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Abstract

In this paper, we formulate human action recognition
as a novel Multi-Task Sparse Learning(MTSL) framework
which aims to construct a test sample with multiple fea-
tures from as few bases as possible. Learning the sparse
representation under each feature modality is considered
as a single task in MTSL. Since the tasks are generated
from multiple features associated with the same visual in-
put, they are not independent but inter-related. We intro-
duce a Beta process(BP) prior to the hierarchical MTSL
model, which efficiently learns a compact dictionary and
infers the sparse structure shared across all the tasks. The
MTSL model enforces the robustness in coefficient estima-
tion compared with performing each task independently.
Besides, the sparseness is achieved via the Beta process for-
mulation rather than the computationally expensive l1 norm
penalty. In terms of non-informative gamma hyper-priors,
the sparsity level is totally decided by the data. Finally,
the learning problem is solved by Gibbs sampling inference
which estimates the full posterior on the model parameters.
Experimental results on the KTH and UCF sports datasets
demonstrate the effectiveness of the proposed MTSL ap-
proach for action recognition.

1. Introduction

Recognition of human actions [1] in videos is an impor-
tant but challenging task in computer vision. It has many
potential applications, such as smart surveillance, human-
computer interface, video indexing and browsing, auto-
matic analysis of sports events, and virtual reality. How-
ever, it is a challenging task not only because of geometric
variations between intra-class objects or actions, but also
because of changes in scale, rotation, viewpoint, illumina-
tion, and occlusion.

The fusion of multiple features is effective for recogniz-
ing actions as the single feature based representation is not

Figure 1. A hierarchical Bayesian model representation of the
multi-task sparse learning method. The detailed parameters are
introduced in Section 3.

enough to capture the visual variations (view-point, illumi-
nation etc.). Yuan et al. [10] employ color feature, texture
feature and shape feature for face recognition and object
categorization. Tran et al. [12] represent the video sequence
as several part motion descriptors and then encode these de-
scriptors by sparse representation for classification. They
employ and solve the sparse representation on each part mo-
tion descriptor independently, but actually each part is inter-
related. Multi-task learning [2] has recently received much
attention in the fields of machine learning, and computer
vision. It capitalizes on shared information between related
tasks to improve the performance of individual tasks, and
it has been successfully applied to vision problems such as
image classification [10], image annotation [3], and object
tracking [4]. In [10][3][4], the l1 norm is employed for joint
regularization. They extend the l1 framework for learning
single sparse model to a setting where the goal is to learn a
set of jointly sparse models.

In this paper, motivated by the success of multi-task
learning, we propose a novel Multi-Task Sparse Learn-
ing(MTSL) model combined with Beta Process Prior for

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.61

421

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.61

421

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.61

423



human action recognition. The proposed MTSL model
jointly formulates multiple modalities of features, each fea-
ture modality is viewed as a task in MTSL, and the sparsity
structures are shared across all the tasks. Moreover, we in-
troduce a Beta process prior to the proposed MTSL model.
In terms of the Beta process formulation, the inferred spar-
sity level is intrinsic to the data, while solving the l1 norm
usually needs assume a reconstructed residual error or the
sparsity level. Via setting the common prior for all the task,
the sparse structure shared across all the tasks is efficiently
inferred which enforces the robustness in coefficient estima-
tion compared with dealing with each task independently. A
graphical model representation of the MTSL is illustrated
in Figure 1. The bottom layer of this hierarchical model is
composed of individual models with task-specific parame-
ters; On the layer above, tasks are connected together via
the common prior placed on the tasks; the top layer above
is the hyper-prior, invoked on parameters of the prior at the
level below.

In this paper, two kinds of action features are used for ef-
ficiently describing actions in videos. Based on the popular
and efficient bag-of-features model, histogram feature and
co-occurrence feature are constructed from local 3D SIFT
descriptors. The histogram feature statistically records the
local appearance information about the video. The co-
occurrence feature exploits the spatio-temporal geometric
distribution information about local features in 3D space
which is totally ignored in the histogram feature. These two
features describe the video sequence at two aspects: local
appearance information, and geometric distribution infor-
mation.

The main contributions of this paper are:

• We propose a multi-task sparse learning method for ac-
tion recognition, which can efficiently combine multi-
ple features to improve the recognition performance.

• The proposed MTSL is a robust sparse coding method
that mines correlations among different tasks to ob-
tain the shared sparsity pattern which is ignored when
learning each task individually.

• It uses the non-parametric Bayesian prior instead of
the l1 norm regularization. In this way, the dictionary
is learned using the Beta process construction [8], and
the sparsity level is decided by the data and one doesn’t
need to assume the stopping criteria.

1.1. Related Work

In the past few years, sparse representation has been
successfully applied to computer vision applications, such
as object classification [10], tracking [11], face recogni-
tion [5], and action recognition [6]. In [6], the local spatio-
temporal descriptor is represented as some linear combina-
tion of few dictionary elements via sparse representation

instead of the traditional bag-of-features methods that in-
volve clustering and vector quantization. Then one action
class or individual training sample is computed by summing
the sparse coefficients of all the local descriptors contained.
The sparse representation of a local feature is richer and
more accurate than quantizing it to a single word via near-
est neighbor in the bag-of-features method. However, the
manner of applying sparse representation on low-level fea-
tures will be time consuming due to large members of low-
level feature and high computational complexity of solving
sparse representation. Guo et al. [7] use the log-covariance
matrix to represent each video, and employ sparse represen-
tation on the log-covariance matrices. Sparse representation
is applied on the high level video feature, and the label of
a test sample is decided on the reconstruction residual error
of the training samples from every class.

In most sparse representation methods, sparsity is mea-
sured by the l1-norm with a Lagrangian constant to bal-
ance the reconstruction error and the sparsity constraint.
Recently, several variations and extensions of the l1 mini-
mization have been introduced to them. In these methods,
the sparse coefficient is estimated via point estimate (with-
out a posterior distribution), typically based on orthogonal
matching pursuits, basis pursuits or related methods, for
which the stopping criteria is defined by assuming the re-
constructed residual error or the sparsity level. However,
in many applications one may not know the residual er-
ror or sparsity level. Zhou et al. [8] and Ji et al. [9] in-
troduce a non-parametric Bayesian formulation to address
these problems. In [9] a new multi-task compressive sens-
ing (CS) modeling with Bayesian regression is developed,
which addresses a variety of issues that previously have
not been addressed: (i) a stopping criterion for determining
when a sufficient number of CS measurements have been
performed, and (ii) simultaneous inverse of multiple related
CS measurements. These methods[8][9] are proved very ef-
ficient in image denoising, image inpainting, and compres-
sive sensing. In this paper, motivated by the success of non-
parametric Bayesian formulation in CS, we propose a novel
Multi-Task Sparse Learning(MTSL) model combined with
Beta process prior for human action recognition.

1.2. Organization

The paper is organized as follows. Section 2 introduces
the multiple features used for action representation. Section
3 gives a detailed description of the proposed MTSL model.
Section 4 reports experimental results on several human ac-
tion datasets. Section 5 concludes the paper.

2. Multi-feature representations for video con-
text modeling

We employ two features to represent each video se-
quence: histogram feature, and co-occurrence feature. Lo-
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cal interest point features are a popular way to represent
videos. They achieve state-of-the-art results for action
recognition when combined with the bag-of-features rep-
resentation. However, the histogram representation ignores
the geometric distribution information about the local fea-
tures. Co-occurrence matrices exploit the spatio-temporal
proximity distribution about local features in 3D space to
characterize geometric context of action class.

Histogram Features: We first perform the spatio-
temporal interest point detection for each video sequence.
The Harris3D detector [13] is employed to detect spatio-
temporal interest points at each frame, and the 3D SIFT
descriptor [14] is used to describe the cuboid extracted at
each interest point. Afterwards, 3D SIFT descriptors from
the training videos are quantized to form a visual vocabu-
lary by using the k-means clustering method. The histogram
feature for each video sequence is namely the statical his-
togram of SIFT descriptors extracted from it.

co-occurrence feature: It is a co-occurrence matrix of
visual words for capturing the geometric information. Let
V denote a video, which is described as {(𝒍i, fi)}1 ≤ i ≤
M, where 𝒍i is the spatio-temporal position vector of the
ith detected local feature and fi is its visual word index.
M is the total number of the local features detected in the
video. Spatio-temporal co-occurrence matrix is defined as
O = (oi j) ∈ RK×K with each element as

O(i, j) = oi j = �{( fh, fm)| fh = i, fm = j, ‖𝒍h − 𝒍m‖ ≤ d} (1)

where fl and fm are a pair of neighboring features with the
distance not larger than d, and the � means the number of
feature pairs satisfying all the conditions listed in the brack-
ets in Eq.(1).

3. Multi-Task Sparse Learning for Action
Recognition

The proposed multi-task sparse modeling method makes
use of multiple modalities of features for action representa-
tion. We generate J tasks from J different modalities of
features associated with the same input video sequences.
Learning the sparse representation of the video in one fea-
ture space is viewed as an individual task. The multi-task
learning shares information between related tasks to im-
prove the performance of each individual task.

3.1. Multi-Task Sparse Learning with Beta Process
Formulation

Let 𝒚 j ∈ Rmj , j = 1, ..., J represent a target sample with
the J tasks, where mj is the dimensionality of the jth modal-
ity of feature. Each vector 𝒚 j employs a dictionary matrix
Dj ∈ Rmj×K and is represented as

𝒚 j = Dj𝜽 j + 𝝐 j, j = 1, ..., J (2)

where 𝜽 j is the set of sparse transform coefficients and 𝝐 j

is a residual error vector associated with task j. 𝝐 j ∈ Rmj

is modeled as mj i.i.d. draws from a zero-mean Gaussian
distribution with an unknown precision α0 (variance 1/α0).

The feature representations 𝒚 j, j = 1, ..., J are extracted
from the same test video sequence, and Dj, j = 1, ..., J are
computed from the features of the same training videos.
Thus, the sparse coefficients 𝜽 j for different tasks j =

1, ..., J are related. Therefore, we impose that 𝜽 j ∈ RK

is sparse and 𝜽 j, j = 1, .., J are drawn from the common
prior. We set 𝜽 j = 𝒛 j�𝝎 j, where � represents element-wise
multiplication of two vectors, 𝒛 j is a binary vector defining
which members of the dictionary 𝒅 j,k are used to represent
the sample 𝒚 j, and 𝝎 j ∼ N(0, α−1IK) is a weight vector with
the precision α. 𝝎 j is introduced because the reconstruction
coefficients of the dictionary are not always binary.

We employ a Beta process to formulate the dictionary Dj

and the K-dimensional binary vector 𝒛 j. The stick-breaking
construction of a Beta process is represented as:

G(𝒙) =

K∑

k=1

πkδ𝒙k (𝒙)

πk ∼ Beta(a0/K, b0(K − 1)/K)

𝒙k ∼ G0 , (3)

where the 𝒙k is the atom distributed according to G0, and πk

is the ”stick-breaking weight” depending on the parameters
a0 and b0. For our problem, the candidate members 𝒅 j,k of
our dictionary Dj correspond to the atoms 𝒙k, and the kth
component of 𝒛 j is drawn z j,k ∼ Bernoulli(πk). Therefore,
the multi-task sparse representation model is expressed as:

𝒚 j | 𝜽 j, α0 ∼ N(Dj𝜽 j, α
−1
0 Imj ), j = 1, ..., J

Dj = [𝒅 j,1, ...,𝒅 j,K]

𝒅 j,k ∼ N(0,m−1
j Imj )

𝝐 j ∼ N(0, α−1
0 Imj )

𝜽 j = 𝒛 j � 𝝎 j

𝝎 j ∼ N(0, α−1IK)

𝒛 j | {πk}k=1,K ∼
K∏

k=1

Bernoulli(πk)

πk ∼ Beta(a0/K, b0(K − 1)/K)

α ∼ Γ(c0, d0)

α0 ∼ Γ(e0, f0) . (4)

Non-informative gamma hyper-priors are placed on α and
α0. With these parametric definitions, a graphical model of
multi-task sparse representation is illustrated in Figure 1. In
this framework, the data from all J tasks are used to jointly
infer the priors 𝝅, α, and α0. The constraint of joint spar-
sity across different tasks is valuable since different tasks
may favor different sparse reconstruction coefficients, yet
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the joint sparsity may enforce the robustness in coefficient
estimation. Besides, given the priors, each task is learned
independently. As a result, the estimation of a task is af-
fected by both its own training data and the other tasks via
the common priors.

The consecutive variables in the proposed model are in
the conjugate exponential family, and therefore the infer-
ence could be implemented via Gibbs sampling analysis.

3.2. Inference

In the proposed model, the variables D, Z, 𝝎, 𝝅, α, and
α0 need to be inferred given the training samples. Gibbs
sampling inference is used to update them iteratively. In
each step, one of the variables is sampled from its posterior
given all other variables and training samples.

In the beginning, we initialize all the variables. Except
the dictionary D, all the other variables are initialized ran-
domly. Let Dj denote the dictionary associated with the jth
task. We initialize Dj via K-SVD [15]. K-SVD is a method
to learn an over-complete dictionary for sparse representa-
tion. For every task and every action class, we obtain an
initial dictionary Dj,c of a large size Kc by K-SVD from the
training samples Xj,c, where Xj,c represents the training fea-
ture matrix associated with the cth class and the jth task.
Then, we obtain an initial dictionary Dj = [Dj,1, ...,Dj,C],
where

∑C
c=1 Kc = K is the total number of bases.

Let Y = [𝒚1, ...,𝒚J] be a sample associated with the J
task. The full likelihood of the proposed model is expressed
as

p(Y,D,Z,𝝎,𝝅, α, α0)

=

J∏

j=1

N(𝒚 j; Dj(𝒛 j � 𝝎 j), α
−1
0 Imj )N(𝝎 j; 0, α−1IK)

J∏

j=1

K∏

k=1

N(𝒅 j,k; 0,m−1
j Imj )Bernoulli(z j,k; πk)

K∏

k=1

Beta(πk; a0, b0)

Γ(α; c0, d0)Γ(α0; e0, f0) . (5)

This model yields a Gibbs sampling scheme for posterior
sampling given observations Y . The variables D, Z, 𝝎, 𝝅,
α, and α0 are sampled as follows.

A. Sampling Dj = [𝒅 j,1,𝒅 j,2, ...,𝒅 j,K]
The posterior probability of 𝒅 j,k is expressed as

p(𝒅 j,k | −) ∝ N(𝒚 j; Dj(𝒛 j � 𝝎 j), α
−1
0 Imj )N(𝒅 j,k; 0,m−1

j Imj )
(6)

B. Sampling 𝒛 j = [z j,1, z j,2, ..., z j,K]
Given the observed test data 𝒚 j, the likelihood function

for the variables 𝒛 j, 𝝎 j and α0 is expressed as

p(𝒚 j | 𝒛 j,𝝎 j, α0) = (2π/α0)−mj/2exp(−α0

2
‖𝒚 j−Dj(𝒛 j�𝝎 j)‖2

2)

(7)
By applying the Bayes’ rule, the posterior density function
on z j,k is as follow

p(z j,k | −) ∝ N(𝒚 j; Dj(𝒛 j � 𝝎 j), α
−1
0 Imj )Bernoulli(z j,k; πk)

(8)
C. Sampling 𝝎 j = [ω j,1, ω j,2, ..., ω j,K]
The posterior density function on ω j,k is as follow

p(ω j,k | −) ∝ N(𝒚 j; Dj(𝒛 j � 𝝎 j), α
−1
0 Imj )N(𝝎 j; 0, α−1IK)

(9)
D. Sampling πk

The posterior density function on πk is as follow

p(πk | −) ∝ Beta(πk; a0, b0)
J∏

j=1

Bernoulli(z j,k; πk) (10)

E. Sampling α
The posterior density function on α is as follow

p(α | −) ∝ Γ(α; c0, d0)
J∏

j=1

N(𝝎 j; 0, α−1IK) (11)

F. Sampling α0

The posterior density function on α0 is as follow

p(α0 | −) ∝ Γ(α0; e0, f0)
J∏

j=1

N(𝒚 j; Dj(𝒛 j � 𝝎 j), α
−1
0 Imj )

(12)

3.3. Classification Rule

Ideally, if a test sample belongs to action class c, the non-
zero components in the estimated coefficient vector 𝜽 j will
be associated with multiple columns of D̂ j,c from individual
action class c. Here, D̂ j,c is a more compact and discrimina-
tive dictionary learned by the above MTSL model from the
initial Dj,c. Therefore, we classify 𝒚 j based on how well 𝒚 j

is reproduced by the coefficients associated with the learned
dictionary of each individual class. For each task j, we de-
fine

𝜽 j = [θ̂ j,1, ..., θ̂ j,K1 , ..., θ̂ j,
∑C−1

c=1 Kc+1, ..., θ̂ j,K]

= [𝜽1
j , ...,𝜽

C
j ] . (13)

Using the coefficients 𝜽c
j associated with the action class c,

the jth modality 𝒚 j of a test sample is reproduced as 𝒚 j =

D̂ j,c𝜽
c
j . Then, we classify the test sample to belong to the

class with the lowest total reconstruction error accumulated
over all the J tasks:

c∗ = arg min
c

J∑

j=1

∥∥∥𝒚 j − D̂ j,c𝜽
c
j

∥∥∥2
2
. (14)
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Figure 2. Sample frames from video sequences of the KTH dataset(top), and the UCF sports dataset (bottom).

Algorithm 1 : Multi-Task Sparse Learning for Action
Recognition

Dictionary Learning Phase:
Input: training samples of jth task and cth class Xj,c

hyper-parameters a0, b0, c0, d0, e0, f0
1.initialize dictionary Dj,c via the K-SVD of Xj,c

2.Xj,c = Dj,c𝜽 j,c + 𝝐 j,c, j = 1, ..., J
3.for iteration

sample 𝒅 j,k

sample 𝒛 j,𝝎 j, πk

sample α, α0

end iteration
Output: D̂ j = [D̂ j,1, ..., D̂ j,C], j = 1, ..., J.

Classification Phase:
Input:D̂ j,𝒚 j

1. 𝒚 j = D̂ j𝜽 j + 𝝐 j, j = 1, ..., J
2.for iteration

sample 𝒛 j,𝝎 j

end iteration
3. compute 𝜽 j = 𝒛 j � 𝝎 j

4. compute the label c∗ via Eq.(14).
Output: label c∗

Algorithm 1 summaries the details of the optimization
and classification procedure of our multi-task sparse learn-
ing model for classification. In the dictionary learning
phase, we first obtain an initial dictionary via K-SVD for
every task and every action class. Then the proposed MTSL
method is used to obtain a compact and discriminative dic-
tionary from the initial dictionary by Gibbs sampling. In the
classification phase, the sparse representation of a test sam-
ple is achieved by the MTSL model based on the learned
dictionary. At last, the test video is classified by Eq.(14).

4. Experiments

We tested our approach on three human action datasets:
the KTH [17] and UCF sports [18]. Several samples from
these three datasets are shown in Figure 2. We first ex-
tracted two features (histogram, and co-occurrence) on ev-
ery dataset. For the histogram feature and the co-occurrence

feature, we fix the number of visual words in the vocabu-
lary of 3D SIFT descriptors to 500 on every dataset. For
the Gamma prior on the sparse common prior α ,we set
c0 = d0 = 0 as a default choice which avoids subjec-
tive choice and leads to computational simplifications. For
the Gamma prior on the noise precision α0, we also let
e0 = f0 = 0 as a default choice [9].

The KTH video database contains six types of human
actions (walking, jogging, running, boxing, hand wav-
ing and hand clapping) performed by 25 subjects in four
different scenarios. There are totally 599 sequences in
the dataset. We performed leave-one-person-out cross-
validation to make the performance evaluation. In each run,
24 actors’ videos are used as the training set and the remain-
ing one person’s videos as the test set. The final results are
the average of 25 times runs.

The UCF sports dataset consists of 150 action videos
including 10 sport actions, diving, golf swinging, kicking,
weightlifting, horseback riding, running, skating, swinging
bench, swinging from side angle and walking. It collects a
natural pool of actions featured in a wide range of scenes
and viewpoints, and in unconstrained environments. The
UCF sports database was tested in a leave-one-out manner,
cycling each example in as a test video one at a time, fol-
lowing [18] [24] [22].

4.1. Evaluation of the Proposed Method

In order to evaluate the overall performances of our pro-
posed algorithms, we performed two groups of comparison
experiments: single feature based methods and feature com-
bination methods. In the first group, the proposed MTSL
method handled one single feature by setting the number of
tasks J = 1, and it is symbolized by ”Our-ST” in Tables 1,
and 2. We compared it with other three methods:

• The SVM method in which the χ2 distances between
histogram features or co-ocurrent features are incor-
porated into the radial basis function as the kernel of
SVM classifier.

• Sparse representation classification based on the l1 reg-
ularization, symbolized by ”L1-SRC” in the tables.
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Table 1. The comparison accuracy (%) performance of single fea-
tures and feature combination methods on the KTH dataset.

Features SVM L1-SRC L1SRC-DL Our-ST

Histogram 88.89 82.29 94.44 95.14
Occurrence 90.63 74.65 90.70 90.70

Actions CF-SVM ST-SRC Our-MTSL

boxing 97.92 97.92 98.96
hand clapping 98.96 100 100
hand waving 94.79 97.92 100

jogging 85.42 91.67 89.58
running 86.46 90.63 93.75
walking 97.92 98.96 100
Average 93.58 96.18 97.05

(a) Single features

(b) Feature combination methods

Table 2. The comparison accuracy (%) performance of single fea-
tures and feature combination methods on the UCF sports dataset.

Features SVM L1SRC-DL Our-ST

Histogram 80.67 90.67 90.67
Occurrence 83.3 85.33 85.33

Actions CF-SVM ST-SRC Our-MTSL

diving 92.86 100 100
golf swinging 89.89 61.11 77.78

kicking 100 90 85
weight lifting 100 100 100

horseback riding 66.67 91.67 100
running 61.54 92.31 92.31
skating 66.67 91.67 91.67

swinging bench 95 100 100
swinging from side 84.62 100 100

walking 86.36 90.91 90.91
Average 85.33 90.67 92.67

(a) Single features

(b) Feature combination methods

The bases of dictionary are composed by training sam-
ples.

• The l1 regularization based sparse representation clas-
sification. However, the dictionary is learned by the
proposed Beta process formulation as summarized in
Algorithm 1. This method is symbolized by ”L1SRC-
DL” in the tables.

In the second group, we compared the propose Multi-
Task Sparse Learning method(MTSL) with other three fu-
sion methods:

• Feature combination based on concatenating all the
features into a long feature vector. The SVM classi-

Table 3. Comparison of our approach with state-of-the-art ap-
proaches on the KTH and UCF sports datasets.

Years KTH UCF

Yeffet et al. [22] 2009 90.1 79.2
Wang et al. [23] 2009 92.1 85.6

Kovashka et al. [24] 2010 94.53 87.27
Le et al. [25] 2011 93.9 86.5

Wang et al. [16] 2011 94.2 88.2
OHara et al. [20] 2012 97.9 91.32
Wang et al. [21] 2012 79.8 -
Raptis et al. [19] 2012 - 79.4

Our approach 97.05 92.67

fication method is employed on the resulting long fea-
ture vector. This method is symbolized by ”CF-SVM”
in the tables.

• Feature combination based on concatenating all the
features into a long feature vector. Moreover, our
sparse representation classification under J = 1 was
performed on the resulting long feature vector. This
method is symbolized by ”CF-SRC” in the tables.

• Feature combination based on independent single task
sparse representation. This method can be viewed as
a simplification of our method without enforcing the
joint sparsity across tasks. For each feature, we still
employed the same non-parameter Bayesian to solve
the single task sparse representation. The final classi-
fication is based on the accumulation of all the single
task sparse representation. This method is symbolized
by ”ST-SRC” in the tables.

On the two datasets, we performed the two groups of
comparison experiments as mentioned above. Accuracies
from our proposed method with other methods for single
features and feature combination on the KTH dataset are
listed in Table 1. Table 1(a) shows the results on single
features. It is observed that the l1 regularized sparse repre-
sentation method ”L1-SRC” performs worse than SVM on
both features, but ”L1-SRC” combined with our dictionary
learning method, namely ”L1SRC-DL”, high improves the
performance and achieves better results than SVM. It proves
that our dictionary learning method can obtain a more dis-
criminate dictionary to improve the performance. The fea-
ture combination results are listed in Table 1(b), from which
we can see that all feature combination methods improve
the recognition accuracy and our approach achieves the best
results. Our approach achieves the best recognition per-
formances for five actions of six on the KTH dataset, and
its average accuracy is 3.45% higher than the feature-level
combination method ”CF-SVM”. It is also better than ”ST-
SRC”, which demonstrates that multi-task sparse represen-
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tation by considering joint sparsity improves the perfor-
mance compared with the single task sparse representation.

Table 2 lists the accuracies of our proposed method com-
pared with other methods on the UCF sports dataset. In Ta-
ble 2(a), our method and the l1 sparse representation classi-
fication combined with dictionary learning all outperform
the SVM classifier method. It sufficiently demonstrates
the effectiveness of our classification method and dictio-
nary learning method. As listed in Table 2(b), our method
achieves 92.67% accuracy, and best results on eight actions
of total ten ones on the UCF sports dataset.

4.2. Comparison to the State of the Art

Table 3 compares our results to the state-of-the-art meth-
ods on the KTH and UCF sports datasets. We achieved
97.05% which is comparable to the state of the art, i.e.,
97.9% [20]. We report 92.67% on the UCF sports dataset
which is an improvement of 1.35% over [20].

5. Conclusion

In this paper we have presented a new multi-task sparse
learning algorithm with a non-parametric Beyesian hierar-
chy for visual feature combination. It has shown the follow-
ing properties. (i) By Beta process formulation, the vector
of reconstruction coefficients is sparse; this imposition of
sparseness is distinct from the widely used l1 regularized
sparseness, in which many coefficients are small but not ex-
actly zero. (ii) In this framework, the data from all tasks
are used to jointly infer the priors; given the priors, individ-
ual task is learned independently; the estimation of a task
is affected by both its own training data and the other tasks
via the common priors. (iii) In terms of the non-informative
gamma hyper-priors, the sparsity level is totally decided on
the data; while in the l1 regularized sparse representation the
stopping criteria is defined by assuming the reconstructed
residual error or the sparsity level. Experimental results on
the KTH and UCF sports datasets have demonstrated that
the proposed multi-task sparse learning method is an effec-
tive and efficient way to fuse the complementary features
for improving the overall classification performance.
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