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Abstract
An approach to learn a structured low-rank represen-

tation for image classification is presented. We use a su-
pervised learning method to construct a discriminative and
reconstructive dictionary. By introducing an ideal regu-
larization term, we perform low-rank matrix recovery for
contaminated training data from all categories simultane-
ously without losing structural information. A discrimina-
tive low-rank representation for images with respect to the
constructed dictionary is obtained. With semantic struc-
ture information and strong identification capability, this
representation is good for classification tasks even using a
simple linear multi-classifier. Experimental results demon-
strate the effectiveness of our approach.

1. Introduction
Recent research has demonstrated that sparse coding (or

sparse representation) is a powerful image representation
model. The idea is to represent an input signal as a lin-
ear combination of a few items from an over-complete dic-
tionary D. It achieves impressive performance on image
classification [29, 27, 3, 9]. Dictionary quality is a critical
factor for sparse representations. The sparse representation-
based coding (SRC) algorithm [27] takes the entire train-
ing set as dictionary. However, sparse coding with a large
dictionary is computationally expensive. Hence some ap-
proaches [1, 27, 20, 23] focus on learning compact and dis-
criminative dictionaries. The performance of algorithms
like image classification is improved dramatically with a
well-constructed dictionary and the encoding step is effi-
cient with a compact dictionary. The performance of these
methods deteriorates when the training data is contaminated
(i.e., occlusion, disguise, lighting variations, pixel corrup-
tion). Additionally, when the data to be analyzed is a set of
images which are from the same class and sharing common
(correlated) features (e.g. texture), sparse coding would still
be performed for each input signal independently. This does
not take advantage of any structural information in the set.

Low-rank matrix recovery, which determines a low-rank
data matrix from corrupted input data, has been success-
fully applied to applications including salient object de-
tection [24], segmentation and grouping [35, 13, 6], back-
ground subtraction [7], tracking [34], and 3D visual recov-
ery [13, 31]. However, there is limited work [5, 19] using
this technique for multi-class classification. [5] uses low-

rank matrix recovery to remove noise from the training data
class by class. This process becomes tedious as the class
number grows, as in face recognition. Traditional PCA and
SRC are then employed for face recognition. They sim-
ply use the whole training set as the dictionary, which is
inefficient and not necessary for good recognition perfor-
mance [12, 33]. [19] presents a discriminative low-rank
dictionary learning for sparse representation (DLRD SR) to
learn a low-rank dictionary for sparse representation-based
face recognition. A sub-dictionary Di is learned for each
class independently; these dictionaries are then combined
to form a dictionary D = [D1, D2, ...DN ] where N is the
number of classes. Optimizing sub-dictionaries to be low-
rank, however, might reduce diversity across items within
each sub-dictionary. It results in a decrease of the dictio-
nary’s representation power.

We present a discriminative, structured low-rank frame-
work for image classification. Label information from train-
ing data is incorporated into the dictionary learning process
by adding an ideal-code regularization term to the objective
function of dictionary learning. Unlike [19], the dictionary
learned by our approach has good reconstruction and dis-
crimination capabilities. With this high-quality dictionary,
we are able to learn a sparse and structural representation
by adding a sparseness criteria into the low-rank objective
function. Images within a class have a low-rank structure,
and sparsity helps to identify an image’s class label. Good
recognition performance is achieved with only one simple
multi-class classifier, rather than learning multiple classi-
fiers for each pair of classes [28, 21, 20]. In contrast to the
prior work [5, 19] on classification that performs low-rank
recovery class by class during training, our method pro-
cesses all training data simultaneously. Compared to other
dictionary learning methods [12, 33, 27, 25] that are very
sensitive to noise in training images, our dictionary learning
algorithm is robust. Contaminated images can be recovered
during our dictionary learning process. The main contribu-
tions of this paper are:
• We present an approach to learn a structural low-rank

and sparse image representation. By incorporating im-
age class information, this approach encourages im-
ages from the same class to have similar representa-
tions. The learned representation can be used for clas-
sification directly.

• We present a supervised training algorithm to construct
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a discriminative and reconstructive dictionary, which is
used to obtain a low-rank and sparse representation for
images.

• The algorithm computes a low-rank recovery for all
training samples simultaneously while preserving in-
dependence across different classes in a computation-
ally efficient manner.

• Our image classification framework is robust. It out-
performs state-of-the-art methods even when training
and testing data are badly corrupted.

1.1. Related Work
Sparse representation has been widely used for image

classification. [26] has shown that sparse representation
achieves impressive results on face recognition. The en-
tire training set is taken as the dictionary. [29, 30] formu-
late a sparsity-constrained framework to model the sparse
coding problem. They use a modified model to handle
corruptions like occlusion in face recognition. These al-
gorithms, however, don’t learn a dictionary. The selection
of the dictionary, as shown in [8], can strongly influence
classification accuracy. One of the most commonly used
dictionary learning method is K-SVD [1]. This algorithm
focuses on the representation power of dictionaries. Sev-
eral algorithms have been developed to make the dictionary
more discriminative for sparse coding. In [23], a dictionary
is updated iteratively based on the results of a linear predic-
tive classier to include structure information. [12] presents
a Label Consistent K-SVD (LC-KSVD) algorithm to learn
a compact and discriminative dictionary for sparse coding.
These methods show that performance is improved dramat-
ically with a structured dictionary. However, if the training
data is corrupted by noise, their performance is diminished.

Using low-rank matrix recovery for denoising has at-
tracted much attention recently. Wright introduced the Iter-
ative Thresholding Approach [26] to solve a relaxed convex
form of the problem. The Accelerated Proximal Gradient
Approach is described in [16, 26]. The Dual Approach in
[16] tackles the problem via its dual. Applying augmented
Lagrange multipliers (ALM), Lin [15] proposed RPCA via
the Exact and Inexact ALM Method. Promising results have
been shown in many applications [24, 35, 13, 6, 34]. Lim-
ited work, however, has applied the low-rank framework to
solve image classification problems. [5] uses a low-rank
technique to remove noise from training data. Denoising
is implemented class by class, which gives rise to tremen-
dous computational cost as class number increases. [19]
enhances a sparse coding dictionary’s discriminability by
learning a low-rank sub-dictionary for each class. This pro-
cess is time-consuming and might increase the redundancy
in each sub-dictionary, thus not guaranteeing consistency of
sparse codes for signals from the same class. [31] presents
an image classification framework by using non-negative

sparse coding, low-rank and sparse matrix decomposition.
A linear SVM classifier is used for the final classification.

Compared to previous work, our approach effectively
constructs a reconstructive and discriminative dictionary
from corrupted training data. Based on this dictionary,
structured low-rank and sparse representations are learned
for classification.

2. Low-rank Matrix Recovery
Suppose a matrix X can be decomposed into two matri-

ces, i.e., X = A+E, where A is a low-rank matrix and E is
a sparse matrix. Low-rank matrix recovery aims at finding
A from X . It can be viewed as an optimization problem:
decomposing the input X into A+ E, minimizing the rank
of A and reducing ||E||0.

min
A,E

rank(A) + λ||E||0 s.t X = A+ E (1)

where λ is a parameter that controls the weight of the noise
matrix E. However, direct optimization of (1) is NP-hard.
[4] shows that if the rank of A is not too large and E is
sparse, the optimization problem is equivalent to:

min
A,E

||A||∗ + λ||E||1 s.t X = A+ E (2)

where ||A||∗ is the nuclear norm (i.e., the sum of the sin-
gular values) of A. It approximates the rank of A. ||E||0
could be replaced with the l1-norm ||E||1. As proved in [4],
low-rank and sparse components are identifiable. Under
fairly general conditions, A can be exactly recovered from
X as long as E is sufficiently sparse (relative to the rank
of A) [26]. This model assumes that all vectors in X are
coming from a single subspace. [5] uses this technique
to remove noise from training samples class by class; this
process is computationally expensive for large numbers of
classes. Moreover, structure information is not well pre-
served. [5] solves this problem by promoting the inco-
herence between different classes. A regularization term
η
∑

j �=i ||AT
j Ai||2F is added to function (2). It needs to be

updated whenever Aj is changed. This is complicated and
might not be helpful for classification.

Consider the problem of face recognition. Here, the
dataset is a union of many subjects; samples of one subject
tend to be drawn from the same subspace, while samples of
different subjects are drawn from different subspaces. [18]
proves that there is a lowest-rank representation that reveals
the membership of samples. A more general rank minimiza-
tion problem [18] is formulated as:

min
Z,E

||Z||∗ + λ||E||2,1 (3)

s.t X = DZ + E

where D is a dictionary that linearly spans the data space.
The quality of D will influence the discriminativeness of
the representation Z . [18] employs the whole training set
as the dictionary, but this might not be efficient for finding
a discriminative representation in classification problems.
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[19] tries to learn a structured dictionary by minimizing the
rank of each sub-dictionary. However, it reduces diversity
in sub-dictionary, weakening the dictionary’s representation
power.

We will show that an efficient representation can be ob-
tained with respect to a well-structured dictionary. Associ-
ating label information in the training process, a discrimi-
native dictionary can be learned from all training samples
simultaneously. The learned dictionary encourages images
from the same class to have similar representations (i.e., lie
in a low-dimensional subspace); while images from other
classes have very different representations. This leads to
high recognition performance of our approach, as shown in
the experiment section.

3. Learning Structured Sparse and Low-rank
Representation

To better classify images even when training and test-
ing images have been corrupted, we propose a robust super-
vised algorithm to learn a structured sparse and low-rank
representation for images. We construct a discriminative
dictionary via explicit utilization of label information from
the training data. Based on the dictionary, we learn low-
rank and sparse representations for images. Classification is
carried out directly on these discriminative representations.

3.1. Problem Statement
We are given a data matrix X = [X1, X2, ..., XN ] with

N classes where Xi corresponds to class i. X may be con-
taminated by noise (occlusion, corruption, illumination dif-
ferences, etc). After eliminating noise, samples within each
class i will demonstrate similar basic structure [2, 18]. As
discussed before, low-rank matrix recovery helps to decom-
pose a corrupted matrix X into a low-rank component DZ
and a sparse noise component E, i.e., X = DZ + E. With
respect to a semantic dictionary D, the optimal representa-
tion matrix Z for X should be block-diagonal [18]:

Z∗ �

⎛
⎜⎜⎝
Z∗1 0 0 0
0 Z∗2 0 0
0 0 ... 0
0 0 0 Z∗N

⎞
⎟⎟⎠

Based on the above discussion, it is possible to learn
low-rank and sparse representations for images. Low rank-
ness reveals structure information. Sparsity identifies which
class an image belongs to. Given a dictionary D, the objec-
tive function is formulated as:

min
Z,E

||Z||∗ + λ||E||1 + β||Z||1 (4)

s.t X = DZ + E

where λ, β controls the sparsities of the noise matrix E and
the representation matrix Z , respectively.||.||∗ and ||.||1 de-
notes the nuclear norm and the l1-norm of a matrix.

The dictionary D = [D1, D2, ...DN ] contains N sub-
dictionaries where Di corresponds to class i. Let Zi =

Figure 1. Optimal decomposition for classification.

[Zi,1, Zi,2, ...Zi,N ] be the representation forXi with respect
to D. Then Zi,j denotes coefficients for Dj . To obtain
a low-rank and sparse data representation, D should have
discriminative and reconstructive power. Firstly, Di should
ideally be exclusive to each subject i. Thus, representations
for images from different classes would be different. Sec-
ondly, every class i is well represented by its sub-dictionary
such that Xi = DiZi,i + Ei. Zi,j , the coefficients for Dj

(i �= j), are nearly all zero.

We say Q is an ideal representation if Q =
[q1, q2, ..., qT ] ∈ RK×T where qi, the code for sample xi,
is of the form of [0...1, 1, 1, ...]t ∈ RK (K is the dictio-
nary’s size, and T is the total number of samples). Suppose
xi belongs to class L, then the coefficients in qi for DL

are all 1s, while the others are all 0s. An example optimal
decomposition for image classification is illustrated in Fig-
ure 1. Here, data X = [X1, X2, X3] contains images from
3 classes, where X1 contains 3 samples x1, x2, x3, X2 con-
tains 4 samples x4, x5, x6, x7, and X3 contains 3 samples
x8, x9, x10. D has 3 sub-dictionaries, and each has 2 items.
Although this decomposition might not result in minimal
reconstruction error, low-rank and sparse Q is an optimal
representation for classification.

With the above definition, we propose to learn a seman-
tic structured dictionary by supervised learning. Based on
label information, we construct Q in block-diagonal form
for training data. We add a regularization term ||Z − Q||2F
to include structure information into the dictionary learning
process. A dictionary that encourages Z to be close to Q is
preferred. The objective function for dictionary learning is
defined as follows:

min
Z,E,D

||Z||∗ + λ||E||1 + β||Z||1 + α||Z −Q||2F (5)

s.t X = DZ + E

where α controls the contribution of regularization term.

3.2. Optimization

To solve optimization problem (5), we first introduce an
auxiliary variable W to make the objective function separa-
ble. Problem (5) can be rewritten as:

min
Z,E,D

||Z||∗ + λ||E||1 + β||W ||1 + α||W −Q||2F (6)

s.t X = DZ + E,W = Z
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The augmented Lagrangian function L of (6) is:

L(Z,W,E,D, Y1, Y2, μ) (7)

= ||Z||∗ + λ||E||1 + β||W ||1 + α||W −Q||2F
+ < Y1, X −DZ − E > + < Y2, Z −W >

+
μ

2
(||X −DZ − E||2F + ||Z −W ||2F )

where < A,B >= trace(AtB).

The optimization for problem (6) can be divided into two
subproblems. The first subproblem is to compute the opti-
mal Z,E for a given dictionary D. If we set α = 0, this
is exactly the optimization problem from (4). The second
subproblem is to solve dictionary D for the given Z,E cal-
culated from the first subproblem.

3.2.1 Computing Representation Z Given D

With the current D, we use the linearized alternating direc-
tion method with adaptive penalty (LADMAP)[17, 36] to
solve for Z and E. The augmented Lagrangian function (7)
can be rewritten as:

L(Z,W,E,D, Y1, Y2, μ) (8)

= ||Z||∗ + λ||E||1 + β||W ||1 + α||W −Q||2F
+h(Z,W,E,D, Y1, Y2, μ)− 1

2μ
(||Y1||2F + ||Y2||2F )

where h(Z,W,E,D, Y1, Y2, μ)

= μ
2 (||X −DZ − E + Y1

μ ||
2

F
+ ||Z −W + Y2

μ ||
2

F
)

The quadratic term h is replaced with its first order ap-
proximation at the previous iteration step adding a proxi-
mal term [17]. The function is minimized by updating each
of the variables Z,W,E one at a time. The scheme is as
follows:

Zj+1 = argmin
Z
||Z||∗+ < Y j

1 , X −DZj − Ej >

+ < Y j
2 , Z

j −W j > +
μ

2
(||X −DjZj

−Ej||2F + ||Zj −W j ||2F )
= argmin

Z
||Z||∗ + ημ

2
||Z − Zj ||2F

+ < ∇Zh(Z
j,W j , Ej , Y j

1 , Y
j
2 , μ), Z − Zj >

= argmin
Z

1

ημ
||Z||∗ + 1

2
||Z − Zj +

[−DT (X −

DZj − Ej +
Y j
1

μ
) + (Z −W j +

Y j
2

μ
)
]
/η||2F (9)

W j+1 = argmin
W

β||W ||1 + α||W −Q||2F
+ < Y j

2 , Z −W > +
μ

2
||Zj+1 −W ||2F

= argmin
W

β

2α+ μ
||W ||1 + 1

2
||W − (

2α

2α+ μ
Q

+
1

2α+ μ
Y j
2 +

μ

2α+ μ
Zj+1)||2F (10)

Ej+1 = argmin
E

λ||E||1+ < Y j
1 , X −DZj+1 − E >

+
μ

2
||X −DZj+1 − E||2F

= argmin
E

λ

μ
||E||1 + 1

2
||E − (

1

μ
Y j
1 +X

−DZj+1)||2F (11)

where∇Zh is the partial differential of h with respect to Z .
η = ||D||22. The calculations are described in Algorithm 1.

Algorithm 1 Low-Rank Sparse Representation via Inexact
ALM

Input: Data X , Dictionary D, and Parameters λ, β, α
Output: Z,W,E
Initialize: Z0 = W 0 = E0 = Y 0

1 = Y 0
2 = 0, ρ =

1.1, ε = 10−7, μmax = 1030

while not converged, j ≤ maxIterZ do
fix W,E and update variable Z according to (9)
fix Z,E and update variable W according to (10)
fix Z,W and update variable E according to (11)
update the multipliers:

Y j+1
1 = Y j

1 + μ(X −DZj − Ej)

Y j+1
2 = Y j

2 + μ(Zj −W j)
update μ:

μ = min(μmax, ρμ)
check the convergence conditions:
||X −DZj − Ej ||∞ < ε, ||Zj −W j ||∞ < ε

end while

3.2.2 Updating Dictionary D with Fixed Z,W,E

With fixed Z , W and E, D is the only variable in this sub-
problem. So (7) can be rewritten as:

L(Z,W,E,D, Y1, Y2, μ) (12)

= < Y1, X −DZ − E > +
μ

2
(||X −DZ − E||2F

+||Z −W ||2F ) + C(Z,E,W,Q)

where C(Z,E,W,Q) is fixed. This equation (12) is a
quadratic form in variable D, so we can derive an optimal
dictionary Dupdate immediately. The updating scheme is:

Di+1 = γDi + (1 − γ)Dupdate (13)

γ is a parameter that controls the updating step. The dic-
tionary construction process is summarized in Algorithm 2.

3.2.3 Dictionary Initialization
To initialize the dictionary, we use the K-SVD method. The
initial sub-dictionary Di for class i is obtained by several
iterations within each training class. The input dictionary
D0 is initialized by combining all the individual class dic-
tionaries, i.e., D0 = [D1, D2, ...DN ].

3.3. Classification
We use a linear classifier for classification. After the dic-

tionary is learned, the low-rank sparse representations Z of
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Algorithm 2 Dictionary Learning via Inexact ALM
Input: Data X , and Parameters λ, β, α, γ
Output: D,Z
Initialize: Initial Dictionary D0, εd = 10−5

while not converged, i ≤ maxIterD do
find Z,W,E with respect to Di using Algorithm 1
fix Z,W,E and update D by:
Dupdate = 1

μ (Y1 + μ(X − E))ZT (ZZT )−1

Di+1 = γDi + (1− γ)Dupdate

check the convergence conditions:
||Di+1 −Di||∞ < εd

end while

training data X and Ztest of test data Xtest are calculated
by solving (4) separately using Algorithm 1 with α = 0.
The representation zi for test sample i is the ith column
vector in Ztest. We use the multivariate ridge regression
model [11, 32] to obtain a linear classifier Ŵ :

Ŵ = argmin
W
||H −WZ||22 + λ||W ||22 (14)

where H is the class label matrix of X . This yields Ŵ =
HZT (ZZT + λI)−1. Then label for sample i is given by:

k = argmax
k

(s = Ŵzi) (15)

where s is the class label vector.

4. Experiments
We evaluate our algorithm on three datasets. Two

face databases: Extended YaleB [10], AR [22], and one
object category database: Caltech101 [14]. Our ap-
proach is compared with several other algorithms including
the locality-constrained linear coding method (LLC) [25],
SRC [27], LR [5], LR with structural incoherence from [5],
DLRD SR [19] and our method without the regularization
term ||Z −Q|| (our method without Q). Our method with-
out Q involves simply setting α = 0 in the dictionary learn-
ing process. Unlike most other image classification meth-
ods [23, 1, 29], training and testing data can both be cor-
rupted. Our algorithm achieves state of the art performance.

4.1. Extended YaleB Database
The Extended YaleB database contains 2,414 frontal-

face images of 38 people. Taken under various controlled
lighting conditions, these cropped images have size 192 ×
168 pixels. There are between 59 and 64 images for each
person. Shadows due to different illumination conditions
cause variations in this dataset. We test our algorithm on the
original images as well as down-sampled images (2, 4, 8).
This results in data sets of feature dimension 32256, 8064,
2016 and 504. We randomly select 8 training images for
each person, repeat this 5 times and report average recogni-
tion accuracy. Our trained dictionary has 5 items for each
class. We repeat our experiments starting with 32 randomly
selected training images and 20 dictionary items per class.
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Figure 2. Performance comparisons on the Extended YaleB. n is
the number of training images per person.

We compare our approach with LLC [25], SRC [27],
LR [5], and LR with structural incoherence [5]. We eval-
uate the performance of the SRC algorithm using a full-size
dictionary (all training samples). For fair comparison, we
also evaluate the results of SRC and LLC using dictionar-
ies whose sizes are the same with ours. The result for our
method without Q is also calculated. The comparative re-
sults are shown in Figure 2. n is the number of training
samples for each person. Our method, by taking advantage
of structure information, achieves better performance than
LLC, LR, LR with structural incoherence and our method
without Q. It outperforms SRC when using the same-size
dictionary. Our result is also comparable with [9].

Figure 3 illustrates the representations for the first ten
subjects. The dictionary contains 50 items (5 for each cat-
egory). The first line shows the testing images’ representa-
tion based on LR and LR with structural incoherence [5].
Figures 3(a) and 3(c) are representations with the full size
dictionary (all training sample). For comparison, we ran-
domly select 5 out of 8 training samples from each class,

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3. Comparison of representations for testing samples from
the first ten classes on the Extended YaleB. 5 example samples
for each class. (a) LR with full-size dictionary; (b) LR with dic-
tionary size 50; (c) LR with structural incoherence with full-size
dictionary; (d) LR with structural incoherence with dictionary size
50; (e) SRC; (f) LLC; (g) Our method without Q; (h) Our method.
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(a) (b) (c)

Figure 4. Examples of image decomposition for testing samples
on the Extended YaleB. (a) original faces; (b) the low-rank com-
ponent DZ; (c) the sparse noise component E.

and generate a 50-element dictionary. The corresponding
representations are shown in Figures 3(b) and 3(d). Figures
3(e), 3(f) and 3(g) are the representations based on SRC,
LLC with the same dictionary size and our method without
Q. In our learned representation, Figure 3(h), images from
the same class show strong similarities. This representation
is much more discriminative than the others.

We present some examples of decomposition results in
Figure 4. The first three images are original faces. The mid-
dle and the last three images are low-rank component(DZ)
and noise component(E), respectively. We see that different
illumination conditions mainly influence noise component.

We also evaluate the computation time of our approach
and LR with structural incoherence [5] that trains a model
class by class (Figure 5(a)) and uses SRC for classification.
The training time is computed as the average over the en-
tire training set. The testing time, which includes both en-
coding and classification, is averaged over all test samples.
Clearly, training over all classes simultaneously is faster
than class by class if discriminativeness is preserved for dif-
ferent classes. Our training time is twice as fast and testing
is three times faster than LR with structural incoherence.
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Figure 5. Experiment results. (a) Average computation time for
training and testing on the Extended YaleB; (b) Recognition rates
on the AR database with pixel corruption.

4.2. AR Database
The AR face database includes over 4,000 color face

images of 126 individuals, 26 images for each person in
two sessions. In each session, each person has 13 images.
Among them, 3 are obscured by scarves, 6 by sunglasses,
and the remaining faces are of different facial expressions
or illumination variations which we refer to as unobscured
images. Each image is 165 × 120 pixels. We convert the
color images into gray scale and down-sample 3 × 3. Fol-
lowing the protocol in [5], experiments are run under three

Table 1. Recognition rates on the AR
Dimension2200 sunglass scarf mixed

Our Method 87.3 83.4 82.4
Our Method without Q 85.1 81.3 81.0
LR w. Struct. Incoh. [5] 84.9 76.4 80.3
LR [5] 83.2 75.8 78.9
SRC(all train. samp.) [27] 86.8 83.2 79.2
SRC*(5 per person) [27] 82.1 72.6 65.5
LLC [25] 65.3 59.2 59.9

different scenarios:
Sunglasses: In this scenario, we consider unobscured

images and those with sunglasses. We use seven unob-
scured images from session 1 and one image with sunglass
as training samples for each person, the rest as testing. Sun-
glasses cover about 20% of the face.

Scarf: In this scenario, we consider unobscured images
and those with scarves. We use seven unobscured images
from session 1 and one image with a scarf as training sam-
ples for each person, the remainder as testing. Scarves give
rise to around 40% occlusion.

Mixed (Sunglass + Scarf): In the last scenario, we
consider all images together (sunglass, scarf and the unob-
scured). We use seven unobscured images from session 1,
one image with sunglasses, and one with a scarf as training
samples for each person.

We repeat our experiments three times for each scenario
and average the results. Table 1 summarizes the results.
We use α = 560, λ = 16, β = 15, γ = 0.1 in our
experiments. Our methods are compared with LLC [25],
SRC [27], LR [5], and LR with structural incoherence [5].
For SRC, we measure the performance with two different

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Comparison of representations for testing samples from
the first ten classes on the AR for the sunglass scenario. 5 samples
for each class. (a) LR with full-size dictionary; (b) LR with dic-
tionary size 50; (c) LR with structural incoherence with full-size
dictionary; (d) LR with structural incoherence with dictionary size
50; (e) SRC; (f) LLC; (g) Our method without Q; (h) Our method.
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(a) original gray images

(b) the low-rank component DZ

(c) the sparse noise component E

Figure 7. Examples of image decomposition for testing samples
from class 4 and 10 on the AR.

dictionary sizes. Our approach achieves the best results and
outperforms other approaches with the same dictionary size
by more than 3% for the sunglass scenario, 7% for the scarf
scenario, and 2% for the mixed scenario.

We visualize the representation Z for the first ten classes
under the sunglasses scenario. There are 8× 10 = 80 train-
ing images and 12 × 10 = 120 testing images. We use
50 as our dictionary size, i.e., 5 dictionary items per class.
Figures 6(a) and 6(c) show the representations of LR and
LR method without structural incoherence with a full-size
dictionary. In Figures 6(b) and 6(d), we randomly pick 5
dictionary items for each class, and use this reduced dic-
tionary to learn sparse codes. For comparison purposes,
we also choose 50 as the dictionary size in LLC and SRC*
to learn the representations shown in Figures 6(e) and 6(f).
The testing images automatically generate a block diagonal
structure in our method, which is absent in other methods.

Figure 7 shows image decomposition examples on the
AR database. The first row shows the original gray images.
The second is the low-rank component (DZ) and the third
the noise component (E). Our approach separates occlu-
sions such as sunglasses and scarves from the original im-
ages into the noise component.

Table 2. Recognition rates on the AR
Dimension2200 sunglass scarf

Our Method 90.9 88.5
LC-KSVD [12] 78.4 63.7

In addition, we compare our results with LC-KSVD [12]
using the same training samples under the sun and scarf
scenarios, using unobscured images for test. The results
is summarized in Table 2. Although associating label infor-
mation with training process, the performance of LC-KSVD
is not as good as ours since the training set is smaller and
corrupted. Our approach is robust to noise like occlusion.

We also evaluate our algorithm on the corrupted AR face
database following the protocol in [19]. In the experiment,

(a) (b) (c)

Figure 8. Examples of image decomposition for testing samples
from class 95 on the AR with 20% uniform noise. (a) corrupted
faces; (b) the low-rank component DZ; (c) the sparse noise com-
ponent E.

seven images with illumination and expression variations
from session 1 are used for training images, and the other
seven images from session 2 are used as testing images. A
percentage of randomly chosen pixels from each training
and testing image are replaced with iid samples from a uni-
form distribution over [0, Vmax] as [26] did, where Vmax is
the largest possible pixel value in the image. The recog-
nition rates under different levels of noises are shown in
Figure 5(b). The results of DLRD SR [19], FDDL [30],
Robust PCA [26], SR [27], and SVM [26] are copied from
[19]. Our method outperforms the other approaches. Fig-
ure 8 shows some examples of image decomposition on the
AR database with 20% uniform noise.

4.3. Caltech101 Database
The Caltech101 database contains over 9000 images

from 102 classes. 101 classes are of animals, flowers, trees,
etc. and there is a background class. The number of images
in each class is between 31 and 800. We evaluate our meth-
ods using spatial pyramid features and run experiments with
15 and 30 randomly chosen training images.

Figure 9 shows the representations of 15 testing sam-
ples which are randomly selected from classes 4 ∼ 8. Our
representation clearly reveals structure information through
representation similarity. Although the training images are
visually very diverse, we are able to learn discriminative

(a) (b) (c) (d)

(e) (f) (g)

Figure 9. Comparison of representations for testing samples from
class 4 to 8 on the Caltech101. 15 example samples for each class.
(a) LR with full-size dictionary; (b) LR with dictionary size 55;
(c) LR with structural incoherence with full-size dictionary; (d)
LR with structural incoherence with dictionary size 55; (e) LLC;
(f) Our method without Q; (g) Our method.
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Table 3. Recognition rates on the Caltech101
number of training sample 15 30

Our Method 66.1 73.6
Our Method without Q 65.5 73.3
LR w. Struct. Incoh.[5] 58.3 65.7
LR [5] 50.3 60.1
SRC (all train. samp.) [27] 64.9 70.7
LLC [25] 65.4 73.4

representations with the constructed dictionary.
We evaluate our approach and compare it with oth-

ers [5, 25, 27]. Table 3 presents classification accuracy. Our
algorithm achieves the best performance. Figure 10 gives
examples from classes which achieve high classification ac-
curacy when training image is 30 per category.

(a) yin yang, acc:100% (b) soccer ball, acc:100%

(c) sunflower, acc:100% (d) Motorbikes, acc:97.7%

(e) accordion, acc:96.0% (f) watch, acc:95.7%

Figure 10. Example images from classes with high classification
accuracy of the Caltech101.

5. Conclusions
We proposed a new image classification model to learn a

structured low-rank representation. Incorporating label in-
formation into the training process, we construct a semantic
structured and constructive dictionary. Discriminative rep-
resentations are learned via low-rank recovery even for cor-
rupted datasets. The learned representations reveal struc-
tural information automatically and can be used for classi-
fication directly. Experiments show our approach is robust,
achieving state-of-art performance in the presence of var-
ious sources of data contamination, including illumination
changes, occlusion and pixel corruption.
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