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Abstract

Interactive object segmentation has great practical im-
portance in computer vision. Many interactive methods
have been proposed utilizing user input in the form of mouse
clicks and mouse strokes, and often requiring a lot of user
intervention. In this paper, we present a system with a far
simpler input method: the user needs only give the name of
the desired object. With the tag provided by the user we do a
text query of an image database to gather exemplars of the
object. Using object proposals and borrowing ideas from
image retrieval and object detection, the object is localized
in the target image. An appearance model generated from
the exemplars and the location prior are used in an energy
minimization framework to select the object. Our method
outperforms the state-of-the-art on existing datasets and on
a more challenging dataset we collected.

1. Introduction

Object segmentation is of great practical importance in
computer vision, especially in image editing tasks where
operations are restricted to a single object. An important
goal in segmentation is to minimize the effort required to
select a desired object.

A common approach to object selection is to require the
user to provide mouse (or touch) input to indicate the de-
sired object. Magic Wand [1]] requires the user to click on
the image and then it selects all pixels with some tolerance.
With Intelligent Scissors [18]], the user traces the boundary
of the object. Graph Cut [3]] methods typically require the
user to stroke over the object and background. Grabcut [20],
a well-known exception to this, rather requires the user to
draw a bounding box around the object, and only needs
strokes to fix any mistakes. Stroke-based methods have
been applied to cosegmentation [2]], which also require the
collection of similar images with a common object. Mat-
ting methods [3} 14} require a trimap to be specified.
Due to the complexity of natural scenes, overlapping object
and background color distributions, and complicated object
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Figure 1. Given an image, the user simply provides the name of
the object that he/she wants to select. The specified object is seg-
mented by our method without further user input.

boundaries, each of these methods often require a lot of te-
dious user interaction to accurately select the object.

Another approach to segmentation is to perform the se-
lection automatically. Semantic segmentation methods [[15}
strive to label each pixel in an image with the correct
object type. This requires the collection of a large dataset
and a known fixed vocabulary, and often needs consider-
able training time. It is not directed toward an object of user
interest, but rather operates on the whole image. Saliency
methods [28] 4] are another approach to automatic object
selection, where the object which is most visually salient
is selected. This usually requires the object to be distinct
from the background and quite large in the image. These
methods work well if the desired object is in fact the salient
object in the image, but this often is not the case.

The goal of this paper is to greatly reduce the user ef-
fort required to select an object. This is done by enabling
the user to simply name the desired object (Fig. [I), either
verbally as part of a natural language image processing en-
gine, like PixelTone or by typing it into a search box.
For example, if the user makes a PixelTone request such as
“Make the *cat* brighter”, our method can be used to iden-
tify the cat pixels to be made brighter without any further
input from the user (in PixelTone, a user has to paint on



the image to mark the cat, name the selection, and then the
user can issue semantic editing requests that mention “cat”).
With the current proliferation of natural language interfaces
for all sorts of tasks (e.g. Siri), we think our method will be
very important for advancing image editing via natural lan-
guage input. This method is more directed than semantic
segmentation and does not require a large trained database.
Unlike saliency methods, our method can select objects that
are small and potentially not salient in the input image as
well as objects in images with several salient objects.

We introduce the new problem of Semantic Object Se-
lection in which a user simply specifies the class of the ob-
ject to select in an image. We propose a solution that scales
well with the number of classes, as we do not need to train
a detector for each class we wish to recognize. At the core
of our system is a novel, robust method using two types of
image search for (i) classifying object proposals in the input
image as containing the selection class or not and (ii) pro-
viding localization information and appearance models for
the objects to select. More specifically, a text-based image
search, e.g. Google or Microsoft Bing, is used to provide
positive images containing instances of the selection class.
Negative images unlikely to contain the selection class are
also gathered. Object proposals are then computed and used
as a query for an image-based search of the positive and
negative examples. The object proposals likely to corre-
spond to the desired object are used to compute localization
and appearance models that are combined in an energy min-
imization framework to compute a final selection.

To the best of our knowledge, this tag-based selection
system is the first in the literature. Thus we cannot per-
form direct comparisons. We have compared our method
against various other state-of-the-art methods for related
problems. We also implemented our own baselines which
are competitive by themselves. We have shown results on
various classes of the MSRC dataset and the recently in-
troduced Object Discovery dataset. We have also collected
more realistic and challenging dataset from imageNet con-
taining dogs. We are comparable to the state-of-the-art on
MSRC [24] and beat the state-of-the-art on Object Discov-
ery [21] and our new dataset by a large margin.

2. Related Work

While we are unaware of previous work that addresses
the problem of selecting a named object without further in-
teraction, there are several lines of work that could be used
to approach this problem.

Saliency methods aim to select the main object in an im-
age by determining which image regions are most “salient”.
In [28]], the saliency is determined by optimizing an energy
function which encourages pixels to be salient if they are
contained in regions that have high contrast to all other re-
gions. The method in [4] uses similar contrast and loca-

tion terms, and then computes a binary segmentation by in-
cluding the computed saliency in a variant of GrabCut [20].
Since these methods do not select object of interest but
rather select whichever region stands out, they cannot ad-
dress the general semantic object selection problem where
the object of interest is not the most “salient” object.

Semantic segmentation approaches [15} 25] attempt to
automatically segment every object in an image. This could
be extended to our problem by labeling every pixel and se-
lecting the pixels corresponding to the named object. There
are several drawbacks to this approach. Semantic segmenta-
tion methods solve a much large problem than needed, and
do not focus on the object of interest. They require a large
amount of pre-labeled data and require a predetermined la-
bel set that may not contain the desired object label. If the
label set contains the desired object, it still may not be found
in the image. Many require training classifiers for every la-
bel, which for a sufficiently large label set requires exces-
sive computation. Exceptions to this are the non-parametric
approaches. These use image retrieval to pull images from
the training set for use in transferring labels to the image.
For example, in [[15] the nearest neighbors in the training
set are retrieved and SIFT flow is used to transfer labels to
the query image. In [25]], globally-similar images are re-
trieved and the likelihood of each superpixel in query im-
age belonging in each class according to the retrieved set is
computed and used in an MRF to compute a segmentation.

There has been much work in object detection, for ex-
ample [6,[17]. Since object detection localizes a object with
a bounding box, it could easily be used to provide a bound-
ing box around a desired object to initialize a segmentation
process using a method such as Grabcut [20]. We propose
this as a baseline method and compare to it in our results.

Cosegmentation methods [9} 18} 10, |19] operate on multi-
ple input images and select in each image a common object.
Such methods could be adapted to our problem by perform-
ing an Internet search on the query object and performing
cosegmentation on the results together with the query im-
age. In fact, Rubenstein et al. [21] propose a method de-
signed to cosegment sets of images collected from an Inter-
net search. It computes a segmentation by optimizing over
a function with terms emphasizing sparseness and saliency.
Because this method heavily relies on saliency, it is largely
restricted to working well on images where saliency meth-
ods also work well.

A method which is related to ours is [23]]. In this work,
a user takes a relatively clean, close-up picture of a product
and the goal is to find a similar product to the one in the im-
age. This method iterates between localized image retrieval
and selection estimation. The product image database has
associated object masks, and the masks of retrieved images
are transferred to the query image to estimate the location
of the product within the query image. The selection is then
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Figure 2. Overview of our system: User starts by providing the
name of the object to segment. Text-based image search is per-
formed to gather positive exemplars. Positive exemplars along
with generalized negatives are then used localize object in the im-
age. This is done with the help of our object retrieval based detec-
tion framework. Localization information along with appearance
sharing from positive exemplars is used to formulate the segmen-
tation problem as energy minimization. Graph cut is applied on
the constructed graph to obtain the desired segmentation.

computed using a voting scheme based on the image search
localizations and is refined using [20]]. Note that has a
similar goal but simplified input (fairly rigid objects, large
and centered in the image with little viewpoint variation).

Unlike [23], our method does not require a database of
images with ground truth masks. Our method can handle
object classes with larger appearance variations and objects
that are less rigid than typical product objects since our
method warps the retrieved images to the query image. Our
use of object proposals also distinguishes our selection al-
gorithm from the product search work. Clean images where
the object of the image is quite large are required in
since in cluttered scenes it is difficult to retrieve images that
match the object of interest. Our method uses object pro-
posals to make good estimates of where the object may be,
which helps avoid background clutter and allows it to han-
dle more general photos of the world.

3. Overview

Our method takes as the user input the name of the ob-
ject as shown in Fig. 2] Using this tag we do a text query
into an image database to gather exemplars corresponding
to the object. Along with positive exemplars we also gather
generalized negative examples and put them in an image
retrieval database. We then divide our image into object
proposals [26]. Each object proposal queries the image re-
trieval database (using [22]) to validate the presence or ab-
sence of the object in a given object proposal.

Once we have found object proposals potentially con-
taining the desired object and their corresponding exem-
plars, we estimate the location of the object in the corre-
sponding exemplar. We transfer this information onto an

Figure 3. Positive exemplar database: Objects on white back-
ground and exemplars from PASCAL VOC (last 2 columns).

object proposal using SIFT flow based image warping [16]
to produce a location prior. We use this location prior to ob-
tain image specific object and background models. We then
combine the image specific appearance model and location
prior in a graph cut energy minimization framework.

Note that any state-of-the-art object detectors like DPM
or exemplar-SVM [6, followed by our segmentation al-
gorithm cannot be used here since such object detectors usu-
ally have an extremely expensive training phase, involving
bootstrapping and hard negative mining phases. Since our
goal is to deal with large number of object classes, we can-
not use pre-trained models. Also in case of DPM, exemplar-
based mask transfer cannot be used since various positive
examples are clubbed together to build a model. Moreover,
in our experiments we show that our method performs better
than a DPM-based segmentation algorithm.

4. Localization

Given the tag of the object, our first challenge is to find
the location of the object in the image. Our goal is to obtain
an object location prior for the target image. We first collect
positive exemplars corresponding to the object along with
some generalized negative exemplars to build an image re-
trieval database [22]. We then break the target image into
object proposals using [26] and validate the presence of the
object in the object proposals. We use SIFT flow to trans-
fer the location associated with validating exemplar areas
to the target image. The accumulated location information
provides a location prior.

4.1. Exemplar Retrieval Database

Once the tag of the corresponding object is provided by
the user, our system needs to learn what our object looks
like. We collect positive examples on white background for
different classes by querying Google with “<object> on
white background”. This gave us a large database of posi-
tive exemplars (Fig. [3). We append this dataset with other
publicly available positive sources such as PASCAL VOC.
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Figure 4. Object retrieval with localization: We use object retrieval
system of which returns ranked retrieved images along with
the bounding box around the matched object.

We also use some generalized negative images from INRIA
pedestrian dataset. Note that performance increases if the
negative exemplars are representative of the background in
the target image. Although it is not necessary to accurately
represent all background objects, by identifying some likely
background regions we can eliminate some potential false
positives and improve the localization of the foreground.

Having positive and negative exemplars makes this a typ-
ical detection problem. Many state-of-the-art detection sys-
tems like [6}[17] try to solve this problem by learning a clas-
sifier between positives and negatives. While such a method
is promising, it has its limitations in this scenario as they
require a very expensive training step. We instead leverage
concepts from image retrieval to obtain the location of the
object in an image.

We use the retrieval system from [22]] which uses a
spatially-constrained similarity measure to handle rotation,
scaling, view point change and appearance deformation.
The similarity measure is calculated by geometrically align-
ing SIFT visual words indexing the query and database im-
ages; achieving object retrieval and localization simulta-
neously (Fig, ). We put positive and negative exemplar
images into an exemplar database for localized search us-
ing [22]]. This involves computation of SIFT features and
creation of an inverted file that stores feature locations for
faster voting map generation during retrieval.

4.2. Detection via Object Proposal Validation

For object detection, the current state-of-the-art is based
on exhaustive search. However, to enable the use of more
expensive features and classifiers a selective search is more
desired. We use object proposal method proposed in [26].
They have reported a recall of 96.7% with around 1500 win-
dows per image on PASCAL VOC 2007. We divide the tar-
get image using object proposals. These object proposals
contain desired object, other objects and even background.
Our goal is to classify each object proposal as containing
the desired object or not. To solve this, we use the exemplar
database created in the previous step.
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Figure 5. Validation: Each row shows an object proposal and its
top 5 retrieved exemplars. Retrieved exemplars also contain the
bounding box around the matched object. The color of the bound-
ing box specifies whether the exemplar is considered as positive
(green) or negative (red). If the box is not centered, e.g. in 1%
row 4" exemplar, the exemplar is considered negative. Majority
voting decides whether the object proposal contains the specified
object or not. The last row shows an example of a false positive
where an object proposal is incorrectly validated as a dog. The
positive class for each query from top to bottom is dog, person,
pug, ball, person and dog.

We query each object proposal into the exemplar
database. When calculating the voting map for retrieval,
we follow the general retrieval framework of [22]], i.e., for
each visual word k in the query, retrieve the image IDs and
locations of k in these images through the inverted files.
Object center locations and scores are then determined and
votes are casted on corresponding voting maps. This re-
sults in ranking by similarity score of all the exemplars in
the database along with the potential location of the object
in the exemplars. We consider the top ¢ exemplars for val-
idation. Recall that each image in the retrieval database is
known to be the object of interest or the background. Some
of the exemplars in top ¢ belong to the object (tag), while
others might belong to background. It might also happen
that the exemplar belongs to object (tag), but the bounding
box returned by localization is not centered on the exem-
plar. In this case the exemplar is also considered as neg-
ative. From these top ¢ exemplars, majority voting is per-
formed and the object proposal is classified as belonging to
the object (tag) if most of the exemplars in top ¢ are positive.

See Fig.[3

4.3. Location Prior

For each positive retrieved exemplar, we desire to trans-
fer the location of each pixel belonging to the object to the



Figure 6. Mask Transfer: a) Warping of an exemplar (top right)
onto the object proposal (top left). 2" row shows sift features
for object proposal and exemplar. 3"% column shows the sift flow
correspondence(left) and warping of exemplar onto the object pro-
posal(right). b) Top 1 column shows object proposals, 2™¢ col-
umn shows best exemplar warped onto the object proposal, and
374column shows the saliency mask for the warped exemplars. c)
Input image and aggregated location prior.

object proposal. Our retrieved images have no associated
ground truth masks so we must estimate the location of the
object in the retrieved images. We use saliency to estimate
the object location. Since our object proposals are not usu-
ally not cluttered and often match to uncluttered retrieved
images and since we explicitly search for objects on a white
background to collect the retrieval set, we find that saliency
works sufficiently well in this constrained use case.

For each object proposal containing the object, its best
positive exemplar (according to retrieval score) is consid-
ered for segmentation transfer. We obtain soft segmentation
mask on the exemplar image by computing saliency map
of [[7]], which gives a score in [0, 1] to each pixel in the ex-
emplar image. We transfer this mask to the corresponding
object proposal by SIFT flow warping [[16]. Note that many
positive object proposals can be shifted versions of the same
object and hence their masks can be overlapping on the tar-
get image. All masks are aggregated on the target image
and re-normalized to lie between [0, 1]. Fig. [§] shows this
process.

5. Segmentation

Given the retrieved positive exemplars for each positive
object proposal and the location prior, we compute a bi-
nary segmentation of the desired object. We pose the seg-
mentation problem in a classic energy minimization frame-
work [12,20, [TT]]. Our unary terms consist of an image spe-
cific appearance model, an appearance model shared from
exemplars, and a location prior. We iteratively minimize the
energy, updating our models in each iteration.

Let x,, be the label of the pixel p in the image and x be
the vector of all z,,. The energy function given the appear-

ance model A and exemplar data X g can be given by
E(x; A, Xg) Z E,(xp; A, Xe +Z o(Tp,g) (1)

In this the pairwise potential is given by
By, 7q) = 8(ap # 4)-d(p, @)~ -exp(—7lle, —cq1?),
2
where ¢, is the color at pixel p. This potential encourages
smoothness by penalizing neighboring pixels taking differ-
ent labels. The penalty depends on the color contrast be-
tween pixels, being smaller in regions around image edges
(high contrast). We consider an 8-connected pixel grid.
Our unary term is a linear combination of three terms:
Ep(xpra XS) = —Qy Ing(Ip§CpaAI) 3)
—ax, logp(zp; cp, Ax, ) — ang log My (zp; Xe).

Each potential p(x,; ¢,, A) evaluates how likely a pixel
of color ¢, is to take label x,,, according to the appearance
model A. The first term uses an image specific image prior
Aj. The foreground and background appearances are each
separately modeled using a 5 component GMM. The fore-
ground and background are initialized using the location
prior; all pixels whose location prior is below some thresh-
old v or above some v are assumed to be background or
foreground respectively and are included in the respective
appearance model.

The appearance model A y, is obtained from the positive
exemplars used to compute the location prior. This appear-
ance model is useful in sharing information from exemplars
and is particularly useful when segmenting object classes
whose appearance does not change over exemplars (partic-
ular breed of dog, e.g. brown Labradors).

We obtain the location prior M, using exemplar-based
image retrieval in the previous step. It is a soft segmen-
tation between [0, 1] and has probabilistic nature. Thus we
directly use My (z,; Xe) = Mp“? (1—M,,)! =77 as a unary
potential in Eq. 3]

Our segmentation framework, shown in Figure[7} is in-
spired by [20, [12]. A graph is constructed with a node for
each pixel and using unary and binary potentials from Eq. [T}
Graph cut is then used to computed a binary segmentation.
The image-specific appearance model is updated given the
new foreground. We iterate (5 times) between solving the
energy function using graph cut and updating the models.

6. Results

We present both qualitative and quantitative results on
various datasets. We set yg = 0.05, v = 0.8, ay = 0.6,
and ap; = 0.4. The trade off between the unary term and
binary term is A = 50. While for objects with consistent
appearance, the exemplar-specific appearance model can be
very useful, we largely tested on objects with a large varia-
tion in appearance and thus set ax, = 0. To report qualita-
tive results we use Jaccard similarity, i.e. intersection over
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Figure 7. Segmentation Framework: Given the input image and
the tag, object retrieval based localization is performed to obtain
a location prior. Using this location prior, fg and bg probabilities
are obtained. These probabilities along with the location prior are
used to set the weights of the graph. Graph cut is applied to obtain
intermediate segmentation which is used to update our models.
After a few iterations a final selection is obtained.

’class \ours\ [21]\ (8] \ [10]\ [9] \ [19]‘
bike 553 | 54.1 | 43.3 | 29.9 | 42.3 | 42.8

bird 64.6 | 67.3 | 47.7 | 29.9 | 33.2 —
car 66.8 | 66.7 | 59.7 | 37.1 | 59 | 52.5
cat 70.7 | 66.2 | 31.9 | 28.7 | 37.6 | 394

chair 60.3 | 62.2 | 39.6 | 28.7 | 37.6 | 39.4
cow 78.5 | 794 | 52.7 | 33.5 45 26.1
dog 69.1 | 67.5 | 41.8 33 41.3 —
plane 58.8 | 56.7 | 21.6 | 25.1 | 21.7 | 334
sheep 81.2 | 789 | 66.3 | 60.8 | 60.4 | 45.7
[ average | 67.3 | 66.5 | 45.0 [ 34.1 [ 42.0 [ 39.9 |
Table 1. Results on MSRC dataset. We compare against Object
Discovery [21]], Joulin et al. 8], Kim et al. [10]], Joulin ez al. [9]

and Mukherjee et al. [19]. Our method is slightly better or com-
parable to Object Discovery which is state-of-the-art on MSRC.

Methods OD OD OD | ImageNet
airplane | car | horse dog
Ours 64.27 | 71.84 | 55.08 69.91
OD [21] 55.81 | 64.42 | 51.65 —

Joulinetal. [9] | 15.36 | 37.15 | 30.16 28.65
Joulineral. [8] | 11.72 | 35.15 | 29.53 24.69
DPM+Grabcut | 39.47 | 68.00 | 50.12 48.24
CEN+Grabcut 37.29 | 64.96 | 48.89 34.53

GT+Grabcut 50.87 | 80.82 | 65.99 79.52
(Upper bound)

Table 2. Results on Object Discovery(OD) and ImageNet Dog.
On the Object Discovery dataset [21] we perform better than the
state-of-the-art by a significant margin. We also compare against
our DPM-based segmentation baseline method and outperform it
by a significant margin. Note that we beat the upper bound (us-
ing ground-truth bounding boxes) on the airplane category. On
ImageNet-dog we perform much better than DPM+Grabcut.

union of the result and ground truth segmentation. More
results can be found in the supplementary material.

6.1. Results on MSRC Dataset

We report results on the MSRC dataset [24]. We search
Google to get objects on white background as positive ex-
emplars, and append this list with PASCAL VOC 2010
training positive examples for each class. 9 of the 14 classes
of MSRC are present in PASCAL VOC 2010, we thus com-
pute results on 9 classes of MSRC (around 30 images per
class). We compare our performance with [[10} [19} |9, 8] as
reported in [8]. We also compare against the recent Object
Discovery work [21] which uses dense correspondences be-
tween images to capture the visual variability of common
object. This method works well when the object is salient
in the image. The cosegmentation methods use all the test
images as input to the system while the input to our system
is just one label and one image. The quantitative results are
given in Table[T]

Our method is significantly better than [10, [19} 9] [8].
It is also slightly better or comparable to Object Discov-
ery [21]. The closeness in performance is due to the fact
that the MSRC dataset contains images with a salient tar-
get object and uniform background. This acts as a boon to
Object Discovery’s approach which is tuned to work well
in cases where object is the most salient object in the im-
age. Our approach is a more general approach which works
well in this scenario but is not limited to images with salient
objects only. Qualitative results can be found in Fig. [I0]

6.2. Result on Object Discovery Dataset

To prove our claim that our method is more general and
works well when the object is not the only salient object
in the image, we test the performance of our method on
the Object Discovery dataset. This dataset was introduced
in [21] and consists of images downloaded from the Inter-
net. There is large variation in style, color, texture, pose,
scale, position and viewing angle. The dataset consists of
three classes, car, horse, and airplane, with around 100 im-
ages in each category.

In order to further prove effectiveness of our approach
we implemented our own baselines. For each image, we
initialize a centered bounding box covering 25% of the area
of the image and initialize Grabcut [20] using this bound-
ing box. We call this approach CEN+Grabcut. Next, we
compared our approach with a detector-based method. We
trained discriminative part based detectors [6] on the car,
horse, and airplane categories from PASCAL VOC 2010.
In order to select a detection threshold we obtained the PR-
Curves and selected a threshold corresponding to f1 score.
The detection bounding boxes obtained by running the de-
tector are used to initialize Grabcut. We call this method
as DPM+Grabcut. Finally, we initialize Grabcut with the
ground truth bounding box of the objects in the image. We
call this GT+Grabcut. Note that this is an upper bound of
a detection plus Grabcut approach. Since [6]] uses models



trained on PASCAL VOC 2010, we only use PASCAL VOC
2010 training images as positive exemplars so that the com-
parison is fair. We also compared against [21} (9, [8].

The quantitative results can be found in Table [2| Since
the images contain objects which are not salient in the im-
age (more realistic images), our approach performs better
than Object Discovery. It performs better than detector-
based segmentation DPM+Grabcut, which has an expensive
training phase and is not practical in our scenario. Also note
that for airplanes our approach even performs better than
the detector-based method upper bound. This is evidence
of the high quality of our location prior as the initial GMM
foreground and background color models derived from the
location prior lead to better results than initializing color
models from the correct tight bounding box input. Quali-
tative comparisons can be found in Fig. [8] and more of our
results in Fig.[0]

6.3. Results on Imagenet Dog

In order to test on a difficult real-world dataset where the
object of interest is often small and not salient, we collected
100 images from ImageNet containing dogs. We show
segmentation results on this dataset in Table 2] PASCAL
VOC 2010 dog training positives were used for training
DPM+Grabcut. Qualitative results can be found in Fig. [T0}

7. Conclusion

In this paper we have proposed a new system for object
selection. Our system has a far simpler interface for object
selection, taking only the object name as input. In order
to solve this problem we propose a exemplar-based local-
ization method which relies on object retrieval. We break
the image into object proposals and validate the presence
of the object in the proposal. Location priors obtained in
this way are then used to get an image specific appearance
model and both are used to solve the segmentation problem
in an MRF framework. We have introduced our own ima-
geNet dog dataset and we outperform the state-of-the-art on
a number of other datasets.
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Figure 8. Comparison on the Object Discovery (OD) dataset of our methdd, OD, Joulin et al. [9]], and DPM+Grabcut. Note how our method
is able to segment non-salient objects while OD picks other areas apart from the object. DPM is unable to detect some objects.
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Figure 10. Qualitative Results on MSRC (first two rows) and ImageNet-dog (last three rows).
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