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Abstract

We propose an algorithm called Multi Label Generic
Cuts (MLGC) for computing optimal solutions to MRF-
MAP problems with submodular multi label multi-clique
potentials. A transformation is introduced to convert a m-
label k-clique problem to an equivalent 2-label (mk)-clique
problem. We show that if the original multi-label problem is
submodular then the transformed 2-label multi-clique prob-
lem is also submodular. We exploit sparseness in the fea-
sible configurations of the transformed 2-label problem to
suggest an improvement to Generic Cuts [3] to solve the
2-label problems efficiently. The algorithm runs in time
O(mkn3) in the worst case (n is the number of pixels) gen-
eralizing O(2kn3) running time of Generic Cuts. We show
experimentally that MLGC is an order of magnitude faster
than the current state of the art [17, 20]. While the result of
MLGC is optimal for submodular clique potential it is sig-
nificantly better than the compared methods even for prob-
lems with non-submodular clique potential.

1. Introduction
Many problems in computer vision can be naturally

modeled as pixel labeling problems. Formulating such a
problem as finding the labeling with Maximum a-posteriori
Probability (MAP) in a Markov Random Field (MRF) set-
ting converts the problem to a discrete optimization prob-
lem. The MRF-MAP inference problem in general is NP-
hard. However, because of its immense applicability, vari-
ous algorithms have been developed which can perform an
optimal or efficient approximate inference on a subset of
problems.

It has been known for a long time [10] that the 2-label
2-clique MRF-MAP problems, with submodular clique po-
tential, can be solved optimally by finding a minimum cut
in a appropriately constructed flow graph. Boykov and Kol-
mogorov’s Graph Cut algorithm [7] and it’s variations [15]
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are the most widely used algorithms for solving problems
which fit into this limited framework. Ishikawa [11] ex-
tended the class for which optimal inference can be found
in polynomial time to multi-label 2-clique problems with
submodular clique potentials. His construction uses no-
tions of convexity and ordering among labels to formu-
late a flow graph on which minimum cut corresponds to
the minimum energy configuration. Both of these algo-
rithms have resisted generalization and techniques for solv-
ing multi-label and/or higher order potential energy mini-
mization have been either indirect, involving reduction to
pairwise problems, or non combinatorial, involving some
kind of iterative or message passing framework.

Indirect schemes transform the 2-label multi-clique
problems to equivalent 2-clique problems using reduc-
tion techniques [12, 9, 14] and then work with the re-
duced/transformed problem using Graph Cut [7] or QPBO
[19]. In general the transformation process can result
in exponential number of additional terms. Also, trans-
formations may convert submodular potentials into non-
submodular [6, 3]. For working with multi-label problems,
these schemes typically use α-expansion [8] in the outer
loop, where solutions to multi-label multi-clique problems
are approximated by repeatedly solving a series of 2-label
multi-clique problems. While the theoretical convergence is
slow, working approximations are available in a few cycles
of α-expansion iterations.

Ramalingam et al. [23] showed that it is possible to
transform multi label higher order problems to 2-label sec-
ond order problems. Their transformation is a two stage
process. First stage involves, using an encoding similar to
that in [11], replacing multi-label variables in the energy
function by Boolean variables. Second stage reduces the
higher order Boolean energy function to a second order sys-
tem. This obviates the use of α-expansion iterations. How-
ever, the transformation is polynomial time and preserves
submodularity only for multi label problems of order three
or less.

There have also been attempts based on Generalized
Roof Duality to handle higher order 2-label [14] and multi-
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label [26] functions by working with their submodular re-
laxations. The objective for such techniques is to output a
good approximate solutions with weak persistence as mea-
sure of goodness. In general, these techniques cannot han-
dle cliques of size larger than four for 2-label problems [14]
and work with only pairwise potentials for multi-label prob-
lems [26].

Non combinatorial techniques involve use of gradient
descent at some stage in the algorithm. Dual decomposition
[20] based methods break a problem into smaller subprob-
lems and work best when techniques exist to solve subprob-
lems optimally. Combining sub solutions involves some
form of gradient descent. This needs to be done repeat-
edly until convergence. Using this framework to multi-
label as well as multi-clique problems has been attempted
[21, 20, 25]. In general, the decomposition step result in
sub problems that can not be solved optimally leading to
lack of convergence guarantees. Also, there are no bounds
on the number of gradient descent iterations in general.

When clique potentials are submodular (multi-label
and/or multi-clique), MRF MAP energy function minimiza-
tion is essentially minimizing a sum of submodular func-
tions [18]. Submodular function minimization has been
studied extensively. It has been known for a decade that sub-
modular set functions can be minimized in strongly polyno-
mial time [13]. However, since the most efficient algorithm
for minimizing a submodular function hasO(n6) time com-
plexity [13] direct use of these algorithms to solve com-
puter vision problems where the number of pixels/nodes
can reach millions is impractical. Generic Cuts [3] algo-
rithm proposed recently, is a gadget based flow approach
for optimal inference on all 2-label submodular functions.
The importance of Generic Cuts also lies in showing the ef-
fectiveness and efficiency of direct combinatorial algorithm
for 2-label multi-clique problems over reduction based or
gradient descent based approaches. We show in this paper
that the gadget for Generic Cuts can be the basis for a poly-
nomial time transformation that maps multi-label problems
to 2-label problems preserving submodularity. Generic Cuts
can then be used to perform optimal inference in multi-label
multi-clique problems.

The basic idea is to transform the original multi-label
multi-clique problem to a 2-label multi-clique problem by
encoding the original multi label variables using multiple
binary variables. We show that using a simple encoding,
any higher order multi-label problem can be transformed
into 2 label problem preserving submodular properties of
the original problem. The encoding has been used earlier
in [11] and [23]. The focus in the earlier work has been to
come up with a representation which can be used to trans-
form the original problem to a 2-label 2-clique submodu-
lar problem. Our focus, on the other hand, is to transform
any higher order multi-label function to a 2 label function

which preserves submodularity. In contrast to the earlier ap-
proaches the clique size of the transformed problem actually
increases in our case. However, we show that though the
clique size increases there is an interesting generalization of
Generic Cuts which can still solve such problems optimally
in polynomial time when label and clique sizes are fixed.
This shift in focus from transformations leading to Boolean
second order functions to transformations outputting higher
order Boolean problems preserving submodularity and are
applicable to multi-label problems of arbitrary order is one
of the major contributions of this paper.

It is important to note that though the transformation
converts submodular multi-clique multi-label problems into
submodular 2-label multi-clique problem, by doing so we
do not violate any hardness results of the type that there ex-
ists no polynomial transformation from submodular multi-
label functions of order four or more to submodular Boolean
second order functions [23]. This is true since the trans-
formation does not convert the problem to a second order
function but a 2-label problem whose order is even higher
than the original problem and it is known that not all 2-label
higher order submodular problems can be converted to sub-
modular pairwise ones [6, 3].

We have compared performance of our algorithm with
algorithms like [17, 20] which work directly on multi-label
multi-clique problems. Our algorithm not only runs an or-
der of magnitude faster, it outputs optimal results for sub-
modular potentials and better approximations on nonsub-
modular potentials than other methods.

The organization of the paper is as follows. Section 3
introduces the label encoding transformation. Section 4 de-
tails out the optimization algorithm. Section 5 and 6 con-
tains details of the experimental investigations and conclu-
sions respectively.

2. Basic Notation and Definitions
We denote the set of pixels in an image by P , the set of

higher order cliques by C, and set of labels by L. Number
of pixels is denoted by n, size of clique by k and number of
labels is denoted by m. We assume an ordering on the label
set allowing us to represent L as {1, . . . ,m}. The ordering
on the label set also enables us to define max and min op-
erations on two labels. We denote the label of a pixel p as
lp ∈ L. The labeling configuration of clique c, denoted by
lc, is essentially the set of k labels associated with the pixels
in clique c. lpc denotes the label of pixel p in lc. Finding a
labeling with maximum a posteriori probability (MAP) as-
suming labeling to be a MRF can be shown to be equivalent
to minimizing energy of following kind:

E(lP) =
∑
p∈P

Dp(lp) +
∑
c∈C

Wc(lc), (1)

where Dp(lp), called the unary potential, is the cost of



assigning label lp to p. Wc(lc), called the clique potential,
is the penalty/cost of any labeling configuration lc on clique
c.

Equation (1) can be reparametrized such that effect of
Dp(lp) is equivalently expressed using only clique poten-
tials. One of the ways to achieve this is to choose a clique
c such that p ∈ c. Then increase values of Wc(lc) such
that lpc = lp by amount Dp(lp) and set Dp(lp) = 0. It
can be shown that the original and reparametrized function
have identical values for all labeling configurations. In the
discussion that follows we will assume that the energy func-
tion as given in (1) has been reparametrized if needed to the
form given below:

E(lP) =
∑
c∈C

Wc(lc)). (2)

2.1. Submodularity

Wc(·) can be looked upon as a k-ary function with each
parameter (representing a pixel of the k-clique) taking a
value from the label set L. Let X and Y stand for the k-
tuples of parameters. Let ∨ and ∧ be max and min oper-
ators and let (X ∨ Y ), (X ∧ Y ) denote k-tuples resulting
from element wise application of the max and min oper-
ators over k-tuples X and Y . Wc(·) is called submodular
if:

Wc(X) +Wc(Y ) ≥Wc(X ∨ Y ) +Wc(X ∧ Y ). (3)

It is easy to see that when X and Y takes value from label
set L = {0, 1} the above condition reduces to following:

Wc(X) +Wc(Y ) ≥Wc(X ∪ Y ) +Wc(X ∩ Y ). (4)

Note that a multi-label function which is submodular un-
der one label ordering may not be submodular under some
other ordering. It is known that reparametrization preserves
submodularity when |L| = 2 [3]. In the supplementary we
show it for the case when |L| > 2.

3. Conversion to 2-Label Problem
For the purpose of illustrating transformation introduced

in this section we assume that the potential function corre-
spond to m-label 2-clique problem. However, the transfor-
mation itself is generalizable to clique potentials of arbitrary
order.

3.1. Encoding

Let the label set L be represented by the sequence
{l1, l2, . . . , lm}. For each pixel p we introduce an m-tuple
bp = (bp1, b

p
2, . . . , b

p
m) ∈ Bm. In any labeling configu-

ration, a pixel p can take any of the m labels. The m
possible states of p is equivalently represented by states
{(0, 1, 1, . . . , 1), (0, 0, 1, 1, . . . , 1), . . . , (0, 0, 0, . . . , 1)} of

bp. Observe that the label at position i in L is represented
by the state of bp in which i Boolean variables from left
have value 0 and remaining (m − i) variables have value
1. We use B(lp) to denote the state of bp corresponding to
label lp of p.

3.2. Transformation

For the 2-ary function W{p,q}(lp, lq) defined on labels
of pixels in clique {p, q}, we introduce a 2m-ary function
W b

{p,q}(B(lp), B(lq)) : B2m → R. Note that the size of the
domain of functionW b

{p,q} is 22m states of the 2m variables
involved. Of these 22m states onlym2 corresponds to labels
of pixels p and q. These m2 states which correspond to the
labels associated with the two pixels in question are termed
feasible. We call the remaining 22m −m2 states which do
not correspond to labels of pixels, infeasible. The value
of W b

{p,q}(·) for feasible states is set equal to the value of
W{p,q}(·) for the corresponding labels. The value of the
function W b

{p,q}(·) for infeasible states is set to a very large
number.1 This is to ensure that W b

{p,q} attains its minimum
value only on feasible states, i.e., those which correspond to
some valid labeling of pixels. Therefore:

min
lP

∑
{p,q}∈C

W{p,q}(lp, lq)

= min
b

∑
{p,q}∈C

W b
{p,q}(B(lp), B(lq)), (5)

where b is a collection of all binary variables associated
with all pixels in P . Note that W{p,q} was defined on m-
state variables of a 2-clique problem. W b

{p,q} can be looked
upon as being defined on 2-state variables of a 2m-clique
problem. The transformation essentially embeds a m-label
2-clique energy function onto a 2-label 2m-clique energy
function.

3.3. Submodularity Preservation

Let ∪ denote the ‘OR’ operator applied element wise
over tuples of Boolean variables such that:

B(lp) ∪B(lq) =
(
(b1p ∪ b1q), . . . , (bmp ∪ bmq )

)
. (6)

The proposed transformation has the following crucial
property:

B(max(lp, lq)) = B(lp) ∪B(lq), (7)

where lp and lq are two labels from set L at pixel p and q
respectively andB(·) is the Boolean variable representation
of a multi label variable. Similarly if ∩ refers to the element
wise ‘AND’ on tuples of Boolean variables then:

B(min(lp, lq)) = B(lp) ∩B(lq). (8)
1we shall come back to the issue of setting values for infeasible states

later again



W{p,q}(la, lb) +W{p,q}(lc, ld) ≥ W{p,q}(la ∨ lc, lb ∨ ld)) +W{p,q}(la ∧ lc, lb ∧ ld),
⇒W b(B(la), B(lb)) +W b(B(lc), B(ld)) ≥ W b(B(la ∨ lc), B(lb ∨ ld)) +W b(B(la ∧ lc), B(lb ∧ ld)),
⇒W b(B(la), B(lb)) +W b(B(lc), B(ld)) ≥ W b(B(la) ∪B(lc), B(lb) ∪B(ld)) +W b(B(la) ∩B(lc), B(lb) ∩B(ld)).

Figure 1: Proposed encoding ensures that if multi label clique potential is submodular than encoded 2-label clique potential is submodular
as well

Let X = {la, lb} and Y = {lc, ld} be two labeling con-
figuration on clique {p, q}. If clique potential W{p,q} is
submodular and then it can be shown that implications in
Figure 1 hold. The first implication in Figure 1 holds be-
cause values of W{p,q} and W b

{p,q} correspond one to one
for all feasible states. Second implication follows from
equations (6) and (7). Setting Xab = {B(la), B(lb)} and
Xcd = {B(lc), B(ld)} gives us:

W b(Xab)+W
b(Xcd) ≥W b(Xab∪Xcd)+W

b(Xab∩Xcd),

which is the submodularity condition for 2-label clique po-
tentials. This implies that if the given W{p,q} is submodu-
lar, W b

{p,q} satisfies all conditions for submodularity for the
feasible Boolean variable states. We would like to point out
that the above also follows from Birkhoff’s Representation
Theorem [5]. Readers are referred to [22] for its varied ap-
plications in optimization literature.

Since W b attains its minimum value only on feasible
states, in effect we have an encoding to transform a m-
label 2-clique inference problem to 2-label 2m-clique prob-
lem having the same minimum energy configuration. If the
original multi-label clique potential is submodular then the
derived 2-label potential function is guaranteed to be sub-
modular over the domain of interest.

We do not elaborate, but give a brief glimpse here on
how W b

{p,q} can be made submodular even for infeasible
states. Note that in any feasible binary variable state, binary
variable values are 0s followed by some 1s depending on
which label they are encoding. All feasible states therefore
have exactly one 0 → 1 transition and no 1 → 0 transi-
tion whereas all infeasible states have at least one 1 → 0
transition.2 If we set the value of W b

{p,q}(B(lp), B(lq))
equal to the x times a very large number where x is sum of
1 → 0 transitions in B(lp) and B(lq) then it can be shown
that W b

{p,q} will satisfy submodularity conditions even with
terms corresponding to infeasible states.

The proposed transformation can be generalized to em-
bed a k-ary m-label energy function into km-ary 2-label
energy function for any value of k and m. As done
earlier, for each pixel introduce m binary variables to
encode the m possible states of lp. For each k-ary

2The case of all 0s and 1s is handled separately as we show later.
Clique potential is reparametrized to be zero for state all 0s. State all 1s is
explicitly denied by construction

function Wc(·) introduce a km-ary function W b
c (·). If

c is p, q, . . . , r then the form of the new function is
W b

{p,q,...,r}(b
p
1, . . . , b

p
m, b

q
1, . . . , b

q
m, . . . , b

r
1, . . . , b

r
m, ). As

before the 2km − mk states of the km binary vari-
ables, which do not correspond to the labels of the pix-
els, are termed infeasible and the value of the function
W b

{p,q,...,r}(·) for infeasible states is a very large number.
The rest of the mk states which correspond to the labels as-
sociated with the pixels in question are termed feasible and
the value of W b

{p,q,...,r}(·) for feasible states is set equal to
the value ofW{p,q,...,r}(·) for those labeling configurations.
As shown for the 2-clique case, if W{p,q,...,r}(·) is submod-
ular then W b

{p,q,...,r}(·) is guaranteed to be submodular .

At this stage it is instructive to compare our transforma-
tion with the one introduced by Ishikawa in [11] to develop
a polynomial time algorithm for optimal inference of con-
vex/submodular m-label 2-clique problems for pixels ar-
ranged in a grid. The approach there involves construction
of a flowgraph in which corresponding to each pixel is a
set of m − 1 edges and m vertices arranged in a path of
length m. One end of the path is connected to the source s
and the other to the sink t. The interpretation is that a node
and the edge emanating from it on the path corresponds to
a label associated with a pixel. Weights of these and the
other edges introduced by the transformation are such that
an (s, t) cut in the flowgraph includes only one edge from
such paths, and the label of the pixel corresponds to that
edge in the cut. If all the vertices on s side of the cut are
labeled 0 and the rest are labeled 1 then the sequence of
labels associated with the vertices of a path are the same
as the encoding defined here. However, in [11] the encod-
ing and transformation steps are interlinked tightly whereas
in our approach encoding of labels by Boolean m-tuples
is delinked from the transformation step used to embed a
k-ary m-label energy function into km-ary 2-label energy
function. The tight interlinking of [11] is perhaps one of the
reasons why transformations using this path based encoding
does not seem to be possible for cliques larger than 2.

For the benefit of readers we give a worked out exam-
ple here for a 3-label 3-clique energy function function de-
fined over pixels p, q and r. The 3-label 3-clique energy
function with unary energy and clique potential is given in
Table 1 and Table 2 respectively. After reparametrization



Labeling
state Pot.

Labeling
state Pot.

Labeling
state Pot.

Dp(a) 10 Dq(a) 30 Dr(a) 10
Dp(b) 20 Dq(b) 20 Dr(b) 30
Dp(c) 30 Dq(c) 10 Dr(c) 20

Table 1: Unary potentials for the 3-label 3-clique energy function

Labeling
state Pot.

Labeling
state Pot.

Labeling
state Pot.

W (a, a, a) 0 W (b, a, a) 40 W (c, a, a) 80
W (a, a, b) 40 W (b, a, b) 40 W (c, a, b) 80
W (a, a, c) 80 W (b, a, c) 80 W (c, a, c) 80
W (a, b, a) 40 W (b, b, a) 40 W (c, b, a) 80
W (a, b, b) 40 W (b, b, b) 0 W (c, b, b) 40
W (a, b, c) 80 W (b, b, c) 40 W (c, b, c) 40
W (a, c, a) 80 W (b, c, a) 80 W (c, c, a) 80
W (a, c, b) 80 W (b, c, b) 40 W (c, c, b) 40
W (a, c, c) 80 W (b, c, c) 40 W (c, c, c) 0

Table 2: Clique potentials for clique {p, q, r}

we can convert the problem to one having zero unary costs
and clique potential satisfying Eq. 2. We transform this
reparametrized problem to a 2-label 9-clique problem. The
resultant binary clique potential functionW b is given in Ta-
ble 3.

4. Multi Label Generic Cuts (MLGC) Algo-
rithm

In Section 3 we described the transformation to convert
an arbitrary multi-label multi-clique problem to a 2-label
multi-clique problem while preserving submodularity of the
original multi-label clique potential. With this transforma-
tion, the problem reduces to an optimal inference for the
constructed 2-label multi-clique problem.

4.1. Generic Cuts

We propose to solve the transformed problem using
Generic Cuts (GC), an algorithm proposed by Arora et al.
[3] that guarantees an optimal solution to the energy mini-
mization for 2-label problems of any clique size with sub-
modular clique potentials. It may be noted that any method
that guarantees optimal inference of 2-label higher order
submodular problems could be chosen in principle. Dis-
cussion that follows shows that the choice of GC is appro-
priate as it enables, regardless of the size of the resulting
multi-clique optimization problem, limiting the calculation
of capacity of flow edges to a subset of the dual feasibility
constraints.

In GC a flowgraph is constructed in which each higher
order clique is represented by a gadget of the type given in
Figure 2. We assume some familiarity on the reader’s part
with the algorithmic details and notation of GC. For those
who would like to use GC as a black box we summarize

Labeling state Pot. Labeling state Pot.
W b(011011011) 50 W b(001001000) 10
W b(011011001) 110 W b(001000011) 12
W b(011011000) 140 W b(001000001) 10
W b(011001011) 80 W b(001000000) 90
W b(011001001) 100 W b(000011011) 150
W b(011001000) 130 W b(000011001) 170
W b(011000011) 110 W b(000011000) 160
W b(011000001) 130 W b(000001011) 140
W b(011000000) 120 W b(000001001) 120
W b(001011011) 10 W b(000001000) 110
W b(001011001) 12 W b(000000011) 130
W b(001011000) 15 W b(000000001) 110
W b(001001011) 90 W b(000000000) 60
W b(001001001) 70

Table 3: Clique potentials for the equivalent 2-label problem cor-
responding to Table 1 and 2. The table lists values for feasible
states only. All other labelings have infinity costs. Note that all
unary costs for binary variables are set to zero

Labeling state Pot. Labeling state Pot.
W b(011011011) 50 W b(001001000) 40
W b(011011001) 110 W b(001000011) 120
W b(011011000) 80 W b(001000001) 100
W b(011001011) 80 W b(001000000) 30
W b(011001001) 100 W b(000011011) 150
W b(011001000) 70 W b(000011001) 170
W b(011000011) 110 W b(000011000) 100
W b(011000001) 130 W b(000001011) 140
W b(011000000) 60 W b(000001001) 120
W b(001011011) 100 W b(000001000) 50
W b(001011001) 120 W b(000000011) 130
W b(001011000) 90 W b(000000001) 110
W b(001001011) 90 W b(000000000) 0
W b(001001001) 70

Table 4: Clique potentials for the 2-label problem corresponding
to Table 3 after reparametrizing. Db3r

(0) is now 60. All other
unary costs for binary variables are zero

Figure 2: A GC gadget for a 2-label 5-clique problem

here the basic terminology and concepts. The edges ema-
nating out of node n and those incident at node m in a gad-
get are called conjugate edges (n and m are called auxiliary
nodes and the other nodes of a gadget are the pixel nodes).
A flow graph is created in which each pixel is represented
by a pixel node and corresponding to each clique of the en-
ergy minimization problem there is a gadget over the pixel



nodes of the clique. The dual optimization problem has 2g

dual feasibility constraints corresponding to the 2g labeling
states possible in a 2-label g clique. At any stage flow in the
conjugate edges of a gadget corresponds to the value of the
dual variables for the nodes of a clique in the Lagrangian
dual created for the problem. Slack of the dual feasibility
constraint is defined as the difference between the constraint
value and the sum of flow in the conjugate edges participat-
ing in the constraint. The residual capacity of a conjugate
edge is the minimum of the slacks of the dual feasibility
constraints in which a conjugate edge participates. Max
flow in the flow graph so created corresponds the optimal
value of the dual of the energy minimization problem. The
time complexity of GC has a multiplicative exponential fac-
tor 2g where g is the size of the gadget used to model a g
node 2-label clique. This multiplicative factor of 2g in the
time complexity of GC is there because the number of dual
feasibility constraints whose slack needs to be evaluated to
calculate the residual capacity of a conjugate edge of a gad-
get is 2g .

4.2. Generic Cuts Improvement

Note that using the encoding function of Section 3 a m-
label k-clique problem gets transformed to a 2-label km-
clique problem. The flow graph for this km-clique problem
will have gadgets of size km and the time complexity of GC
will have a multiplicative factor of 2km. As explained ear-
lier there are 2km dual feasibility constraints whose slack
needs to be evaluated to calculate the residual capacity of
a conjugate edge of a gadget. Each of these 2km dual fea-
sibility constraints corresponds to one of the 2km possible
states of the km binary variables introduced to model them
labels that can be associated with a pixel. We also know that
only mk of these 2km states are feasible and the cost asso-
ciated with an infeasible state is so large that the constraint
corresponding to an infeasible state can never become tight
by the process of pushing flow in the conjugate edges of a
gadget. In effect the constraints corresponding to infeasible
states cannot contribute to the process of computing resid-
ual capacity of conjugate edges. Onlymk constraints corre-
sponding to feasible states have costs small enough for any
one of them to potentially become tight. A brute force resid-
ual capacity calculation step should therefore need only take
into consideration no more than mk constraints. The com-
plexity of GC modified to take into consideration only mk

constraints works out to O(mk.(km)3.n3), which is the
complexity of MLGC. The size of the gadget changes from
k to km and cost of residual capacity calculation changes
from 2k to mk in GC’s original complexity expression.

4.3. Gadget Graph Construction

The MLGC algorithm differs from traditional GC algo-
rithm in few other ways. In GC the gadget construction first

reparametrizes the 2-label clique potential (W b in our case)
such that the cost of uniform labeling 0 or 1 becomes zero.
Given the multi-label to 2-label transformation of MLGC
as explained in previous section, it may be noted that the
labeling all binary variables of a clique to 1 corresponds to
infeasible labeling and the cost of such labeling is therefore
set to infinity (or very large number). Reparametrization is
therefore done only to bring the value of W b, correspond-
ing to the labeling in which binary variables are 0, to zero.
Table 4 gives the reparametrized binary clique potential cor-
responding to example problem discussed in Table 3. After
reparametrization unary cost Db3r

(0) is 60 (the earlier value
value was 0).

To make sure that on a gadget all nodes can never take
label simultaneously 1 (all 1s is an infeasible state), we
add additional terminal edge from s to all n type auxiliary
nodes in GC gadget with residual capacity of infinity. We
then run the standard GC algorithm while tracking slack in
constraints corresponding to feasible binary variable states
only. Once the maximum flow has been found, we find the
(S, T ) cut by putting in S all nodes reachable from source s
in the residual graph. The nodes in S set are labeled 0. Rest
of the nodes are placed in T and are labeled 1. These 0/1 la-
bels on the nodes are the values of the corresponding binary
variables. The equivalent labels on the pixels of the original
multi label multi clique problem can be recovered using the
encoding function described in Section 3. The pseudo-code
of MLGC algorithm is as given in Algorithm 1.

Algorithm 1 MLGC Algorithm

1: Reparametrize original problem such that Unary costs
are all zero.

2: Create m binary variables corresponding to each pixel.

3: Create a 2-label km-clique problem with the values of
binary clique potential equal to multi-label clique po-
tential at all feasible states and infinity otherwise

4: Set Unary cost for all binary variables as zero
5: Reparametrize 2-label problem to make cost of uni-

formly labeling 1 to zero.
6: Create a GC gadget graph with additional terminal edge

at each n type node from s with infinite capacity.
7: Run standard GC algorithm tracking slack in con-

straints corresponding to feasible states only.
8: Find the min ST cut, once the flow is maximized.
9: Label all binary variables in S as 0 and in T as 1.

10: Do a reverse lookup in encoding and find the labels at
each pixel given state of the binary variables.

5. Experiments and Discussion

The purpose of experiments is threefold.



• To show that the primal and dual values computed by
MLGC on real life problems are equal, thus confirming
the optimal inference experimentally.

• To show that MLGC can do the inference much faster
than the current state of the art.

• Even when the potential is not submodular, MLGC can
still be used, though optimality is not guaranteed. We
show that in these cases also MLGC gives better output
both in terms of energy of the primal as well as visually
and in a time which is an order of magnitude faster than
the competitive methods.

All experiments were conducted on a computer with
2.5GHz dual core processor, 2GB of RAM running Win-
dows 7 operating system with 64 bit addressability. Our
algorithm has been implemented in C++. The comparison
has been done with only those methods whose implementa-
tions are publicly available. We have used the implementa-
tions available in Darwin framework [1] of Iterated Condi-
tional Modes (ICM) [4], Max Product Inference (MPI) [16],
TRWS [17] and Dual Decomposition MAP inference (DD)
[20]. We consider these as direct methods and similar in
spirit with MLGC. Comparison with [23]and [26]could not
be performed because of unavailability of their implementa-
tions. However, it may be noted that our method will ouput
optimal results for all submodular multi-label multi-clique
potentials which no other method will do.

We consider the problem of finding disparity from a pair
of stereo images. Data energy term along with Sawtooth im-
age are as used by MRF code at the Middlebury test bench
[2]. We have run 8-label 3-clique problems with 4 differ-
ent clique potential functions. If labels on the 3 pixels of a
clique are a, b and c, then the cost of the labeling under the
4 clique potential functions is as follows:

1. ABS SUM(a, b, c) = |a− b|+ |b− c|+ |c− a|

2. SQR ABS SUM(a, b, c) = (|a−b|+|b−c|+|c−a|)2

3. SQRT ABS SUM(a, b, c) = (|a−b|+ |b−c|+ |c−
a|)0.5

4. SEC DIFF (a, b, c) = |a− 2b+ c|

Note that ABS SUM is submodular for 8-label 3-clique
potentials while the other three are not. On nonsubmod-
ular potentials MLGC outputs what can be considered to
be submodular approximations. Our experiments have fo-
cussed on the energy of the primal solution inferred and the
time taken for inference. Figure 3 shows the results of our
experiments. The first number in the image below MLGC
output is the value of primal while the second number is the
value of dual. Interestingly MLGC solution is optimal also
for SQRT ABS SUM potential. Except for SEC DIFF

potential for which DD outputs lower energy, energy out-
putted by MLGC is significantly less than the other meth-
ods. Other than MPI which probably converges to bad local
minima relatively quickly, MLGC is an order of magnitude
faster than the other methods.

MLGC

125258
125258,16

TRWS

137408
442

DD

160772
538

ICM

421691
312

MPI

1807730
0.058

84581
78492,58

95094
190

87261
1200

407222
1112

593784
0.040

85991
85991,13

148098
196

145730
778

436263
595

2707600
0.040

165375
41773,38

411824
1894

114179
1028

416636
835

652704
0.040

Figure 3: Comparison on the sawtooth dataset [2]. The num-
bers below each result represents primal energy followed by time
taken for inference in seconds. For MLGC however it is primal
energy, followed by dual followed by time. The four rows rep-
resent results with clique potential ABS SUM, SQR ABS SUM,
SQRT ABS SUM, SECOND DIFF respectively.

We know that MLGC will output optimal solutions for
submodular potentials and comparative run data reported
above shows MLGC is an order of magnitude faster than
the other direct methods. Our preliminary first cut use of
MLGC on nonsubmodular potential functions has indicated
that it is better than the other direct methods and may some-
times even output optimal results. Nevertheless MLGC as
is currently formulated is essentially targeted for providing
optimal solutions to submodular multi-label multi-clique
problems. We believe that it is possible to design varia-
tions of MLGC that output good approximate solutions for
large nonsubmodular problems and at the same time cir-
cumvent the mk bottleneck. One area to focus on is de-
signing data structures which would enable residual capac-
ity calculation without enumerating slacks of all mk dual
feasibility constraints. The other area of investigation is ex-



ploring the possibility of identifying a small subset of the
mk constraints to which residual capacity calculation could
be limited. We consider design of practical approximation
algorithms based on MLGC as a problem with potentially
large pay off.

6. Conclusion
We have presented in this paper an optimal algorithm

for submodular multi-label multi-clique MRF-MAP infer-
ence problems. If the number of labels and clique size are
fixed the algorithm’s time complexity is strongly polyno-
mial. The earlier work on optimal inference has essentially
handled 2-label 2-clique [10], multi-label 2-clique [11] and
2-label multi-clique problems [3]. With the proposed algo-
rithm for optimal inference in multi-label multi-clique prob-
lems we have effectively closed the loop in the sense that
optimal inference for submodular clique potentials is now
possible for all classes of MRF-MAP problems. Since re-
cent techniques for handling 2-label nonsubmodular clique
potentials have essentially involved finding some kind of
submodular approximation [14], we believe that the cur-
rent work can be the basis for solving the multi-label non-
submodular problems by finding suitable submodular ap-
proximation. While MLGC is guaranteed to output an op-
timal solutions regardless of the size of cliques or the num-
ber of labels involved, developing efficient algorithms for
residual capacity calculation, both by new algorithmic in-
sights and better implementations on multi-core architec-
tures is an area of research we advocate. Also, we work un-
der the assumption that allmk configurations on a clique are
equally likely. Rother et al. [24] have shown that sparsity in
clique in many computer vision problems can be exploited
for MRF-MAP problems with large size cliques. MLGC
can also potentially take advantage from such an approach.
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