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Abstract

Online multi-object tracking aims at producing complete
tracks of multiple objects using the information accumu-
lated up to the present moment. It still remains a difficult
problem in complex scenes, because of frequent occlusion
by clutter or other objects, similar appearances of differ-
ent objects, and other factors. In this paper, we propose a
robust online multi-object tracking method that can handle
these difficulties effectively.

We first propose the tracklet confidence using the de-
tectability and continuity of a tracklet, and formulate a
multi-object tracking problem based on the tracklet con-
fidence. The multi-object tracking problem is then solved
by associating tracklets in different ways according to their
confidence values. Based on this strategy, tracklets sequen-
tially grow with online-provided detections, and fragmented
tracklets are linked up with others without any iterative and
expensive associations. Here, for reliable association be-
tween tracklets and detections, we also propose a novel on-
line learning method using an incremental linear discrimi-
nant analysis for discriminating the appearances of objects.
By exploiting the proposed learning method, tracklet asso-
ciation can be successfully achieved even under severe oc-
clusion. Experiments with challenging public datasets show
distinct performance improvement over other batch and on-
line tracking methods.

1. Introduction

The goal of multi-object tracking is to estimate the states
of multiple objects while conserving their identifications
under appearance and motion variations with time. In a
complex scene, this problem is especially challenging due
to frequent occlusion by clutter or other objects, similar ap-
pearances of different objects, and so on.

Recently, tracking-by-detection methods have shown
impressive performance improvement thanks to the devel-
opment of object detectors [7, 18] that provide reliable de-

tections even in crowded scenes. The tracking-by-detection
methods generally build long trajectories of objects by as-
sociating detections provided by detectors. They can be
roughly categorized into batch and online methods.

Batch methods [2, 6, 14, 20, 21] usually utilize the de-
tections of whole frames together to link fragmented trajec-
tories (i.e. tracklets) due to occlusion. Given a set of detec-
tions for whole frames, short tracklets are generated by link-
ing the detections, and the tracklets are globally associated
to build longer tracklet. Thus, the global association is very
crucial in this approach, and many methods [2, 6, 21] for
global association have been proposed. However, the per-
formance of the batch methods is still limited under long-
term occlusion because of the difficulty in distinguishing
different objects. Moreover, they usually require the detec-
tions for an entire sequence beforehand, and also require
huge computation due to the iterative associations for gen-
erating globally optimized tracks. It is thus difficult to apply
the batch methods to real-time applications.

On the other hand, online methods [5, 15, 16, 17, 18]
can be applied to real-time applications because they se-
quentially build trajectories based on frame-by-frame asso-
ciation using online information up to the present frame.
However, because it is more difficult to handle inaccurate
(or even absent) detections of occluded objects in this ap-
proach, online methods tend to produce fragmented trajec-
tories and to drift under occlusion.

In this paper, we propose a robust online multi-object
tracking method in consideration of the aforementioned
limitations of previous methods. The proposed method is
based on (1) tracklet confidence to handle track fragments
due to occlusion or unreliable detections and (2) online dis-
criminative appearance learning to handle similar appear-
ances of different objects in tracklet association.

To handle frequent occlusion by clutter or other objects,
we first propose tracklet confidence based on the detectabil-
ity and continuity of a tracklet. We then formulate the multi-
object tracking problem based on the tracklet confidence
and solve it by associating tracklets in different ways ac-
cording to their confidence values: reliable tracklets having
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high confidence are locally associated with online-provided
detections, whereas fragmented tracklets having low confi-
dence are globally associated with other tracklets and de-
tections. Based on this strategy, tracklets can sequentially
grow with online-provided detections and fragmented track-
lets can be linked with others without any iterative and ex-
pensive associations.

As described above, the core steps of the proposed
method are the local and global associations. In both steps,
appearance modeling is crucial for associating tracklets and
detections of the same object while distinguishing different
objects. To this end, we also propose a novel online dis-
criminative appearance learning taking into consideration
two main issues in multi-object tracking: (1) online learning
to update appearance models according to ongoing tracking
results, and (2) online training sample collection for dis-
criminating appearances of multiple tracked objects. Most
previous tracking methods with online appearance learning
focus on only one of these issues. [3, 5, 11] devise on-
line learning methods, but their sample collection strate-
gies aim at distinguishing an object from the background
rather than other objects. On the other hand, [14, 20, 21]
collect training samples for distinguishing different objects,
but discriminative appearance models are learned in a batch
manner: once training samples are collected from tracklets
after low-level association, the models are simultaneously
learned with all collected samples. Unlike these previous
works, the proposed online learning method is designed in
consideration of two issues together to learn discriminative
appearance models using an incremental linear discriminant
analysis (ILDA). This allows us to distinguish each object
and also incrementally update learned appearance models
with online tracking results. To the best of our knowledge,
there has been no explicit use of ILDA to learn discrimi-
native appearance models for multi-object tracking. By ex-
ploiting the proposed appearance learning, tracklet associa-
tion can be successfully performed even under occlusion.

To sum up, the main contributions of this paper can be
summarized as follows: (i) proposition of a tracklet confi-
dence for evaluating tracklet’s reliability, and two-step as-
sociation using the tracklet confidence for building optimal
tracklets, (ii) proposition of an online learning method for
discriminating different objects and adapting learned ap-
pearances with ongoing tracking results, and (iii) proposi-
tion of a practical whole online tracking structure by effec-
tively combining our methods, as given in Fig. 2.

2. Related Works
Some previous works related to online multi-object

tracking and online appearance learning, the focus of this
paper, are introduced in this section.

Given detections from a detector at each frame, an online
tracking approach locally associates detections frame-by-

frame to build trajectories. To associate detections frame-
by-frame, [18] associates object hypotheses with detections
by evaluating their affinities for appearances, positions, and
sizes. [17] employs online-trained classifiers to find hy-
potheses of occluded objects. [5] uses a confidence den-
sity map by combining outputs of a detector and online-
learned classifiers for robust association. [16] uses a part-
based model to correctly associate detections under partial
occlusion. However, these local association-based-tracking
methods tend to produce short fragmented trajectories and
to drift under occlusion because they only use the informa-
tion in two consecutive frames.

On the other hand, some methods also have been pro-
posed for discriminative appearance models for multi-
object tracking. For example, pre-defined appearance mod-
els using color and other feature histograms have been pro-
posed in [18, 19]. However, they do not deal with appear-
ance changes of tracked objects. To update appearance
models, [3, 5, 11, 17] employ target specific appearance
models with online learning such as ensemble learning [3]
and online boosting [11]. However, their appearance mod-
els are trained for distinguishing an object from the back-
ground, rather than from other objects. To learn appearance
models for discriminating different objects, [14, 20, 21] col-
lect positive samples from the same tracklets and negative
samples from other tracklets after low-level associations,
and the models are simultaneously learned using standard
AdaBoost [14, 21] or MIL instance learning [20] methods.
However, these learning methods are not appropriate for up-
dating learned appearance models online because the ap-
pearance models are learned in a batch manner.

3. Online Tracking with Tracklet Confidence
If an object i appears at frame t, we denote it by us-

ing a binary function as vi(t) = 1. Otherwise, vi(t) = 0.
When vi(t) = 1, the state of the object i is represented as
xi
t =

(
pi
t, s

i
t,v

i
t

)
, where pi

t, s
i
t, and vi

t are the position,
size, and velocity, respectively. We then define a tracklet T i

of the object i as a set of states up to frame t, and denote
it as T i = {xi

k|vi(k) = 1, 1 ≤ tis ≤ k ≤ tie ≤ t}, where
tis and tie are the time stamps of the start- and end-frame of
the tracklet. In addition, a set of tracklets of all objects up
to frame t is denoted as T1:t. Similarly, we denote the de-
tection of the object i at frame t as zit, and a set of all detec-
tions up to frame t as Z1:t. The online multi-object tracking
problem can then be formulated to find the optimal T1:t by
maximizing the posterior probability for a given Z1:t as

T̂MAP
1:t = argmax

T1:t

p (T1:t|Z1:t) . (1)

Note that directly solving Eq. (1) is not feasible in prac-
tice because the possible combinations of T1:t and Z1:t

is innumerable. Therefore, we reformulate the problem
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Figure 1. Tracklet confidence variation of an object (in the PETS-
L1 sequence) under occlusion. Under occlusion, the confidence
decreases, but it then gradually increases by association.

with the tracklet confidence and propose a practical solu-
tion based on the reformulation.

3.1. Tracklet Confidence

Tracklet confidence can be intuitively interpreted as how
well the constructed tracklet matches the real trajectory of
the object. We determine a reliable tracklet with high con-
fidence based on the following requirements:

• Length: a short tracklet tends to be unreliable. A long
tracklet is more likely to be a correct tracklet of an object.

• Occlusion: a severely occluded tracklet by other track-
lets is not appropriate as a reliable tracklet.

• Affinity: a high affinity between a tracklet and an as-
sociated detection indicates that the tracklet is reliable.

The tracklet confidence conf
(
T i

)
can then be modeled

based on the above requirements as

conf
(
T i

)
|=

(
1
L

∑
k∈[tis,t

i
e],v

i(k)=1 Λ
(
T i, zik

))
×

max ((1 + β · log ((L− w)/L)), 0) ,
(2)

where L is the cardinality of T i (i.e. the length of a tracklet),
given as L = |T i|, and w is the number of frames in which
the object i is missing due to occlusion by other objects or
unreliable detection, and is given as w = tie−tis+1−L. The
first term in Eq. (2) is the average affinity score between the
tracklet and associated observations (i.e. detection): a high
affinity score increases the confidence. Here, the affinity
can be defined by using several cues. We define the affinity
in Sec. 5.1. The second term in Eq. (2) is also computed
with L and w together, and decreases for short or heavily
occluded tracklets. β is a control parameter relying on the
performance of a detector. When a detector shows high ac-
curacy, β should be set to a large value. The first and the
second terms are all closely related to the detectability and
the continuity of a tracklet. Figure 1 shows the confidence
variation of an object under occlusion.

3.2. Formulation with Tracklet Confidence

To effectively solve the online multi-object tracking
problem, we reformulate the online multi-object problem

Eq. (1) by using the tracklet confidence as

T̂MAP
1:t = argmax

T1:t

∫∫
p
(
T1:t|T(hi)

1:t ,T(lo)
1:t

)
×

p
(
T(lo)
1:t |T

(hi)
1:t ,Z1:t

)
︸ ︷︷ ︸

Global phase

p
(
T(hi)
1:t |Z1:t

)
︸ ︷︷ ︸

Local phase

dT(hi)
1:t dT(lo)

1:t .

(3)
Here, T(hi)

1:t and T(lo)
1:t represent a set of tracklets with high

confidence and a set of tracklets with low confidence, re-
spectively. As shown in Eq. (3), the problem is solved in
two phases: tracklets with high confidence are locally asso-
ciated with online-provided detections, while tracklets with
low confidence, which are more likely to be fragmented, are
globally associated with other tracklets and detections. To
be more concrete, the tracklets with high confidence are first
considered to be locally associated with detections because
more reliable detections originate from them rather than
from tracklets with low confidence. The local association
between the tracklets and detections allows us to progres-
sively grow locally optimal tracklets with online provided-
detections. The object being tracked, however, is frequently
not detected due to occlusion or unreliable detectors in com-
plex scenes. When a detection of the object is not available,
the confidence of a tracklet is decreased. Therefore, we can
consider the tracklets with low confidence as fragmented
tracklets, and globally associate them with other tracklets
and detections to link them. The overall framework of the
proposed method is shown in Fig. 2. Here, since the tracklet
confidence lies in [0, 1], we consider a tracklet as a reliable
tracklet with high confidence when conf(T i) > 0.5; oth-
erwise it is considered as the fragmented tracklet with low-
confidence. In our experiment, the tracking performance,
however, is not significantly affected by this threshold.

3.3. Local Association of Tracklets

In the local association, tracklets with high confidence,
T i(hi), are sequentially grown with a set of detections at
frame t, Zt. Pairwise association is performed to associate
detection responses with tracklets. When h tracklets with
high confidence and n detections exist at frame t, a score
matrix Sh×n can be defined as

S = [sij ]h×n, sij = −log
(
Λ(T i(hi), zjt )

)
, zjt ∈ Zt,

(4)
where the affinity Λ(T i(hi), zjt ) is computed by Eq. (9). We
then determine tracklet-detection pairs using the Hungarian
algorithm [1] such that the total affinity in Sh×n is max-
imized. When the association cost of a tracklet-detection
pair is less than a pre-defined threshold, −log(θ), zjt is asso-
ciated with T i(hi). For the tracklet T i(hi) having associated
detection zjt , the following procedure is performed:

(i) The position and velocity of a tracklet are updated
with the associated zjt . The size of the object is also updated
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Figure 2. Proposed framework for robust online multi-object tracking. Colors of tracklets indicate their confidence values.

by averaging the associated detections of recent past frames.
(ii) conf(T i(hi)) is updated using zjt by Eq. (2).
Here, it is possible to skip this local association and try

to solve the problem via only the global association which is
described in the next section. However, in this case, much
more computation is required and the performance is also
degraded. This is because the local association greatly re-
duces the ambiguity in the global association as well as the
computation cost. This is proven in Sec. 5.

3.4. Global Association of Tracklets

In the global association, tracklets with low confidence
T i(lo), which are more likely to be fragmented, are globally
associated with other tracklets and detections. Suppose that
there exist h and l tracklets with high and low confidence,
respectively. Since association events are mutually exclu-
sive, we only consider n detections, Yt = {yj

t}nj=1 ⊆ Zt in
associating T i(lo), where Yt is a set of detections not associ-
ated with any T i(hi) in the local association. The following
association events are then considered:

• Event A: T i(lo) is associated with T j(hi),
• Event B: T i(lo) is terminated,
• Event C: T i(lo) is associated with yj

t .
The cost matrix for all events is defined as follows:

G(l+n)×(h+l) =

[
Al×h Bl×l

−log(θ)n×h Cn×l

]
, (5)

Here, A = [aij ] represents event A, where aij =
−log(Λ(T i(lo), T j(hi))) is the association cost calculated
by the affinity between them using Eq. (9). B =
diag [b1, ..., bl] models event B, where bi = −log(1 −
conf(T i(lo))) is the cost to terminate T i(lo), and C = [cij ]

represents event C, where cij = −log(Λ(T i(lo),yj
t )) is the

association cost obtained using Eq. (9). The same threshold
θ used in the local association is also employed to select a
reliable association pair having a high affinity score. Once
the cost matrix is computed, the optimal association pairs,
which minimize the global association cost in G, are deter-
mined using the Hungarian algorithm [1], and the tracklets
and their confidence values are updated with the results.

4. Discriminative Appearance Learning

As mentioned, the appearance modeling is very impor-
tant in both the local and global association for associat-
ing tracklets and detections of the same object while distin-
guishing different objects. In this section, we present our
approach, which considers the two main issues described in
Sec. 1, to learn discriminative appearance models. In the
proposed learning method, online training samples are col-
lected from tracked objects, and a discriminative projection
space is updated with the collected samples using ILDA. By
projecting the appearance models of tracklets into the dis-
criminative projection space, we make the appearances of
tracklets more discriminative.

It is emphasized that, as an online learning method to
update discriminative appearances with new samples, we
use the ILDA method, while other methods [5, 17] employ
the online boosting method [11]. The main reason for us-
ing ILDA is that appearances of multiple objects can be
distinguished with a single updated LDA projection ma-
trix, whereas specific classifiers of the objects [5, 17] are
required in the boosting method. We can thereby signifi-
cantly reduce the computational complexity in appearance
learning. A further benefit of using ILDA lies in its ability



Figure 3. Training samples from the trackets with high confidence
(red) and low confidence (blue).

to memorize the discriminative information for a long time.
This makes it possible to accurately identify objects even
under significant pose and appearance changes and long-
term occlusion.

4.1. Training Sample Collection

At each frame, we collect N image patches with dif-
ferent locations and scales around the refined locations of
tracklets for discriminating different tracklets. Since images
patches from the tracklets with low confidence are likely to
be polluted by occlusion as shown in Fig. 3, we only extract
image patches from the tracklets with high confidence.

For each image patch (i.e., sample), we create a low-
level feature fl by concatenating templates extracted from
HSV color channel images. A set B = {(fl, yl)}Nl=1 con-
sisting of features fl and the labels of tracklets (i.e. ID) yl
is then constructed. In our experiments, the patch is resized
to 96x32, and the dimension of the feature is 9216. Since
the feature dimension is very high, directly exploiting the
high-dimensional feature to distinguish each object is not
effective. Therefore, we project the high-dimensional fea-
ture onto a low-dimensional subspace using ILDA.

4.2. OnlineLearning Algorithm

In the batch LDA, a projection matrix U is constructed
by maximizing class separability of the given training set

Û = argmax
U

|UTSBU|
|UTSTU | , (6)

where the between-class scatter matrix SB and the total
scatter matrix ST are calculated by

SB =
∑C

i=1 ni (mi − µ) (mi − µ)
T
,

ST =
∑

l (fl − µ) (fl − µ)
T
,

(7)

where C is the total number of classes (i.e. number of track-
lets), ni is the sample number of class (i.e. tracklet) i, mi is
the mean feature vector of class i, and µ is the global mean
feature. The problem defined by Eq. (6) can be solved by
computing an eigenvector matrix of S−1

T SB . However, it
is necessary to incrementally update the existing projection
matrix with updated samples because not all training sam-
ples are available in online multi-object tracking. Although
a number of ILDA methods have been proposed, we employ

(a) The first and second components in updated U via batch LDA

(b) The first and second components in updated U via incremental LDA

Figure 4. Updated bases on ETHMS-Bahnhof: Incrementally
learned bases are almost identical to those of batch LDA.

the ILDA method using sufficient spanning sets developed
by [13] due to the basis of its effectiveness. The proce-
dure is as follows.1 Given eigenspace models of ST and
SB , {µd,Md, Pd,Σd, }d=1,2 and {µd,Md, Qd,∆d}d=1,2,
where µd and Md are the mean vector and the total number
of samples in dataset d, Pd(Qd) and Σd(∆d) are eigenvector
and eigenvalue matrices of ST,d(SB,d). The combined scat-
ter matrices ST,3 w P3Σ3P

T
3 and SB,3 w Q3∆3Q

T
3 , and

their eigenspace models can then be obtained using the al-
gorithm [12]. However, using sufficient spanning sets Φ and
Ψ computed by QR decomposition2 for eigenvector matri-
ces P3 and Q3, the eigenproblems of the combined scatterer
matrices can be efficiently solved as

ST,3 = P3Σ3P
T
3 ⇒ ΦTST,3Φ = RTΣ3R

T
T

SB,3 = Q3∆3Q
T
3 ⇒ ΨTSB,3Ψ = RB∆3R

T
B .

(8)

By computing the eigendecomposition of the r.h.s.,
eigenvalues, Σ3 and ∆3, and eigenvectors, RT and RB ,
are yielded. After removing non-significant components in
RT and RB according to Σ3 and ∆3, minimal sufficient
spanning sets of the combined eigenvectors are obtained as
P3 = ΦRT and Q3 = ΨRB . The detailed pseudo code of
the ILDA algorithm is given in the supplementary material.
Figure 4 shows the updated projection matrices using batch
LDA and ILDA, proving the accuracy of ILDA.

To verify the effectiveness of the ILDA method, we com-
pare the performance of ILDA and online boosting methods
with the ETHMS dataset [10] as shown in Fig. 53. We
can see that the ILDA method is much more effective than
the boosting method in terms of computation cost and iden-
tification accuracy. In our evaluation, the testing time is
similar, but the training of ILDA is much faster, because C
classifiers for C objects are trained in boosting as done in
[5, 17], while only one LDA matrix is updated in ILDA.

1More detailed description can be found in the supplementary material.
2Φ and Ψ are orthonormal matrices spanning the combined scatter ma-

trices, e.g. P3 = ΦR = h([P1, P2, µ1−µ2])R , where h is an orthonor-
malization function and R is a rotation matrix.

3We use a uniqueness score (ri/rclose, i ̸= close) where ri is the
affinity score between the object i current appearance and its online-
learned appearance, and rclose is the highest score among affinity scores
between current appearances of other objects and the learned appearance
of the object i. A higher uniqueness score reflects better performance.



Figure 5. Performance comparison between incremental LDA and
online boosting methods.

5. Experiments
5.1. Implementation

We have implemented the proposed online track-
ing system using MATLAB. Our code is available at
https://cvl.gist.ac.kr/.

Affinity model: Although a tracklet T i can be described
with several cues in different ways, we describe T i with
three elements {Ai, Si,M i}, where Ai, Si and M i repre-
sent appearance, shape, and motion models, respectively.
An affinity measure to determine how well two tracklets (or
a tracklet and a detection) are matched is then defined as

Λ (X,Y ) = ΛA (X,Y ) ΛS (X,Y ) ΛM (X,Y ) , (9)

where X and Y can be tracklets or detections. The affinity
score is computed based on affinities of appearance, shape,
and motion models as follows:

ΛA (X,Y ) =
(UT f(X)·UT f(Y ))
∥UT f(X)∥∥UT f(Y )∥ ,

ΛS (X,Y ) = exp
(
−
{

hX−hY

hX+hY
+ wX−wY

wX+wY

})
,

ΛM (X,Y ) = N
(
ptail
X + vF

XΘ;phead
Y , OF

)
×N

(
phead
Y + vB

Y Θ;ptail
X , OB

)
.

(10)

For appearance models, f(X) and f(Y ), the appearance
affinity ΛA (X,Y ) is evaluated on the online-learned dis-
criminative projection matrix U using ILDA as described in
Sec. 4. The shape affinity ΛS (X,Y ) is calculated with the
height h and width w of objects. ΛM (X,Y ) is the motion
affinity between X tail (i.e. the last refined position) and Y
head (i.e. the first refined position) with the frame gap Θ.
The forward velocity vF

X is evaluated from the head to the
tail of X , while the backward velocity vB

Y is evaluated from
the tail to the head of Y . The difference between the pre-
dicted position computed with the velocity and the refined
position is assumed to follow a Gaussian distribution. Note
that only the forward motion is used when evaluating affin-
ity between a tracklet and a detection.

Dataset and detection: For the performance evalua-
tion, we use the following datasets: CAVIAR [8], VS-
PETS 2009 (PETS) [9], and ETH Mobile scene (ETHMS)
[10]. Although the CAVIAR dataset consists of 26 video
sequences, only 20 sequences were used, as listed in [14],
to ensure a fair comparison with other methods. In the
PETS dataset, tracking sequences S2.L1 and S2.L2 were
used. In the ETHMS dataset, the SUNNY DAY and BAHN-
HOF sequences of street scenes taken by a moving camera

(a) Fragmented trajectories using system (p2)

(b) A single long trajectory using system (p4)

Figure 6. Detections (black circles) and estimated trajectories of a
single object (color lines) for PETS-L1 sequence over 520 frames.

were selected. For VS-PETS 2009, ETHMS, and CAVIAR
datasets, we used the public available detections given by
[2], [14], and [21], respectively.

System parameters: All parameters have been found
experimentally, and remained unchanged for all datasets.
From an extensive evaluation, we find that most parameters
do not affect the overall performance of our system much.
In the affinity model in Eq. (10), all parameters (i.e. posi-
tions, sizes and velocities) are automatically determined by
tracking results except for OF and OB , which were set to
diag[302 752]. The same threshold θ = 0.4 is used for the
local and global association.

5.2. Performance Evaluation
Evaluation metrics: We use the common CLEAR MOT

[4] consisting of multiple metrics. The multiple object
tracking precision (MOTP ↑) evaluates the intersection area
over the union area of bounding boxes. The multiple object
tracking accuracy (MOTA ↑) calculates the accuracy com-
posed of false negatives (F.Neg. ↓), false positives (F.Pos.
↓), and identity switching (IDS ↓). In addition, the met-
rics used in [14, 21] are computed: the number of trajecto-
ries in the ground truth (GT), the ratio of mostly tracked
trajectories (MT ↑), the ratio of mostly lost trajectories
(ML ↓), the ratio of partially tracked trajectories (PT), i.e.,
1− PT −ML, and the number of track fragments (FG ↓).
Here, ↑ represents that higher scores indicate better results,
and ↓ denotes that lower scores indicate better results.

Evaluation: In Table. 1, a quantitative comparison be-
tween our systems and other tracking systems is given. The
implemented systems (p1)-(p4) are described as follows:



(a) Tracking results without online learned appearance models

(b) Tracking results with online learned appearance models

Figure 7. Tracking results: IDs (7,14) are swapped by occlusions
in the top rows, but IDs (7,9) are correctly kept in the bottom rows.

(p1) System without online-learned appearance models4;
(p2) System without global association;
(p3) System without local association;
(p4) System with all proposed methods.

From the evaluation results of (p1)-(p4), we can see the
effect of each part in the proposed method. As expected, the
proposed system (p4) improves performance for most met-
rics, but our other systems (p1)-(p3) are still comparable
with other systems. In particular, our system (p4) notice-
ably reduces the ML and FG rates and increases MT rate
against the system (p2). Figure 6 supports this analysis:
with the global association, longer trajectories are built by
linking fragmented trajectories. Furthermore, by compar-
ing our systems (p1) and (p4), we can see that the proposed
learning method allows us reduction of IDS and FG. Figure
7 shows that IDs of objects are correctly maintained using
our learning method. More results are shown in Fig. 8.

Overall, our system achieves better performance in terms
of MOTP and MOTA. Although we could not find the
MOTP and MOTA for the ETHMS and CAVIAR datasets
in other studies, other metrics show the robustness of our
system. When compared to other online tracking systems
[5, 15, 18, 19], our system (p4) provides far superior perfor-
mance. Compared to batch tracking systems [2, 14, 20, 21],
our system (p4) is still competitive. Notably, this improve-
ment is achieved without using future frames and without
employing multiple (color, shape, and/or texture) features
(c.f . [5, 14, 20, 21]). In addition, we achieve the best perfor-
mance in terms of MT and ML. This implies that our system
can robustly construct trajectories under challenging condi-
tions. Our system, however, produces slightly more IDS
and FG than other batch systems [14, 21] in return.

Speed: Our system was implemented on a PC with a
3.07 GHZ CPU without parallel programming. The run-
time relies on the number of detections. For less crowded
(PETS-L1, CAVIAR) and crowded (ETHMS) scenes, the

4As an appearance model, we used the HSV color histogram with 192
bins, and computed appearance affinity using the Bhattacharyya distance.

run-times are about 0.20 and 0.45 (sec/frame), exclud-
ing detection costs, and appearance learning is the most ex-
pensive part, accounting for 30% of the total computation.
Here, we can reduce the run-time by about 0.05 (sec/frame)
on average by performing the global association every 10
frames (the performance was degraded in return), which is
performed every frame in our implementation.

6. Conclusion
We have proposed a robust online multi-object tracking

method based on tracklet confidence and the online discrim-
inative appearance learning. We build optimal tracklets by
sequentially linking tracklets and detections using the pro-
posed local and global association according to their confi-
dence. Furthermore, the proposed online appearance learn-
ing allows us to discriminate multiple objects in both asso-
ciations even in complex sequences. Extensive experimen-
tal results compared with those of state-of-the-art systems
verity the effectiveness and robustness of our method.
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