refine-
ment by (10). The Jacobian Drx|x is given by the vector
that connects x with its closest point x̂ ∈ P . If the point
cloud is oriented such that for each pl ∈ P , we have a de-
sired orientation nd, we can combine (14) and (13) with
rn(x) = n(x)−nd(x̂) similar to a screened Poisson recon-
struction [16]. To test the performance of the different al-
gorithms under ideal circumstances, we synthesized the toy
example shown in Fig. 8(a). We observe at hand of Fig. 8
that LMTV is the only method that achieves a stable sta-
tionary state, which justifies the TV as a regularizer. Again,
the error decay in the GD method is satisfactory, which can
be attributed to the ideal circumstances and that the Euler
steps are backwards. A more realistic scenario is depicted
in Fig. 9. Here, the point cloud stems from an RGBD sen-
sor. Given the known and regular topology of the image
lattice, one can easily obtain a normal map for each depth
image by finite-differencing (Fig. 9(b)). We refine the level
of detail of an initial Poisson reconstruction (Fig. 9(c)) by
minimizing a blend of the functionals in Eqs. (13) and (14).

6Insufficient spatial resolution is known to cause so-called staircasing
artifacts at the numerical extraction of the level set.



(a) Initialization (b) GD (c) LMD (d) LMTV

Figure 8. (a) To interpolate a box-shaped point cloud with one cor-
ner cut off, we evolve a sphere towards minimal average distance.
(b) GD suffers from a catastrophic loss of stability after 10 steps,
(c) LMD develops folds after 30, while (d) LMTV remains stable.

Thereby, the trade-off between point and normal fidelity can
be steered by a scalar weight. The outcome is shown in
Fig. 9(d).

3.3. Photometric optimization

Suppose we have a Lambertian surface of which we
capture a set of gray value images from different vantage
points. Multiview stereo is concerned with the inverse prob-
lem of converting the data into a geometric model of the
surface. We cannot delve into the details of this highly so-
phisticated process. We limit the discussion to another ap-
plication of our algorithm in a stage at the very end of the
reconstruction pipeline, i.e., after an initial approximation
of the surface as a set of (oriented) points has been armed
with the topological structure of a surface. Photometric op-
timization seeks a minimizer of the shape functional

Ex(S) =

∫
S

1

2
ρ2 dx

where ρ measures the instantaneous photoconsistency be-
tween pairs of images. Generally, ρ depends on shape and

(a) Point cloud (b) Normal map

(c) Initialization (d) LMTV refinement

Figure 9. Hermite interpolation of points from an RGBD camera.

(a) Ground truth (b) Initialization

(c) GD after 48 steps (d) LMTV at k = 5

Figure 10. Photometric optimization based on synthetic input data.

radiometry of the unknown surface as well as the set of van-
tage points (see the technical report for more details). Let
us remark that we do not exploit additional knowledge on
the location of the contour generators. We call ρ instanta-
neous because ρ also depends on visibility, which can only
be modelled numerically, but not analytically. In local shape
optimization, this typically happens at each iteration. To
study our algorithm in a controllable scenario, we rendered
synthetic images of the Stanford bunny (Fig. 10(a)) outfit-
ted with a random texture. Needless to say, even under these
conditions, perfect recovery of the ground truth model is all
but impossible as it crucially depends on sufficient texture
and sampling. As it is standard, we estimated the visual
hull for an initialization but applied aggressive Laplacian
smoothing to it to obtain a surface further away from the
minimizer (Fig. 10(b)). Fig. 7(d) confirms the superior con-
vergence rate of LMTV and LMD. The behavior of GD is
similarly bad as in the teapot example, although the syn-
thetic input data should be far less challenging. The stiff-
ness of Eq. (12) and thus the maximal attainable step size is
determined by the value of the regularization weight λ. In
all our experiments, we were forced to set λ to extremely
high values for GD to maintain stability yet encountered re-
constructions such as in Fig. 10(c), unusually rugged com-
pared to Fig. 10(d). We also ran our algorithm on the dino
sparse ring data set described in [21], see Figs. 3 and 12.
Plotting the surface evolved by gradient descent relative to
the ground truth model (green) reveals the undesired effects
of MCM during GD (Fig. 11). Even without contour con-
straints, these are absent in the second-order evolution. In
fact, the opposite is true: we observe in Fig. 11(b) a local
expansion relative to the initial guess (green). Finally, let



(a) GD achieves regularity by favoring smaller surface area leading to shrinkage.

(b) Our method punishes large variations of the deformation at each step.

Figure 11. Contrary regularization strategies

us remark that evaluating ρ generates the majority of com-
putational cost at each time step (Tab. 1). Since, indepen-
dent of the optimization order, this cost scales quadratically
in the number of views, superlinear convergence becomes
critically important in the present application.

4. Conclusion and future work
We have presented a general second-order optimization

method for shape functionals with several applications in
the realm of visual reconstruction. We hope to pave the way
for second-order methods in shape optimization but wish to
further investigate their practical relevance in future work
ourselves.
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