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Abstract

Recently, groupwise registration has been investigated
for simultaneous alignment of all images without selecting
any individual image as the template, thus avoiding the po-
tential bias in image registration. However, none of cur-
rent groupwise registration method fully utilizes the image
distribution to guide the registration. Thus, the registra-
tion performance usually suffers from large inter-subject
variations across individual images. To solve this issue,
we propose a novel groupwise registration algorithm for
large population dataset, guided by the image distribution
on the manifold. Specifically, we first use a graph to mod-
el the distribution of all image data sitting on the image
manifold, with each node representing an image and each
edge representing the geodesic pathway between two nodes
(or images). Then, the procedure of warping all images to
their population center turns to the dynamic shrinking of the
graph nodes along their graph edges until all graph nodes
become close to each other. Thus, the topology of image dis-
tribution on the image manifold is always preserved during
the groupwise registration. More importantly, by modeling
the distribution of all images via a graph, we can poten-
tially reduce registration error since every time each image
is warped only according to its nearby images with similar
structures in the graph. We have evaluated our proposed
groupwise registration method on both synthetic and real
datasets, with comparison to the two state-of-the-art group-
wise registration methods. All experimental results show
that our proposed method achieves the best performance in
terms of registration accuracy and robustness.

1. Introduction
In recent years, groupwise registration emerges as a new

image normalization technique to simultaneously align a

number of images to the latent population center. Since

groupwise registration is able to avoid the bias in specifying

reference image during registration, it has wide application-

s in both computer vision and medical imaging areas. For

example, more reasonable appearance model of human face

has been constructed in [2, 3] by jointly detecting the cor-

respondences among 293 2D face images. Also, in many

neuroscience studies, a large population of images is re-

quired to be normalized to the population center for better

delineating the structural/functional difference due to brain

development, aging and dementia [5, 14, 18].

Although a number of groupwise registration algorithms

have been proposed [4–9, 11–13, 16, 17, 19], most of exist-

ing methods have the limitation of assuming only one center

for a group of images, which prohibits further application

on large complex population dataset. For example, studies

on Alzheimer’s disease usually need to register hundreds

of brain images. However, due to considerable inter-subject

variations, the group mean by simple average [12] is usually

very fuzzy (due to the loss of anatomical details), especially

when all images are far from being well registered. Then,

taking the fuzzy group mean as the reference to guide the

entire groupwise registration with clear individual images

will eventually undermine the overall registration accura-

cy. More advanced weighting strategies, e.g., geometric

mean [6] and sharp mean [17], have been proposed to ad-

dress this issue, however, each image is independently reg-

istered to the population center without coordinating with

its neighboring images on the image manifold. Intuitive-

ly, given the knowledge of image distribution (the locations

of all image on a high-dimensional manifold), each image,

even currently faraway from the population center, can bet-

ter warp to the center through a deformation pathway which

is relayed by a sequence of similar images, instead of being

directly registered with the fuzzy group mean image.

In CVPR 2010, two groupwise registration papers [11,

19] proposed the similar idea to register all images by con-

sidering nearest neighboring images. However, only the

topology of the local distribution at each image has been

taken into account. Taking ABSORB algorithm [11] as ex-

ample, each image is deformed locally w.r.t. its neighbors

where all images are organized by a minimum spanning
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tree. To guide moving all images towards the global cen-

ter, the group mean image obtained by simple averaging is

still used in ABSORB, because of the lack of knowledge of

entire image distribution.

To deal with groupwise registration on large population

dataset [5, 7], Wang et al. proposed a hierarchical registra-

tion framework to cluster images into a pyramid of class-

es [16]. Then, intra-class registration is performed to reg-

ister all (similar) images within each class for generating

the representative center image. The center images of all

classes are further registered from the bottom to the top in

the pyramid, until all images are registered. Therefore, this

groupwise registration framework can efficiently register a

large image data set with relatively better registration per-

formance by addressing the challenges of registering two

images with large anatomical differences.

Inspired by this ideal of hierarchical pyramid, we in-

troduce the concept of graph into the groupwise registra-

tion, and then formulate the procedure of agglomerating all

images into the common space as a dynamic evolution of

graph shrinkage. Specifically, we consider each image as a

node in the graph with each edge representing the geodesic

pathway between the two nodes. Thus, the objective of our

method becomes to shrink the graph by preserving its topol-

ogy, until all nodes become close to each other. During

graph shrinking, each image (or node in graph) is driven

by the average velocities from its connected images (or n-

odes) in the graph, and warped along the geodesic on the

image manifold. Since all images (or nodes) are warped si-

multaneously towards the center of graph, our method can

achieve unbias in the registration.

Although ABSORB deforms each image locally w.r.t. it-

s neighbors in the learned image manifold, our method has

several advantages. (1) Our method is able to preserve the

entire distribution of images, while ABSORB is only able

to maintain the local distribution. (2) ABSORB still needs

to estimate a tentative group-mean image for ensuring that

each individual image is warped towards the group center,

while our method completely avoids this step, thus intro-

ducing no bias. (3) ABSORB simply averages the defor-

mations w.r.t. the neighboring images to warp each individ-

ual image, where the averaged deformation could be non-

invertible. On the contrary, we address this limitation by

employing diffeomorphism in our graph shrinkage proce-

dure.

2. Methods

2.1. Background

Let {Ii}Ni=1 be a group of N subject images to be regis-

tered. They are assumed to be sitting on the image manifold

M. In the groupwise registration method proposed by Joshi

et al. [12], the population center is modeled as the Karcher

mean Ic under an H1 (Sobolev) metric, as described below:

Ic = arg min
I∈M

N∑
i=1

d2(Ii, I), (1)

where d(·, ·) is the geodesic distance between two images

on M. For instance, d is defined as an H1 metric in [12]

and a metamorphosis metric in [6]. Eq. (1) describes that

the group-mean image is a point on the manifold which has

the close distance to all subject images (See Fig. 1.).

Image Manifold 

I2 

I3 

d(I1 ; I)

d(I2 ; I)
d(I3 ; I)

d(IN 1; I)

d(IN ; I)

?

Geodesic 

Figure 1. Karcher mean of N images on the image manifold.

For any pair of images Ii, Ij ∈ M, their geodesic dis-

tance d(Ii, Ij) is given as:

d(Ii, Ij) =

∫ 1

0

‖γ̇ij(s)‖ds =

∫ 1

0

‖vsi,j‖ds, (2)

where vsi,j is the velocity vector (or tangent vector in [10])

on the geodesic γij(s), with γij(0) = Ii and γij(1) = Ij .
The superscript s is the arc length parameter. Accord-

ing to the definition in [10], geodesic on manifold is a

curve parameterized with constant velocity, i.e., ‖vsi,j‖ =

‖v0i,j‖,∀s ∈ [0, 1]. Hence, Eq. (2) turns to

d(Ii, Ij) = ‖v0i,j‖, (3)

by substituting vsi,j with v0i,j in Eq. (2). This indicates that

the magnitude of the geodesic pathway from Ii to Ij even-

tually equals the length of the velocity vector at the initial

point Ii (s = 0). For convenience, in the following, we

omit the superscript ‘0’ in v0i,j and use vi,j to represent the

constant velocity vector of the geodesic from Ii to Ij .

2.2. Energy Function of Graph Shrinkage Model

The goal of groupwise registration is to simultaneously

register all subject images to the population center. Here we

assume the deforming of each individual image as a dynam-

ic procedure of time variable t. Thus, Ii(t) can be used to

represent the deformed image Ii at time t. When t approach

infinite (i.e., in the end of groupwise registration), the over-

all distance F (t) between all pairs of the deformed images

should be as small as possible:

F (t) =
N∑

i,j=1

d2(Ii(t), Ij(t)) =
N∑

i,j=1

‖vi,j(t)‖2, (4)
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where vi,j(t) denotes the constant velocity vector from im-

age Ii(t) to image Ij(t) at time t.
In general, deformable image registration will be per-

formed to estimate each velocity vector vi,j(t) and further

calculate the deformation pathway between Ii(t) and Ij(t)
by exp(vi,j(t)), where exp is the exponential map [10].

Since it is challenging to register two images with large

anatomical differences, minimizing F (t) by considering the

registration of all possible pairs of images might undermine

the overall registration performance. Inspired by the AB-

SORB method, it is reasonable to consider the registration

only between the two images with similar anatomical struc-

tures. Therefore, we introduce the variable eij to indicate

whether images Ii(t) and Ij(t) are similar enough (eij = 1)

or not (eij = 0). Thus, the weighted distance F (t) in Eq.

(4) can be rewritten as:

F (t) =

N∑
i,j=1

eij‖vi,j(t)‖2. (5)

Next, we use a graph defined on the image manifold to

interpret F (t) in Eq. (5). Let I(t) = {Ii(t)}Ni=1 be the

graph node and E = {eij : i, j = 1, · · · , N} be the set

of edges between two nodes in the graph. eij = 1 repre-

sents a link between Ii(t) and Ij(t). Otherwise, there is no

direct link between Ii(t) and Ij(t) in the graph. Also, we

define a weighted adjacency matrix V (t) = (exp(vi,j(t)))
as the velocity field from Ii(t) to Ij(t), which is used to de-

scribe the similarity of two images. Since we do not allow

self-loop in the graph, we further define ei,i(t) = 0 for all

i ∈ {1, · · · , N}. Then, the graph in our application can be

defined as G(t) = (I(t), E, V (t)). Since G(t) is an undi-

rected graph, V (t) is a symmetric matrix.

5 ( )I t
1( )I t

2 ( )I t

4 ( )I t
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image at t

1( )I t t
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3( )I t t
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i

I t ( )
i
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Figure 2. Demonstration of our proposed groupwise registration

by graph shrinkage.

The principle behind F (t) in Eq. (5) is demonstrated in

Fig. 2. First, all images are assumed to be sitting in a high-

dimensional manifold. Then, the topology of their distribu-

tion can be described by a graph, where the graph edges de-

note the local connections between graph nodes. Specifical-

ly, the velocity vector vi,j(t) is associated with each graph

edge, where the integration along vi,j(t) forms the geodesic

distance from Ii(t) to Ij(t). Thus, the minimization of F (t)
can be regarded as a dynamic graph shrinkage procedure,

which deforms each image from Ii(t) to Ii(t + Δt) with

the decreased overall geodesic distance, while keeping the

topology of the entire graph. As shown in Fig. 2, all the

images (in blue dots) at time t are the nodes in the graph

where the graph edges are denoted by the red solid curves.

At time t+Δt, each node Ii(t) is deformed to its next posi-

tion Ii(t + Δt) (in purple dots) on the manifold. The graph

G(t+ Δt) (in purple dots and green curves) keeps the same

topology with G(t) (in blue dots and red curves). As time t
increases, all Ii(t)s are supposed to meet at the population

center in the end of groupwise registration.

Obviously, the key steps in our method are (1) construct-

ing the graph on the image manifold and (2) deforming im-

age Ii(t) toward the hidden population center at time t. We

will explain these two steps next.

2.3. Graph Construction

In the beginning of groupwise registration (t = 0), an

N × N distance matrix can be calculated with each ele-

ment corresponding to the geodesic distance d(Ii(0), Ij(0))
between two images Ii(0) and Ij(0), where the geodesic

distance can be estimated through the Log-Demons method

[15]. The naı̈ve solution for graph construction is to set a

threshold h and then remove elements with geodesic dis-

tances higher than the threshold h, i.e.,

eij =

{
1, d(Ii(0), Ij(0)) < h
0, otherwise

(6)

Here, we go one step further to adaptively construct the

graph according to the distribution of images. Specifically,

two criteria are used to construct the graph: (C1) for any two

nodes in the graph, there should be at least one path con-

necting these two nodes; (C2) the number of graph edges

should be as low as possible, for saving the computational

cost during the groupwise registration.

Accordingly, we propose a line-search-based method to

determine the optimal threshold h. Given the geodesic dis-

tance between any two images Ii(0) and Ij(0), we set the

search range within the low bound bL = 0 and the upper

bound bH = maxi,j d(Ii(0), Ij(0)). The optimal threshold

h is updated as h = bL + λ(bH − bL), where λ ∈ (0, 1)
is a scalar specifying the step size in line search. Then, if

the tentatively constructed graph satisfies the criterion (C1),

the upper bound bH will be decreased to h; otherwise, the

low bound bL will be increased to h. We repeat these steps

until the low bound bL meets the upper bound bH . Given

the optimal h, the graph can be constructed by Eq. (6) to

guide the groupwise registration as described below.

2.4. Graph Shrinkage

As we formulate the problem of groupwise registration

as the dynamic shrinkage of graph, it is critical to deter-

mine the deformation of each image Ii(t) at time t, which
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can consistently minimize F (t) in Eq. (5) during the graph

shrinking. To solve this minimization problem, we propose

a descent method as detailed below.

Suppose each image has been deformed from Ii(0) to

Ii(t) (at time t). It is natural to move Ii(t) along the average

velocity direction on the manifold according to its connect-

ed images in the graph G(t). Since the velocity vector sits

on the tangent space of Ii(t) on the manifold M, it can be

efficiently calculated by linear averaging as below:

v̂i(t) =
1

Ni

N∑
j=1

eijvi,j(t), (7)

where Ni =
∑N

j=1 eij is the number of connections for

Ii(t) in the graph. It is worth noting that we use Log-

Demons [15] to estimate the velocity vector vi,j(t) between

Ii(t) and Ij(t). The geodesic from Ii(t) to Ij(t) can be

calculated by the exponential mapping from the vector s-

pace of stationary velocity field to diffeomorphism, i.e.,

exp(vi,j(t)).

Given a time increment Δt, image Ii(t) is deformed to

Ii(t + Δt) along the geodesic exp(v̂i(t) · Δt), where the

velocity direction is steered by v̂i(t) (Eq. (7)) and the step

size is determined by Δt. We will explain the calculation

of optimal Δt later. As shown in Fig. 3, the geodesics from

Ii(t) to Ii(t+ Δt), Ii(t+ Δt) to Ij(t+ Δt), Ij(t+ Δt) to

Ij(t), and Ij(t) to Ii(t) form a closed loop, given as:

exp(vi,j(t + Δt)) = exp(−v̂i(t) ·Δt) ◦ exp(vi,j(t))

◦ exp(v̂j(t) ·Δt), (8)

where ‘◦’ denotes the composition of two geodesics1. If

Δt is small enough, the velocity vector vi,j(t + Δt) can be

approximated by applying Baker-Campbell-Hausdorff for-

mula on Eq. (8) as:

vi,j(t + Δt) = −v̂i(t) ·Δt + vi,j(t)

+τji(v̂j(t)) ·Δt + o(v̂i(t) ·Δt), (9)

where τji : TIjM �→ TIiM denotes the linearization of

the left translation from Ij(t) to Ii(t), as shown in Fig. 3.

Thanks to the left-invariant structure of the diffeomorphism

group, we have the left invariant metric on this manifold.

That is, 〈τji(v̂j(t)), τji(v̂j(t))〉 = 〈v̂j(t), v̂j(t)〉.
Then, we have the following convergence theorem to

prove that F (t) is a monotonously decreasing function of

time t along the velocity direction defined in Eq. (7).

Theorem 1 The velocity fields defined in (7) make the ob-
jective function F (t) strictly and monotonously decreasing.

1Here, we follow the definition of composition in [1]
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Figure 3. Demonstration of the translation of a vector, and rela-

tionship between the current and next images.

Proof: We directly calculate the derivative of the objective

function (5) with respect to any fixed time variable t by

F ′(t) = lim
Δt→0

ΔF (t; Δt)

Δt
, (10)

where

ΔF (t; Δt) = F (t + Δt)− F (t) (11)

=

N∑
i,j=1

eij(〈vi,j(t + Δt), vi,j(t + Δt)〉

−〈vi,j(t), vi,j(t)〉). (12)

Substituting Eq. (9) to above equation, we have

ΔF (t; Δt) = −2Δt

N∑
i,j=1

eij〈vi,j(t), v̂i(t)− τji(v̂j(t))〉
︸ ︷︷ ︸

(I)

+Δt2
N∑

i,j=1

eij〈v̂i(t)− τji(v̂j(t)), v̂i(t)− τji(v̂j(t))〉
︸ ︷︷ ︸

(II)

+o(Δt2‖v̂i(t)‖2), (13)

where terms (I) and (II) are directly calculated with Eq. (7)
as follows.

(I) =
N∑
i=1

〈
N∑

j=1

eijvi,j(t), v̂i(t)〉 −

N∑
j=1

〈
N∑
i=1

eijτij(vi,j(t)), v̂j(t)〉 (14)

=

N∑
i=1

Ni‖v̂i(t)‖2 +
N∑

j=1

〈
N∑
i=1

ejivj,i(t), v̂j(t)〉 (15)

= 2

N∑
i=1

Ni‖v̂i(t)‖2, (16)

and

(II) =

N∑
i,j=1

eij‖v̂i(t)‖2 +
N∑

i,j=1

eij‖v̂j(t)‖2 −

2

N∑
i,j=1

eij〈v̂i(t), τji(v̂j(t))〉 (17)
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= 2

N∑
i=1

Ni‖v̂i(t)‖2 − 2

N∑
i=1

〈v̂i(t),
N∑

j=1

eijτji(v̂j(t))〉 (18)

= 2

N∑
i=1

(Ni + 1)‖v̂i(t)‖2. (19)

Therefore,

ΔF (t; Δt) = −4

(
N∑
i=1

Ni‖v̂i(t)‖2
)
·Δt + 2

(
N∑
i=1

(Ni + 1)‖v̂i(t)‖2
)
·Δt2 + o(Δt2‖v̂i(t)‖2). (20)

Obvious, F ′(t) = −4
(∑N

i=1Ni‖v̂i(t)‖2
)

is always neg-

ative for all t > 0. Therefore, the objective function (5)

is always strictly and monotonously decreasing when t in-

creases to infinity. With the lower bound of F (t) being 0,

the proposed algorithm is convergent. �

2.5. Numerical Implementation

By Theorem 1, it is clear that the velocity vector de-

fined by Eq. (7) makes the objective function (5) decreas-

ing at any time t. To implement this minimization pro-

cedure, a numerical iterative process should be construct-

ed. First, we discretize the continuous time t (t ≥ 0) in-

to tk(k = 1, 2, · · · ). Then, we calculate the velocity vec-

tors v̂ki := v̂i(t
k), (i = 1, · · · , N) by Eq. (7). Nex-

t, along these velocity vectors, a stepsize Δtk should be

determined. According to the convergent condition of the

Taylor series of exponential map which makes the approx-

imation (9) held, there should be Δtk · ‖v̂ki ‖ < 1 for

all i = 1, · · · , N , and therefore Δtk < 1/maxi ‖v̂ki ‖.
Under this condition, the increment ΔF (tk; Δt) :=∑N

i,j=1 eij
(‖vi,j(tk + Δt)‖2 − ‖vi,j(tk)‖2) can be ap-

proximated by a positive definite quadratic function of Δt.
Then, to accelerate the algorithm, Δtk can be selected to

make the increment ΔF (tk; Δt) decreased as large as pos-

sible. Thus, it is straightforward to determine the optimal

value of Δt by

Δtk =

∑N
i=1Ni‖v̂ki ‖2∑N

i=1(Ni + 1)‖v̂ki ‖2
. (21)

Especially, when the graph is fully connected, i.e. Ni ≡
N − 1, i = 1, · · · , N , we have

Δtk ≡ N − 1

N
. (22)

This is consistent with Theorem 3.1 in [13] which deforms

one image w.r.t. all other images during groupwise registra-

tion. In general, the kth stepsize Δtk is selected by

Δtk = min

{
1

maxi ‖v̂ki ‖
,

∑N
i=1Ni‖v̂ki ‖2∑N

i=1(Ni + 1)‖v̂ki ‖2

}
. (23)

2.6. Summary

In our groupwise registration method, we first use graph

to model the distribution of all images on the manifold.

Then, the groupwise registration is formulated as the

graph shrinking procedure, where each image in the graph

deforms along the graph edge on the manifold. Our whole

method is summarized below.

Algorithm 1. Graph Shrinking Algorithm

Input: N affine aligned subjects {Ii}Ni=1.

Output: The deformation pathway from Ii to

the population center Îc.
Initialization: Generate the graph section 2.3, giv-

en precision ε > 0; Let I0i = Ii,
i = 1, · · · , N and set k = 0.

Repeat: (Graph shrinking)

Do i
Do j

If eij = 1, estimate the velocity vki,j by

the Log-Demons algorithm [15];

End
Compute v̂ki by (7), and estimate the

step-size Δtk by (23). Then, Update

the warped image Ik+1
i ;

End
k ⇐ k + 1;

Until: Convergence and output the deformation field

from each Ii to the population center Îc by exp(Δtkv̂ki )◦
· · · ◦ exp(Δt0v̂0i ).

3. Experimental Results
In this section, we evaluate the registration performance

of our proposed groupwise registration method on both syn-

thetic and real datasets of infant brain images. For the sake

of comparison, we also apply the group-mean registration

method [12] and the ABSORB method [11] in our experi-

ments2.

3.1. Groupwise Registration on Synthetic Dataset

In this part, we first simulate the synthetic dataset that

contains 61 2D images (sized 256× 256) as follows. From

the baseline image (indicated by the blue box in Fig. 4(a)),

three different subsets of images are generated with each

subset having 20 images, respectively. These three subset-

s have unique evolving patterns of folds. Typical images

shown in Fig. 4(a) illustrate the 1, 2, and 3 folds in individ-

ual subsets. There are thus totally 61 (20×3 + 1) images in

the dataset. We project all images to a 2-dimensional space

by performing PCA (Principal Component Analysis), and

2The softwares of group-mean and ABSORB were download-

ed at GLIRT (http://www.nitrc.org/projects/glirt/) and ABSORB

(http://www.nitrc.org/projects/absorb/), respectively.
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(a) Original images

      Original data 

      Registered data 

(b) Registered by the group-mean method

      Original data 

      Registered data 

(c) Registered by ABSORB

      Original data 

      Data at iteration 2 

(d) Distribution at iter. #2 by our method

      Original data 

      Data at iteration 5 

(e) Distribution at iter. #5 by our method

      Original data 

      Registered data 

(f) Registration result by our method

Figure 4. The distributions of original images and registered images in the projected 2D space.

(a) (b) (c) (d) (e) (f) (g)

Figure 5. Ground truth and mean images by three method along with their residual errors. (a) is the ground truth, (b) (d) and (f) are the

mean images by group-mean method, ABSORB and our method, respectively, and (c) (e) and (g) are the corresponding average residuals.

the distribution of images is shown in Fig. 4(a) where the

solid circles indicate the accompanying images and the blue

box indicates the baseline image, respectively.

After performing the groupwise registration with the

group-mean method, ABSORB and our proposed method,

we can obtain the final distributions of all registered im-

ages in the projected PCA space. The registered images are

shown as red points in Fig. 4(b), (c) and (f) for the three

methods, respectively. Fig. 4 (d) and (e) show the data

distributions in the intermediate stages (i.e., after 2 itera-

tions and 5 iterations) of our method. It is clear that the re-

sults of ABSORB and our proposed method are better than

the group-mean method in that the estimated mean images

in Fig. 4(c) and (f) are closer to the baseline image. It

is also worth noting that the data distribution is gradually

shrinked in Fig. 4(d)-(f), while the topology is consistently

preserved. We compare the mean images in Fig. 5, with

Fig. 5(a) showing the ground truth mean image. Fig. 5(b),

(d) and (f) and Fig. 5 (c), (e) and (g) represent the estimated

mean images and the average residual errors of all regis-

tered images by three methods, respectively. It is clear that

our method achieves the best performance in terms of less

registration errors.

3.2. GroupwiseRegistration onLongitudinal Infant
Brains

The infant data used in this paper is a part of a large

ongoing study of early brain development in normal chil-

dren where T1-weighted MR brain images were collected

by using a 3T SIEMENS scanner. 160 sagittal slices were

obtained with parameters: TR=1900ms, TE=4.38ms, Flip

Angle = 7o. Data with motion artifacts was discarded and

a re-scan was made when possible. Totally 7 longitudinal

infant brains are used in this experiment, each with 6 time

points (0, 3, 6, 9, 12 and 18 months of ages). The image size

is 256×256×198 and the voxel resolution is 1×1×1mm3.

232623262328



Two longitudinal infant brains of two subjects at 6 different

times are displayed in Fig. 6.

month0            3            6       9       12   18           

subject

#1

#2

Figure 6. Representative longitudinal infant brains of 2 subjects at

different times

The 3D renderings of the average images of all regis-

tered infant brain images by the conventional group-mean

method, ABSORB, and our groupwise registration method

are shown in Fig. 7. Due to large anatomical variations and

particularly the dynamic intensity changes as shown in Fig.

6, it is difficult, especially in the beginning of groupwise

registration, to find a representative group-mean image that

well represents all infant brains. Therefore, the convention-

al group-mean method failed to align infant brains onto the

common space, as indicated by very fuzzy average image

shown in Fig. 7(a). Both ABSORB and our groupwise reg-

istration methods achieve more reasonable registration re-

sults than the convention group-mean method, since these

two methods take the advantages of detected data mani-

fold and consider registering only the similar images during

the iterative registration procedure. On the other hand, by

comparing the groupwise registration results of ABSORB

in Fig. 7(b) and our method in Fig. 7(c), our method outper-

forms ABSORB in terms of the sharpness of average image

and potentially the accuracy in registering each individual

image.

To quantitatively evaluate the registration accuracy, we

use the Dice ratio to measure the overlap degree between

ROI A and ROI B, given as:

Dice(A,B) = 2× |A ∩B|
|A|+ |B| , (24)

where | · | means the volume of the particular ROI. Since no

template image is selected as a reference for groupwise reg-

istration, we will construct a labeled image in the common

space by majority voting on ROIs of all registered images,

in order to use the Dice ratio to evaluate the registration

performance. Specifically, the Dice ratio of each ROI will

be computed between the (constructed) labeled image and

each registered individual image in the common space.

The Dice ratios on gray matter (GM), white matter

(WM), and cerebrospinal fluid (CSF) by the conventional

group-mean method, ABSORB, and our method are shown

in Table 1. It is clear that our method achieves the highest

Dice ratio compared to the other two groupwise registration

Table 1. Dice ratios of three brain tissues by three methods

WM GM CSF Overall

Group-mean method 71.28% 76.14% 57.71% 68.38%

ABSORB 72.51% 75.69% 59.05% 69.09%

Our method 73.98% 79.31% 60.39% 71.23%

methods, with overall 2.85% and 2.14% improvement, re-

spectively. Moreover, the iterative evolution of the Dice ra-

tio on GM, WM, and CSF during the groupwise registration

is shown in Fig. 8, with green, blue and red curves repre-

senting the results by the conventional group-mean method,

ABSORB, and our method, respectively. It can be observed

that, as the number of iterations increases, the Dice ratios

on all tissue types increase much more consistently in our

method than in ABSORB method. The main reason is that

ABSORB does not model the entire distribution of all im-

ages as we indicated before. Instead, in ABSORB, each

individual image only considers its neighboring similar im-

ages when deforming to the estimated population center,

which is not sufficient to preserve the topology of the en-

tire image distribution during the groupwise registration.

Therefore, it is difficult to guarantee that all the tentatively

deformed images converge to the population center, which

also explains why the curves of the Dice ratio by ABSORB

is not smooth as shown in Fig. 8.

4. Conclusion
In this paper, we have developed a novel groupwise reg-

istration by first introducing a concept of graph to model the

entire image distribution. Then, the procedure of groupwise

registration is formulated as the dynamic shrinkage of graph

on the manifold, which brings the advantage of preserving

the topology of the image distribution during the groupwise

registration. Our proposed method has been evaluated on

both synthetic data and real longitudinal infant brain data,

where our method achieves the best registration result in

comparison with the group-mean method and ABSORB.
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