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Abstract

This paper presents a robust algorithm for estimating a
single latent sharp image given multiple blurry and/or noisy
observations. The underlying multi-image blind deconvolu-
tion problem is solved by linking all of the observations to-
gether via a Bayesian-inspired penalty function which cou-
ples the unknown latent image, blur kernels, and noise lev-
els together in a unique way. This coupled penalty function
enjoys a number of desirable properties, including a mech-
anism whereby the relative-concavity or shape is adapted
as a function of the intrinsic quality of each blurry obser-
vation. In this way, higher quality observations may auto-
matically contribute more to the final estimate than heavi-
ly degraded ones. The resulting algorithm, which requires
no essential tuning parameters, can recover a high quali-
ty image from a set of observations containing potentially
both blurry and noisy examples, without knowing a prior-
i the degradation type of each observation. Experimental
results on both synthetic and real-world test images clearly
demonstrate the efficacy of the proposed method.

1. Introduction

In many practical scenarios we are presented with mul-
tiple captures of the same physical scene under different
imaging conditions. For example, this is possible using the
exposure bracketing or burst-mode functionality on many
consumer cameras. However, each observed image may of-
ten contain unknown, corrupting artifacts such as blurring
and/or noise. A typical factor causing blur is the relative
motion between camera and scene during the exposure pe-
riod, which may arise from hand jitter [6, 14]. Multi-image
blind deconvolution algorithms are designed to jointly u-
tilize all available observations to produce a single sharp
estimate of the underlying scene.

Given 𝐿 corrupted versions of a latent sharp image x, the
uniform convolutional blur model [6] assumes the observa-
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Figure 1. Dual motion deblurring examples. Full images are
shown in Figure 6.

tion process

y𝑙 = k𝑙 ∗ x+ n𝑙, ∀𝑙 ∈ {1, . . . , 𝐿}, (1)

where k𝑙 is a Point Spread Function (PSF) or blur kernel,
∗ denotes the convolution operator, and n𝑙 is a zero-mean
Gaussian noise term with covariance 𝜆𝑙I. Within this con-
text, the ultimate goal of multi-image blind deblurring is to
estimate the sharp and clean image x given only the blurry
and noisy observations {y𝑙}𝐿𝑙=1, without any prior knowl-
edge regarding the unknown kernels k𝑙 or noise levels 𝜆𝑙

(see Figure 1). By combining the complementary informa-
tion from multiple images, it is often possible to generate
higher quality estimates of the scene x than in the single-
image, blind deconvolution case [12].

While a number of successful multi-image blind decon-
volution methods exist, e.g., [12, 4, 3, 13, 22], there re-
mains room for practical improvements and additional the-
oretical understanding. In this context, we present a princi-
pled energy-minimization algorithm that can handle a flexi-
ble number of degraded observations without requiring that
we know the nature (e.g., blurry vs. noisy) or extent of the
degradation for each observation. The underlying cost func-
tion relies on a coupled penalty function, which combines
the latent sharp image estimate with a separate blur ker-
nel and noise variance associated with each observed im-
age. Theoretical analysis reveals that this penalty provides a
useful agency for balancing the effects of observations with
varying quality, while at the same time avoiding suboptimal
local minima. All unknown quantities are optimized using
a majorization-minimization algorithm that requires no tun-
ing parameters. Additionally, when only a single observa-
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tion is present, the method reduces to a principled, single-
image blind deconvolution algorithm with an image penalty
that adaptively interpolates between the ℓ0 and ℓ1 norms.
Experimental results on both synthetic and real-world test
images validate the proposed method relative to the current
state-of-the-art.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly reviews existing multi-image blind deconvolu-
tion algorithms; we then introduce our alternative algorithm
in Section 3. Theoretical properties and analysis related to
the proposed coupled penalty function are presented in Sec-
tion 4, followed by empirical comparisons in Section 5.

2. Related Work

Blind deblurring with a single image has been an active
field with many new methods emerging recently with differ-
ent sparse image priors [6, 14, 7, 9, 20, 2]. In contrast, Rav-
Acha and Peleg use two motion blurred images with differ-
ent blur directions and show that restoration quality is su-
perior than when using only a single image [12]. Since this
work, many other multi-image blind deblurring algorithms
have been developed [4, 3, 13, 22]. Most of these assume
that only two blurry observations {y1,y2} are present. In
addition to other standard regularizers common to single-
image blind deconvolution algorithms, a ‘cross-blur’ penal-
ty function given by

𝐸(k1,k2) = ∥y1 ∗ k2 − y2 ∗ k1∥22, (2)

is often included [4, 13]. The rationale here is that, given the
convolutional model from (1), 𝐸(k1,k2) should be nearly
zero if the noise levels are low and the correct kernels have
been estimated. This penalty also implicitly relies on the
coprimeness assumption, meaning that the blur kernels can
only share a scalar constant [13]. Once the unknown kernels
are estimated, the sharp image x may be recovered using a
separate non-blind step if necessary.

Although computationally efficient, inclusion of this
quadratic energy term does not always produce good ker-
nel estimation results [4, 22]. One reason is that if the noise
level is relatively high, it can dominate the minimization of
𝐸(k1,k2), leading to kernel estimates that are themselves
blurry, which may then either produce ringing artifacts or
lost detail in the deblurred image [22]. Another issue is so-
lution ambiguity, meaning that for a given optimal solution
{k̃1, k̃2}, there exists a family of solutions {k̃1 ∗h, k̃2 ∗h}
that also minimize (2) [4, 22]. Finally, a practical limita-
tion of 𝐸(k1,k2) is that it only applies to images pairs, and
hence would expand combinatorially as the number of ob-
servations grows.

To mitigate some of these problems, a sparse penalty on
the blur kernel may be integrated into the estimation objec-
tive directly [4, 13] or applied via post-processing [22]. For

example, Chen et al. propose a modified version of (2) that
regularizes the kernel estimates using a sparse prior 𝐸𝑠, a
continuity (smoothness) prior 𝐸𝑐, and a robust Lorentzian
factor 𝜑 leading to the cost function

𝐸(k1,k2) = 𝜑(y1 ∗ k2 − y2 ∗ k1)

+ 𝛼
2∑

𝑙=1

𝐸𝑠(k𝑙) + 𝛽
2∑

𝑙=1

𝐸𝑐(k𝑙),
(3)

where 𝛼 and 𝛽 are trade-off parameters [4]. Similarly,
Šroubek et al. modified (2) and incorporated a sparsity-
promoting kernel prior based on a rectified ℓ1-norm [13].

In contrast, Zhu et al. proposed a two-step approach
for dual-image deblurring [22]. The blur kernels are first
estimated using [13] with (2) incorporated. The resulting
‘blurry’ estimates {k̂1, k̂2} are then refined in a second, s-
parsifying step. For this purpose, {k̂1, k̂2} are treated as
two blurry images whose sharp analogues are produced by
minimizing

𝐸(k1,k2,h) =

2∑
𝑙=1

∥k𝑙 ∗ h− k̂𝑖∥22 + 𝛼

2∑
𝑙=1

∥k𝑙∥𝑝𝑝 (4)

over k1, k2, and h, with 𝑝 ≤ 1 producing a sparse ℓ𝑝 norm
over the kernels. This helps to remove the spurious factor h
mentioned above while producing sparser kernel estimates.
Although these approaches are all effective to some extent,
the sparsity level of the blur kernels may require tuning.

In addition to motion-blurred observation processes, de-
blurring has also been attempted using images captured
with different exposure lengths [18, 1] and coded aper-
tures [21], etc. While using multiple images generally has
the potential to outperform the single-image methods by
fusing complementary information [12, 18, 4, 13], a prin-
cipled approach that applies across a wide range of sce-
narios with little user-involvement or parameter tuning is
still somewhat lacking. Our algorithm, which applies to
any number of both noisy or blurry images without explicit
trade-off parameters, is one attempt to fill this void.

3. Multi-Image Blind Deburring Algorithm

We will work in the derivative domain of images for ease
of modeling and better performance [6, 9], meaning that
x and y will denote the lexicographically ordered image
derivatives of sharp and blurry images respectively obtained
via a particular derivative filter.1 Because convolution is a
commutative operator, the blur kernels are unaltered.

Now consider the case where we have a single observa-
tion y. The observation model from (1) defines a Gaussian
likelihood function 𝑝(y∣x,k); however, maximum likeli-
hood estimation of x and k is obviously ill-posed and hence

1The derivative filters used in this work are {[−1, 1], [−1, 1]𝑇 }. Other
choices are open.
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we need a prior to regularize the solution space. In this re-
gard, it is well-known that the gradients of sharp natural im-
ages tend to exhibit sparsity [10, 6, 9], meaning that many
elements equal (or nearly equal) zero, while a few values
remain large. With roots in convex analysis [11], it can be
shown that essentially all iid distributions that favor such
sparse solutions can be expressed as a maximization over
zero-mean Gaussians with different variances. Mathemati-
cally, this implies that 𝑝(x) =

∏𝑚
𝑖=1 𝑝(𝑥𝑖) where 𝑚 is the

size of x (y is of size 𝑛 < 𝑚) and

𝑝(𝑥𝑖) = max
𝛾𝑖≥0

𝒩 (𝑥𝑖; 0, 𝛾𝑖) exp

[
−1

2
𝑓(𝛾𝑖)

]
. (5)

Here 𝑓 is an arbitrary energy function. The hyperparame-
ter variances 𝜸 = [𝛾1, . . . , 𝛾𝑚]𝑇 provide a convenient way
of implementing several different estimation strategies [11].
For example, perhaps the most direct is a form of MAP es-
timation given by

max
x;𝜸,k≥0

𝑝(y∣x,k)
∏
𝑖

𝒩 (𝑥𝑖; 0, 𝛾𝑖) exp

[
−1

2
𝑓(𝛾𝑖)

]
, (6)

where simple update rules are available via coordinate as-
cent over x, 𝜸, and k (a prior can also be included on k if
desired). However, recently it has been argued that an alter-
native estimation procedure may be preferred for canonical
sparse linear inverse problems [16]. The basic idea, which
naturally extends to the blind deconvolution problem, is to
first integrate out x, and then optimize over k, 𝜸, as well as
the noise level 𝜆. The final latent sharp image can then be
recovered using the estimated kernel and noise level with
standard non-blind deblurring algorithms.

Using the framework from [16], it can be shown that this
alternative estimator is formally equivalent to solving

min
x;k,𝜆≥0

1

𝜆
∥y − k ∗ x∥22 + 𝔤(x,k, 𝜆), (7)

where 𝔤(x,k, 𝜆) ≜ min𝜸≥0 x
𝑇Γ−1x+ log ∣𝜆I+HΓH𝑇 ∣,

andH is the convolution matrix of k. Note that this expres-
sion assumes that 𝑓 is a constant; rigorous justification for
this selection can be found in [17].

Optimization of (7) is difficult in part because of the
high-dimensional determinants involved with realistic sized
images. To alleviate this problem, we use determinant iden-
tities and a diagonal approximation to H𝑇H as motivated
in [9]. This leads to the simplified penalty function

𝔤(x,k, 𝜆) = min
𝜸≥0

∑
𝑖

[
𝑥2
𝑖

𝛾𝑖
+ log(𝜆+ 𝛾𝑖∥k̄∥22)

]
, (8)

where ∥k̄∥22 ≜
∑

𝑗 𝑘
2
𝑗 𝐼𝑗𝑖 and Ī is an indicator matrix with

the 𝑗-th row recording the (column) positions where the 𝑗-
th element of k appears in H. ∥k̄∥22 can be viewed as the

squared norm of k accounting for edge effects, or equiva-
lently, as the squared norm of each respective column ofH.
While technically then ∥k̄∥22 should depend on 𝑖, the colum-
n index of H, we omit explicit referencing for simplicity.

In addition to many desirable attributes as described in
[17], the cost function (7) provides a transparent entry-point
for multi-image deblurring. Assuming that all observations
y𝑙 are blurry and/or noisy measurements of the same un-
derlying image x, then we may justifiably postulate that 𝜸
is shared across all 𝑙. This then leads to the revised, multi-
image optimization problem

min
x,{k𝑙,𝜆𝑙≥0}

𝐿∑
𝑙=1

1

𝜆𝑙
∥y𝑙 − k𝑙 ∗ x∥22 + 𝔤(x, {k𝑙, 𝜆𝑙}), (9)

where the multi-image penalty function is now naturally de-
fined as

𝔤(x, {k𝑙, 𝜆𝑙}) ≜

min
𝜸≥0

𝐿∑
𝑙=1

𝑚∑
𝑖=1

[
𝑥2
𝑖

𝛾𝑖
+ log(𝜆𝑙 + 𝛾𝑖∥k̄𝑙∥22)

]
.

(10)

The proposed cost function (9) can be minimized using co-
ordinate descent (similar to MAP) outfitted with convenient
upper bounds that decouple the terms embedded in (10).
The resulting majorization-minimization approach, which
is summarized in Algorithm 1, is guaranteed to reduce or
leave unchanged (9) at each iteration, with similar conver-
gence properties to the EM algorithm. Detailed deriva-
tions and connections with existing methods (e.g., Levin et
al. [9]) can be found in [19].

While admittedly simple, the proposed model has a num-
ber of desirable features:

∙ It can handle a flexible number of degraded observa-
tions without requiring an extra ‘cross-blurring’ term,
which generally limits the number of observations.

∙ The input can be a set of blurry or noisy observation-
s without specifying the degradation type of each ex-
ample; the algorithm will automatically estimate the
blur kernel and the noise level for each one. We note
that in the case of a single observation, the proposed
method reduces to a robust single image blind deblur-
ring model.

∙ The penalty function 𝔤 couples the latent image, blur k-
ernels, and noise levels in a principled way. This leads
to a number of interesting properties, including an in-
herent mechanism for scoring the relative quality each
observed image during the recovery process and us-
ing this score to adaptively adjust the sparsity of the
image regularizer. Section 4 is devoted to these devel-
opments.
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Algorithm 1: Multi-Image Blind Deblurring.

Input: blurry images {y𝑙}𝐿𝑙=1

Initialize: blur kernels {k𝑙}, noise levels {𝜆𝑙}
While stopping criteria is not satisfied, do

∙ Update x: x←
[∑𝐿

𝑙=1
H𝑇

𝑙 H𝑙

𝐿𝜆𝑙
+ Γ−1

]−1 ∑𝐿
𝑙=1

H𝑇
𝑙 y𝑙

𝐿𝜆𝑙

where H𝑙 is the convolution matrix of k𝑙.

∙ Update 𝜸: 𝛾𝑖 ← 𝑥𝑖
2 +

∑𝐿
𝑙=1 𝑧𝑙𝑖
𝐿 , Γ = diag(𝜸),

𝑧𝑙𝑖 ≜ ((
∑

𝑗 𝑘
2
𝑙𝑗𝐼𝑗𝑖)𝜆

−1
𝑙 + 𝛾−1

𝑖 )−1

∙ Update k𝑙: k𝑙 ←
argmink𝑙≥0

1
𝜆𝑙
∥y𝑙 −Wk𝑙∥22 +

∑
𝑗 𝑘

2
𝑙𝑗(

∑
𝑖 𝑧𝑙𝑖𝐼𝑗𝑖),

with W the convolution matrix of x

∙ Update noise levels 𝜆𝑙:

𝜆𝑙 ← ∥y𝑙−x∗k𝑙∥22+
∑𝑚

𝑖=1

∑
𝑗 𝑘2

𝑙𝑗𝑧𝑙𝑖𝐼𝑗𝑖

𝑛

End

∙ The resulting algorithm (see Algorithm 1) is
parameter-free thus requires minimal user in-
volvement.

4. Penalty Function Analysis

This section will examine theoretical properties of the
penalty function (10). These properties help to explain the
success of our algorithm and hopefully demystify, at least to
some extent, what otherwise may appear to be a somewhat
non-standard, coupled regularizer that differs substantially
from typical MAP estimators. For convenience, we first de-
fine

ℎ(𝑥,𝝆) ≜ min
𝛾≥0

𝐿∑
𝑙=1

[
𝑥2

𝛾
+ log(𝜌𝑙 + 𝛾)

]
. (11)

where 𝝆 ≜ [𝜌1, . . . , 𝜌𝐿]
𝑇 with 𝜌𝑙 ≜ 𝜆𝑙/∥k̄𝑙∥22.2 Then

by noting the separability across pixels, (10) can be re-
expressed as

𝔤(x, {k𝑙, 𝜆𝑙}) =
𝑚∑
𝑖=1

ℎ(𝑥𝑖,𝝆) +𝑚
𝐿∑

𝑙=1

log ∥k̄𝑙∥22, (12)

which partitions image and kernel penalties into a more fa-
miliar form. The second term in (12) is similar to many
common kernel penalties in the literature, and we will not
consider it further here. However, the image penalty ℎ(𝑥,𝝆)
is quite unique and we evaluate some of its relevant proper-
ties via two Theorems below followed by further discussion
and analysis.

2Because of boundary effects, technically 𝝆 will depend on 𝑖; however
we omit this dependency to simplify notation.

Theorem 1 (Concavity) The penalty function ℎ(𝑥,𝝆) is a
concave non-decreasing function of ∣𝑥∣.

Proofs will be deferred to [19]. Theorem 1 explicitly
stipulates that a strong, sparsity promoting x penalty is pro-
duced by our framework, since concavity with respect to
coefficient magnitudes is a well-known, signature property
of sparse penalties [16]. Yet while this attribute may an-
chor our approach as a legitimate sparse estimator in the
image (filter) domain, it does not explain precisely why it
often produces superior results compared to more tradition-
al MAP (or penalized regression) approaches, which also
frequently possess a similar attribute (e.g., ℓ1 norm-based
penalties). For this purpose we must look deeper and exam-
ine how 𝝆 modulates the effective penalty on x.

First, for two values of the vector 𝝆, e.g., 𝝆1 and 𝝆2, we
use 𝝆2 ≻ 𝝆1 to denote elementwise ’≥’ with at least one
element where the inequality is strict. We also define the
function ℎ𝝆𝛼 : ℝ+ → ℝ as ℎ𝝆𝛼(𝑧) = ℎ(𝑧,𝝆 = 𝝆𝛼), with
domain 𝑧 ≥ 0. Note that because ℎ is a symmetric function
with respect to the origin, we may conveniently examine its
concavity/curvature properties considering only the positive
half of the real line.

Theorem 2 (Relative Sparsity) The penalty function
ℎ(𝑥,𝝆) is such that:

1. For all 𝝆1 and 𝝆2, ℎ𝝆2(𝑧) − ℎ𝝆1(𝑧) → 0 as 𝑧 → ∞.
Therefore, ℎ𝝆1 and ℎ𝝆2 penalize large magnitudes of 𝑥
equally.

2. Let 𝝆2 ≻ 𝝆1. Then if 𝑧 < 𝑧′, we have ℎ𝝆2(𝑧) −
ℎ𝝆1(𝑧) > ℎ𝝆2(𝑧′) − ℎ𝝆1(𝑧′). Therefore, as 𝑧 → 0,
ℎ𝝆2(𝑧) − ℎ𝝆1(𝑧) is maximized, implying that ℎ𝝆1 fa-
vors zero-valued coefficients more heavily than ℎ𝝆2 .

From a more intuitive standpoint, 𝝆 represents a form
of shape parameter that modulates the concavity, or sparsi-
ty favorability, of the image prior. Moreover, each element
of 𝝆 can be viewed as a measure of the relative image es-
timation difficulty, with larger values indicative of greater
difficulty. This is justified by the fact that larger values of
some 𝜆𝑙 (meaning a higher noise level), or small values of
some ∥k̄𝑙∥22 (meaning a more difficult, distributed kernel3),
imply that 𝜌𝑙 = 𝜆𝑙/∥k̄𝑙∥22 will be large.

More difficult cases (elements of 𝝆 are large) occur for
one of two reasons: (i) Either the underlying images are re-
ally corrupted by complex, diffuse blur kernels and/or high
noise, or (ii) in the initial stages the algorithm has not been
able to converge to a desirable, low-noise, low-blur solu-
tion. In both cases, the penalty function shape becomes
nearly convex, which is highly desirable because it avoids

3For a given value of
∑

𝑖 𝑘𝑙𝑖, a delta kernel maximizes ∥k̄𝑙∥22, while a
kernel with equal-valued elements provides the minimum.
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premature convergence to potentially suboptimal local solu-
tions allowing coarse structures to be identified accurately.

In contrast, for cases where at least one image has a smal-
l 𝜌𝑙 value, the effective penalty on x magnitudes becomes
highly concave (sparsity favoring), even approaching a s-
caled (approximate) version of the ℓ0 norm (in the sense
described in [17]). This is because the existence of a single
good kernel/noise estimation pair (meaning the associated
𝜌𝑙 is small) necessitates that in all likelihood a good overall
solution is nearby (even if some blur kernel/noise pairs as-
sociated with other observations are large). Fortunately, the
log(𝛾 + 𝜌𝑙) term associated with the 𝑙-th image will dom-
inate the variational formation of ℎ(𝑥,𝝆), and a highly s-
parse, concave penalty function on x will ensue, allowing
fine-grained kernel structures to be resolved. But there is
now relatively little danger of local minima since we nec-
essarily must be in the neighborhood of a good solution.
The shape-adaptiveness of the coupled penalty function is
the key factor leading the algorithm to success. Both the
noise and blur dependency allow the algorithm to natural-
ly possess a ‘coarse-to-fine’ estimation strategy, recovering
large scale structures using a less aggressive (more convex)
sparse penalty in the beginning, while later increasing its
aggressiveness for recovering the small details. In so do-
ing it can largely avoid being trapped in a local minima
while recovering the blur kernel progressively. Please see
[17, 19] for more details regarding why additional image s-
parsity is sometimes needed, as well as more information
about how the proposed penalty function operates, includ-
ing why it sometimes favors sparse kernels.

Interestingly, one auxiliary benefit of this procedure is
that, given a set of corrupted image observations, and pro-
vided that at least one of them is reasonably good, the ex-
istence of other more highly degraded observations should
not in theory present a significant disruption to the algorith-
m. In principle, such images are effectively discounted by
the algorithm, largely as a consequence of Theorem 2, and
each estimated 𝜌𝑙 can be treated as a score function (see [19]
for an empirical example and more details).

Finally, there is also a desirable form of scale invariance
attributable to the proposed cost function, meaning that if
x∗ and {k∗𝑙 } represent the optimal solution to (9) under
the constraint

∑
𝑗 𝑘𝑙𝑗 = 1, ∀𝑙, then 𝛼−1x∗ and {𝛼k∗𝑙 } will

always represent the optimal solution under the modified
constraint

∑
𝑗 𝑘𝑙𝑗 = 𝛼, ∀𝑙. Many previous models lack this

type of scale invariance, and the exact calibration of the con-
straint (or related trade-off parameters) can fundamentally
alter the form of the optimal solution beyond an irrelevant
rescaling, thus require additional tuning.

5. Experimental Results

Using both synthetic data and real-world images, we
now compare our algorithm with several state-of-the-art
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Figure 2. Error bar plot: Comparison of Šroubek et al.’s
method [13] and ours on Levin et al.’s dataset [8].

ŠROUBEK OUR

Figure 3. Recovered image and blur kernels of Šroubek et al.’s
method [13] and ours on {𝑥1, 𝑏1}, i.e., the first image and kernels
1–4 from Levin et al.’s dataset [8].

multi-image methods from Cai et al. [3], Šroubek et al. [13],
and Zhu et al. [22] for blurry observations as well as Yuan
et al. [18] and Whyte et al. [15] on noisy/blurry pairs.

5.1. Evaluation on Synthetic Data

We first use the standard test data collected by Levin et
al. [8] for evaluation, which consists of 4 images of size
255 × 255 and 8 different blur kernels, giving a total of
32 blurry images. The kernel sizes range from 13 × 13
to 27 × 27. The blurry images, ground-truth images,
and the ground-truth kernels are also provided. Follow-
ing the experimental settings in [13], we construct a multi-
observation test set with 𝐿 = 4 blurry images by dividing
the whole kernel set into two halves: 𝑏1 = {1 ⋅ ⋅ ⋅ 4} and
𝑏2 = {5 ⋅ ⋅ ⋅ 8}}. In so doing, 8 multi-observation sets are
generated for testing. We then perform blind deblurring
using different algorithms on each set. We compare our
method with the recent method of Šroubek et al. [13], for
which the matlab implementation is publicly available.4

The Sum of Squared Difference (SSD) metric defined
in [8] is used for measuring the error between the deblurred
and ground-truth images. Results are shown in Figure 2,
where the proposed method generates deblurring results

4http://zoi.utia.cas.cz/files/fastMBD.zip
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Figure 4. Dual motion deblurring results: (a) Blurry image pairs [3]. (b) Results from Cai et al. [3]. (c) Results produced with Šroubek et
al.’s software [13]. (d) Our results.

that are significantly better on most of the test images. The
recovered image and blur kernels from both methods for
the first test set are shown in Figure 3. Here we observe
that the kernels recovered by Šroubek et al. are overly blur-
ry, thus leading to inferior image restoration quality (e.g.,
sand and sweater textures are compromised). In contrast,
our approach can recover the blur kernels with high quality
without using any explicit sparse prior over the kernel. By
incorporating a sparsity prior over the kernel, the results can
be further improved (results not shown). Overall, the more
refined kernel estimates obtained via the proposed approach
translate into more details recovered in the latent images.

5.2. Evaluation on Real-World Images

Blind restoration using multiple observations is a ubiq-
uitous problem, with many potential applications. This sec-
tion investigates two common scenarios using real-world
images: dual motion deblurring, i.e., using two motion-
blurried observations for joint blind deblurring [12, 3, 4, 13,
22]; and blurry/noisy pair restoration, i.e., using a short-
exposure noisy and long-exposure blurry image pair for
joint restoration [18, 15]. We emphasis that the reason we e-
valuate under these somewhat restrictive scenarios separate-
ly is primarily for ease of comparison with previous state-
of-the-art algorithms that have been explicitly tailored for
each specific case. In contrast, our algorithm does not re-
quire any modification and can handle both tasks seamlessly
in a unified way, and is in this sense more practical.

Dual Motion Deblurring For dual motion deblurring, we
compare with the multi-image methods proposed by Cai et
al. [3], Šroubek et al. [13] as well as Zhu et al. [22] on
several different real-world images used in previous deblur-
ring work. We first evaluate the relative performance on an
image pair from [3] as shown in Figure 4. The results of
Cai et al., Šroubek et al., and our method are also shown
in Figure 4, with the estimated blur kernels displayed in the
top-right corner of each image. We observe that the ker-

nel estimates produced by Šroubek et al. may be overly
diffuse, at least not precise enough for generating a crisp
deblurring result with limited ringing. The kernel estima-
tions from Cai et al. are better, but the recovered image still
suffers from some ringing artifacts. While we do not have
access to the ground-truth kernel for real-world images, the
relatively compact support of our kernel appears to be rea-
sonable given the high quality of the estimated sharp image.

Figure 5 provides further comparison with Šroubek et
al. on an image pair from [13], as well as with a standard
single-image method from Cho et al. [5] as a benchmark.
The kernel estimates from Šroubek et al. may again be over-
ly diffuse, and the associated latent image estimate retains
some significant artifacts.

The method of Zhu et al. [22] attempts to refine the es-
timated blur kernels from Šroubek et al.[13] via an explicit
sparsity penalty. Comparisons between Zhu et al., Šroubek
et al., and our approach on an image pair from [22] are
shown in Figure 6. While the kernel estimates from Zhu
et al. are indeed more compact than those from Šroubek et
al., the accuracy is likely still below that of our method. For
example, some fine details such as the text on the book cov-
er are not properly recovered. One potential reason for this
is that the kernel refining step of Zhu et al. relies purely on
the kernels estimated via Šroubek et al., without using the
observed data. Therefore, although the estimated blur ker-
nels do become less diffuse, they are not necessarily con-
sistent with the observed data, as any error generated in the
original kernel estimation step will be inevitably transferred
during the kernel refining process. In contrast, our approach
can implicitly determine the proper kernel sparsity directly
from the data without any secondary rectifications or an ex-
plicit sparse prior for the kernel; it therefore appears to be
more reliable on these test images.

Restoration from Blurry/Noisy Pairs As mentioned pre-
viously, our algorithm can be seamlessly applied to images
with differing types of degradation extending beyond the
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Figure 5. Dual motion deblurring results: (a) Blurry image pair [13]. (b) Results produced with Cho et al.’s software [5]. (c) Results
produced with Šroubek et al.’s software [13]. (d) Our results.
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Figure 6. Dual motion deblurring results: (a) Blurry image pair [22]. (b) Results produced with Šroubek et al.’s software [13]. (c) Results
from Zhu et al. [22]. (d) Our results.

typical dual-motion deblurring tasks, e.g., restoration based
on blurry/noisy pairs. Although the existing dual-motion
deblurring algorithms tested above are no longer direct-
ly applicable, alternative approaches have been specifically
tailored to work only with a blurry and noisy pair [18, 15],
and hence provide a benchmark for comparison.

We first compare with Yuan et al. [18] on the blur-
ry/noisy image pair previously used in their paper. The re-
sults, including Cho et al.’s method [5] as a single-blurry-
image baseline, are shown in Figure 7. Not surprisingly,
Yuan et al. can generate a restoration result that is of higher
quality compared to the result obtained from a single blurry
image and Cho et al.’s algorithm. Yet the image recovered
via our approach is of relatively similar quality to that of
Yuan et al.; however, we emphasize that our method is at a
substantial disadvantage because it has no knowledge that
we are dealing with a blurry/noisy pair and it has received
no special design for this situation. It is also interesting to
point out that the blur kernel estimated for the noisy image
is a delta kernel as would be expected if the correct solution
were to be found. This reflects the strong generalization
ability of our method.

Finally, we compare with two recent blurry/noisy pair-
based methods from Whyte et al. [15] using images from
their paper. Results are shown in Figure 8. Note that Whyte

et al.’s non-uniform method does not produce a typical 2D
kernel per the standard convolutional model (1), and hence
no blur kernel is shown. Again, we observe that our algo-
rithm, without resorting to more complicated observation
models or special tuning, performs competitively with al-
gorithms specifically designed to work with a known blurry
and noisy pair.

6. Conclusion

By utilizing a novel penalty function that couples the la-
tent sharp image, blur kernels, and noise variances in a theo-
retically well-motivated way, this paper describes a unified
multi-image blind deconvolution algorithm applicable for
recovering a latent, high-quality image from a given set of
degraded (blurry, noisy) observations, without any specif-
ic modifications for different types of degradations. More-
over, it automatically adapts to the quality of each observed
image, allowing higher quality images to dominate the es-
timation process when appropriate. Experimental evalua-
tions validate the proposed method in different multi-image
restoration scenarios. For future work, we would like to
generalize our algorithm to areas such as video deblurring
and non-uniform deblurring. At least for single images, we
have already found that our method performs well with non-
uniform camera shake provided appropriate basis functions
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Figure 7. Dual exposure deblurring results: (a) Blurry/Noisy image pair [18]. (b) Results produced with Cho et al.’s software using the
blurry image [5]. (c) Result from Yuan et al. [18]. (d) Our results.
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Figure 8. Dual exposure deblurring results: (a) Blurry/Noisy image pair [15]. (b) Uniform deblurring results from Whyte et al. [15].
(c) Non-uniform deblurring result from Whyte et al. [15]. (d) Our results.

are adopted for representing H.
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