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Abstract

Most existing bottom-up methods measure the fore-

ground saliency of a pixel or region based on its con-

trast within a local context or the entire image, whereas

a few methods focus on segmenting out background re-

gions and thereby salient objects. Instead of considering

the contrast between the salient objects and their surround-

ing regions, we consider both foreground and background

cues in a different way. We rank the similarity of the im-

age elements (pixels or regions) with foreground cues or

background cues via graph-based manifold ranking. The

saliency of the image elements is defined based on their rel-

evances to the given seeds or queries. We represent the

image as a close-loop graph with superpixels as nodes.

These nodes are ranked based on the similarity to back-

ground and foreground queries, based on affinity matrices.

Saliency detection is carried out in a two-stage scheme to

extract background regions and foreground salient objects

efficiently. Experimental results on two large benchmark

databases demonstrate the proposed method performs well

when against the state-of-the-art methods in terms of ac-

curacy and speed. We also create a more difficult bench-

mark database containing 5,172 images to test the proposed

saliency model and make this database publicly available

with this paper for further studies in the saliency field.

1. Introduction

The task of saliency detection is to identify the most im-

portant and informative part of a scene. It has been applied

to numerous vision problems including image segmenta-

tion [11], object recognition [28], image compression [16],

content based image retrieval [8], to name a few. Saliency

methods in general can be categorized as either bottom-up

or top-down approaches. Bottom-up methods [1, 2, 6, 7, 9–

12, 14, 15, 17, 21, 24, 25, 27, 32, 33, 37] are data-driven and

pre-attentive, while top-down methods [23, 36] are task-

driven that entails supervised learning with class labels. We

note that saliency models have been developed for eye fixa-

tion prediction [6, 14, 15, 17, 19, 25, 33] and salient object

detection [1, 2, 7, 9, 23, 24, 32]. The former focuses on

identifying a few human fixation locations on natural im-

ages, which is important for understanding human attention.

The latter is to accurately detect where the salient object

should be, which is useful for many high-level vision tasks.

In this paper, we focus on the bottom-up salient object de-

tection tasks.

Salient object detection algorithms usually generate

bounding boxes [7, 10], binary foreground and background

segmentation [12, 23, 24, 32], or saliency maps which in-

dicate the saliency likelihood of each pixel. Liu et al. [23]

propose a binary saliency estimation model by training a

conditional random field to combine a set of novel features.

Wang et al. [32] analyze multiple cues in a unified energy

minimization framework and use a graph-based saliency

model [14] to detect salient objects. In [24] Lu et al. de-

velop a hierarchical graph model and utilize concavity con-

text to compute weights between nodes, from which the

graph is bi-partitioned for salient object detection. On the

other hand, Achanta et al. [1] compute the saliency likeli-

hood of each pixel based on its color contrast to the entire

image. Cheng et al. [9] consider the global region con-

trast with respect to the entire image and spatial relation-

ships across the regions to extract saliency map. In [11]

Goferman et al. propose a context-aware saliency algo-

rithm to detect the image regions that represent the scene

based on four principles of human visual attention. The

contrast of the center and surround distribution of features

is computed based on the Kullback-Leibler divergence for

salient object detection [21]. Xie et al. [35] propose a novel

model for bottom-up saliency within the Bayesian frame-

work by exploiting low and mid level cues. Sun et al. [30]

improve the Xie’s model by introducing boundary and soft-

segmentation. Recently, Perazzi et al. [27] show that the

complete contrast and saliency estimation can be formu-

lated in a unified way using high-dimensional Gaussian fil-

ters. In this work, we generate a full-resolution saliency

map for each input image.

Most above-mentioned methods measure saliency by

measuring local center-surround contrast and rarity of fea-

tures over the entire image. In contrast, Gopalakrishnan et

al. [12] formulate the object detection problem as a binary

segmentation or labelling task on a graph. The most salient
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Figure 1. Diagram of our proposed model.

seed and several background seeds are identified by the be-

havior of random walks on a complete graph and a k-regular

graph. Then, a semi-supervised learning technique is used

to infer the binary labels of the unlabelled nodes. Recently,

a method that exploits background priors is proposed for

saliency detection [34]. The main observation is that the

distance between a pair of background regions is shorter

than that of a region from the salient object and a region

from the background. The node labelling task (either salient

object or background) is formulated as an energy minimiza-

tion problem based on this criteria.

We observe that background often presents local or

global appearance connectivity with each of four image

boundaries and foreground presents appearance coherence

and consistency. In this work, we exploit these cues to com-

pute pixel saliency based on the ranking of superpixels. For

each image, we construct a close-loop graph where each

node is a superpixel. We model saliency detection as a man-

ifold ranking problem and propose a two-stage scheme for

graph labelling. Figure 1 shows the main steps of the pro-

posed algorithm. In the first stage, we exploit the boundary

prior [13, 22] by using the nodes on each side of image as

labelled background queries. From each labelled result, we

compute the saliency of nodes based on their relevances (i.e,

ranking) to those queries as background labels. The four la-

belled maps are then integrated to generate a saliency map.

In the second stage, we apply binary segmentation on the

resulted saliency map from the first stage, and take the la-

belled foreground nodes as salient queries. The saliency of

each node is computed based on its relevance to foreground

queries for the final map.

To fully capture intrinsic graph structure information and

incorporate local grouping cues in graph labelling, we use

manifold ranking techniques to learn a ranking function,

which is essential to learn an optimal affinity matrix [20].

Different from [12], the proposed saliency detection algo-

rithm with manifold ranking requires only seeds from one

class, which are initialized with either the boundary pri-

ors or foreground cues. The boundary priors are proposed

inspired on the recent works of human fixations on im-

ages [31], which shows that humans tend to gaze at the cen-

ter of images. These priors have also been used in image

segmentation and related problems [13, 22, 34]. In con-

trast, the semi-supervised method [12] requires both back-

ground and salient seeds, and generates a binary segmen-

tation. Furthermore, it is difficult to determine the number

and locations of salient seeds as they are generated by ran-

dom walks, especially for the scenes with different salient

objects. This is a known problem with graph labelling

where the results are sensitive to the selected seeds. In this

work, all the background and foreground seeds can be easily

generated via background priors and ranking background

queries (or seeds). As our model incorporates local group-

ing cues extracted from the entire image, the proposed algo-

rithm generates well-defined boundaries of salient objects

and uniformly highlights the whole salient regions. Exper-

imental results using large benchmark data sets show that

the proposed algorithm performs efficiently and favorably

against the state-of-the-art saliency detection methods.

2. Graph-Based Manifold Ranking

The graph-based ranking problem is described as fol-

lows: given a node as a query, the remaining nodes are

ranked based on their relevances to the given query. The

goal is to learn a ranking function, which defines the rele-

vance between unlabelled nodes and queries.

2.1. Manifold Ranking

In [39], a ranking method that exploits the intrinsic man-

ifold structure of data (such as image) for graph labelling

is proposed. Given a dataset X =
{
x1, . . . , xl, xl+1,

. . . , xn

} ∈ R
m×n, some data points are labelled queries

and the rest need to be ranked according to their relevances

to the queries. Let f : X → R
n denote a ranking func-

tion which assigns a ranking value fi to each point xi,

and f can be viewed as a vector f = [f1, . . . , fn]
T . Let

y = [y1, y2, . . . , yn]
T denote an indication vector, in which

yi = 1 if xi is a query, and yi = 0 otherwise. Next, we

define a graph G = (V,E) on the dataset, where the nodes

V are the dataset X and the edges E are weighted by an

affinity matrix W = [wij ]n×n. Given G, the degree matrix

is D = diag{d11, . . . , dnn}, where dii =
∑

j wij . Similar

to the PageRank and spectral clustering algorithms [5, 26],

the optimal ranking of queries are computed by solving the

following optimization problem:
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Figure 2. Our graph model. The red line along the four sides indi-

cates that all the boundary nodes are connected with each other.

f∗=argmin
f

1

2
(

n∑

i,j=1

wij‖ fi√
dii
− fj√

djj
‖2+μ

n∑

i=1

‖fi−yi‖2),

(1)

where the parameter μ controls the balance of the smooth-

ness constraint (the first term) and the fitting constraint (the

second term). That is, a good ranking function should not

change too much between nearby points (smoothness con-

straint) and should not differ too much from the initial query

assignment (fitting constraint). The minimum solution is

computed by setting the derivative of the above function to

be zero. The resulted ranking function can be written as:

f∗ = (I− αS)−1y, (2)

where I is an identity matrix, α = 1/(1 + μ) and S is the

normalized Laplacian matrix, S = D−1/2WD−1/2.

The ranking algorithm [39] is derived from the work on

semi-supervised learning for classification [38]. Essentially,

manifold ranking can be viewed as an one-class classifica-

tion problem [29], where only positive examples or negative

examples are required. We can get another ranking function

by using the unormalized Laplacian matrix in Eq. 2:

f∗ = (D− αW)−1y. (3)

We compare the saliency results using Eq. 2 and Eq. 3 in

the experiments, and the latter achieves better performance

(See Figure 8). Hence, we adopt Eq. 3 in this work.

2.2. Saliency Measure

Given an input image represented as a graph and some

salient query nodes, the saliency of each node is defined

as its ranking score computed by Eq. 3 which is rewritten

as f∗ = Ay to facilitate analysis. The matrix A can be

regarded as a learnt optimal affinity matrix which is equal

to (D − αW)−1. The ranking score f∗(i) of the i-th node

is the inner product of the i-th row of A and y. Because y

is a binary indicator vector, f∗(i) can also be viewed as the

sum of the relevances of the i-th node to all the queries.

In the conventional ranking problems, the queries are

manually labelled with the ground-truth. However, as

Figure 3. Graph labelling results using the top boundary prior.

Left: input images. Center: Results without enforcing the

geodesic distance constraints. Right: Results with geodesic dis-

tance constraints.

queries for saliency detection are selected by the proposed

algorithm, some of them may be incorrect. Thus, we need

to compute a degree of confidence (i.e., the saliency value)

for each query, which is defined as its ranking score ranked

by the other queries (except itself). To this end, we set the

diagonal elements of A to 0 when computing the ranking

score by Eq. 3. We note that this seemingly insignificant

process has great effects on the final results. If we compute

the saliency of each query without setting the diagonal el-

ements of A to 0, its ranking value in f∗ will contain the

relevance of this query to itself, which is meaningless and

often abnormally large so as to severely weaken the contri-

butions of the other queries to the ranking score. Lastly, we

measure the saliency of nodes using the normalized ranking

score f
∗

when salient queries are given, and using 1 − f
∗

when background queries are given.

3. Graph Construction

We construct a single layer graph G = (V,E) as shown

in Figure 2, where V is a set of nodes and E is a set of

undirected edges. In this work, each node is a superpixel

generated by the SLIC algorithm [3]. As neighboring nodes

are likely to share similar appearance and saliency values,

we use a k-regular graph to exploit the spatial relationship.

First, each node is not only connected to those nodes neigh-

boring it, but also connected to the nodes sharing common

boundaries with its neighboring node (See Figure 2). By ex-

tending the scope of node connection with the same degree

of k, we effectively utilize local smoothness cues. Second,

we enforce that the nodes on the four sides of image are

connected, i.e., any pair of boundary nodes are considered

to be adjacent. Thus, we denote the graph as the close-loop

graph. This close-loop constraint significantly improves the

performance of the proposed method as it tends to reduce

the geodesic distance of similar superpixels, thereby im-

proving the ranking results. Figure 3 shows some exam-

ples where the ranking results with and without these con-

straints. We note that these constraints work well when the
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Figure 4. Saliency maps using different queries. From left to right:

input image, result of using all the boundary nodes together as

queries, result of integrating four maps from each side, result of

ranking with foreground queries.

salient objects appear near the image boundaries or some of

the background regions are not the same.

With the constraints on edges, it is clear that the con-

structed graph is a sparsely connected. That is, most ele-

ments of the affinity matrix W are zero. In this work, the

weight between two nodes is defined by

wij = e−
‖ci−cj‖

σ2 i, j ∈ V, (4)

where ci and cj denote the mean of the superpixels corre-

sponding to two nodes in the CIE LAB color space, and σ
is a constant that controls the strength of the weight. The

weights are computed based on the distance in the color

space as it has been shown to be effective in saliency de-

tection [2, 4].

By ranking the nodes on the constructed graph, the in-

verse matrix (D − αW)−1 in Eq. 3 can be regarded as a

complete affinity matrix, i.e., there exists a nonzero rele-

vance value between any pair of nodes on the graph. This

matrix naturally captures spatial relationship information.

That is, the relevance between nodes is increased when their

spatial distance is decreased, which is an important cue for

saliency detection [9].

4. Two-Stage Saliency Detection

In this section, we detail the proposed two-stage scheme

for bottom-up saliency detection using ranking with back-

ground and foreground queries.

4.1. Ranking with Background Queries

Based on the attention theories of early works for visual

saliency [17], we use the nodes on the image boundary as

background seeds, i.e., the labelled data (query samples) to

rank the relevances of all the other regions. Specifically,

we construct four saliency maps using boundary priors and

then integrate them for the final map, which is referred as

the separation/combination (SC) approach.

Taking top image boundary as an example, we use the

nodes on this side as the queries and other nodes as the un-

labelled data. Thus, the indicator vector y is given, and all

the nodes are ranked based on Eq. 3 in f∗, which is a N -

dimensional vector (N is the total number of nodes of the

graph). Each element in this vector indicates the relevance

of a node to the background queries, and its complement is

�

�

�

�

Figure 5. Examples in which the salient objects appear at the image

boundary. From left to right: input images, saliency maps using

all the boundary nodes together as queries, four side-specific maps,

integration of four saliency maps, the final saliency map after the

second stage.

the saliency measure. We normalize this vector to the range

between 0 and 1, and the saliency map using the top bound-

ary prior, St can be written as:

St(i) = 1− f
∗

(i) i = 1, 2, . . . , N, (5)

where i indexes a superpixel node on graph, and f
∗

denotes

the normalized vector.

Similarly, we compute the other three maps Sb, Sl and

Sr, using the bottom, left and right image boundary as

queries. We note that the saliency maps are computed with

different indicator vector y while the weight matrix W and

the degree matrix D are fixed. That is, we need to compute

the inverse of the matrix (D − αW) only once for each

image. Since the number of superpixels is small, the ma-

trix inverse in Eq. 3 can be computed efficiently. Thus, the

overall computational load for the four maps is low. The

four saliency maps are integrated by the following process:

Sbq(i) = St(i)× Sb(i)× Sl(i)× Sr(i). (6)

There are two reasons for using the SC approach to gen-

erate saliency maps. First, the superpixels on different sides

are often disimilar which should have large distance. If we

simultaneously use all the boundary superpixels as queries

(i.e., indicating these suprerpixels are similar), the labelled

results are usually less optimal as these nodes are not com-

pactable (See Figure 4). Note that the geodesic distance that

we use in Section 3 can be considered as weakly labelled as

only a few superpixels are involved (i.e., only the superpix-

els with low color distance from the sides are considered as

similar) whereas the case with all superpixels can be consid-

ered as strongly labelled (i.e., all the nodes from the sides

are considered as similar). Second, it reduces the effects

of imprecise queries, i.e., the ground-truth salient nodes are

inadvertently selected as background queries. As shown in

the second column of Figure 5, the saliency maps generated

using all the boundary nodes are poor. Due to the impre-

cise labelling results, the pixels with the salient objects have

low saliency values. However, as objects are often compact

“things” (such as a people or a car) as opposed to incompact

316731673169



Figure 6. The example in which imprecise salient queries are se-

lected in the second stage. From left to right: input image, saliency

map of the first stage, binary segmentation, the final saliency map.

“stuff” (such as grass or sky) and therefore they rarely oc-

cupy three or all sides of image, the proposed SC approach

ensures at least two saliency maps are effective (third col-

umn of Figure 5). By integration of four saliency maps,

some salient parts of object can be identified (although the

whole object is not uniformly highlighted), which provides

sufficient cues for the second stage detection process.

While most regions of the salient objects are highlighted

in the first stage, some background nodes may not be ade-

quately suppressed (See Figure 4 and Figure 5). To alleviate

this problem and improve the results especially when ob-

jects appear near the image boundaries, the saliency maps

are further improved via ranking with foreground queries.

4.2. Ranking with Foreground Queries

The saliency map of the first stage is binary segmented

(i.e., salient foreground and background) using an adaptive

threshold, which facilitates selecting the nodes of the fore-

ground salient objects as queries. We expect that the se-

lected queries cover the salient object regions as much as

possible (i.e., with high recall). Thus, the threshold is set as

the mean saliency over the entire saliency map.

Once the salient queries are given, an indicator vector

y is formed to compute the ranking vector f∗ using Eq. 3.

As is carried out in the first stage, the ranking vector f∗ is

normalized between the range of 0 and 1 to form the final

saliency map by

Sfq(i) = f
∗

(i) i = 1, 2, . . . , N, (7)

where i indexes superpixel node on graph, and f
∗

denotes

the normalized vector.

We note that there are cases where nodes may be in-

correctly selected as foreground queries in this stage. De-

spite some imprecise labelling, salient objects can be well

detected by the proposed algorithm as shown in Figure 6.

This can be explained as follows. The salient object re-

gions are usually relatively compact (in terms of spatial dis-

tribution) and homogeneous in appearance (in terms of fea-

ture distribution), while background regions are the oppo-

site. In other words, the intra-object relevance (i.e., two

nodes of the salient objects) is statistically much larger

than that of object-background and intra-background rel-

evance, which can be inferred from the affinity matrix

A. To show this phenomenon, we compute the aver-

age intra-object, intra-background and object-background
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Figure 7. Analysis of the learned relevances between nodes in the

affinity matrix A.

relevance values in A for each of the 300 images sam-

pled from a dataset with ground truth labels [2], which is

shown in Figure 7. Therefore, the sum of the relevance

values of object nodes to the ground-truth salient queries

is considerably larger than that of background nodes to

all the queries. That is, background saliency can be sup-

pressed effectively (fourth column of Figure 6). Similarly,

in spite of the saliency maps after the first stage of Fig-

ure 5 are not precise, salient object can be well detected by

the saliency maps after the foreground queries in the sec-

ond stage. The main steps of the proposed salient ob-

ject detection algorithm are summarized in Algorithm 1.

Algorithm 1 Bottom-up Saliency based on Manifold Ranking

Input: An image and required parameters

1: Segment the input image into superpixels, construct a graph G

with superpixels as nodes, and compute its degree matrix D and

weight matrix W by Eq. 4.

2: Compute (D− αW)−1 and set its diagonal elements to 0.

3: Form indicator vectors y with nodes on each side of image as

queries, and compute their corresponding side-specific maps by

Eq. 3 and Eq. 5. Then, compute the saliency map Sbq by Eq. 6.

4: Bi-segment Sbq to form salient foreground queries and an indi-

cator vector y. Compute the saliency map Sfq by Eq. 3 and Eq. 7.

Output: a saliency map Sfq representing the saliency value of

each superpixel.

5. Experimental Results

We evaluate the proposed method on three datasets. The

first one is the MSRA dataset [23] which contains 5,000

images with the ground truth of salient region marked

by bounding boxes. The second one is the MSRA-1000

dataset, a subset of the MSRA dataset, which contains

1,000 images provided by [2] with accurate human-labelled

masks for salient objects. The last one is the proposed

DUT-OMRON dataset, which contains 5,172 carefully la-

beled images by five users. The source images, ground

316831683170
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Figure 8. Precision-recall curves on the MSRA-1000 dataset with different design options of the proposed algorithm. From left to right:

ranking with normalized and unnormalized Laplacian matrices, graph construction, the SC approach, results generated by each stage.

truth labels and detailed description of this dataset can be

found at http://ice.dlut.edu.cn/lu/DUT-OMRON/

Homepage.htm. We compare our method with fourteen

state-of-the-art saliency detection algorithms: the IT [17],

GB [14], MZ [25], SR [15], AC [1], Gof [11], FT [2],

LC [37], RC [9], SVO [7], SF [27], CB [18], GS SP [34]

and XIE [35] methods.

Experimental Setup: We set the number of superpixel

nodes N = 200 in all the experiments. There are two pa-

rameters in the proposed algorithm: the edge weight σ in

Eq. 4, and the balance weight α in Eq. 3. The parameter

σ controls the strength of weight between a pair of nodes

and the parameter α balances the smooth and fitting con-

straints in the regularization function of manifold ranking

algorithm. These two parameters are empirically chosen,

σ2 = 0.1 and α = 0.99, for all the experiments.

Evaluation Metrics: We evaluate all methods by precision,

recall and F-measure. The precision value corresponds to

the ratio of salient pixels correctly assigned to all the pix-

els of extracted regions, while the recall value is defined as

the percentage of detected salient pixels in relation to the

ground-truth number. Similar as prior works, the precision-

recall curves are obtained by binarizing the saliency map

using thresholds in the range of 0 and 255. The F-measure

is the overall performance measurement computed by the

weighted harmonic of precision and recall:

Fβ =
(1 + β2)Precision×Recall

β2Precision+Recall
, (8)

where we set β2 = 0.3 to emphasize the precision [2].

5.1. MSRA-1000

We first examine the design options of the proposed al-

gorithm in details. The ranking results using the normal-

ized (Eq. 2) and unnormalized (Eq. 3) Laplacian matri-

ces for ranking are analyzed. Figure 8 (a) shows that the

ranking results with the unnormalized Laplacian matrix are

better, and used in all the experiments. Next, we demon-

strate the merits of the proposed graph construction scheme.

We compute four precision-recall curves for four cases of

node connection on the graph: close-loop constraint with-

out extending the scope of node with k-regular graph, with-

out close-loop constraint and with k-regular graph, without

both close-loop constraint and k-regular graph and close-

loop constraint with k-regular graph. Figure 8 (b) shows

that the use of close-loop constraint and k-regular graph

performs best. The effect of the SC approach in the first

stage is also evaluated. Figure 8 (c) shows that our approach

using the integration of saliency maps generated from dif-

ferent boundary priors performs better in the first stage. We

further compare the performance for each stage of the pro-

posed algorithm. Figure 8 (d) demonstrates that the second

stage using the foreground queries further improve the per-

formance of the first stage with background queries.

We evaluate the performance of the proposed method

against fourteen state-of-the-art bottom-up saliency detec-

tion methods. Figure 9 shows the precision-recall curves

of all methods. We note that the proposed methods outper-

forms the SVO [7], Gof [11], CB [18], and RC [9] which are

top-performance methods for saliency detection in a recent

benchmark study [4]. In addition, the proposed methods

significantly outperforms the GS SP [34] method which is

also based on boundary priors. We also compute the preci-

sion, recall and F-measure with an adaptive threshold pro-

posed in [2], defined as twice the mean saliency of the im-

age. The rightmost plot of Figure 9 shows that the proposed

algorithm achieves the highest precision and F-measure val-

ues. Overall, the results using three metrics demonstrate

that the proposed algorithm outperforms the state-of-the-

art methods. Figure 10 shows a few saliency maps of the

evaluated methods. We note that the proposed algorithm

uniformly highlights the salient regions and preserves finer

object boundaries than the other methods.

5.2. MSRA

We further evaluate the proposed algorithm on the

MSRA dataset in which the images are annotated with

nine bounding boxes by different users. To compute pre-

cision and recall values, we first fit a rectangle to the bi-

nary saliency map and then use the output bounding box for
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Figure 9. Left, middle: precision-recall curves of different methods. Right: precision, recall and F-measure using an adaptive threshold.

All results are computed on the MSRA-1000 dataset. The proposed method performs well in all these metrics.
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Figure 10. Saliency detection results of different methods. The proposed algorithm consistently generates saliency maps close to the ground

truth.

Method Ours CB [18] Gof [11] SVO [7]

Time(s) 0.256 2.146 38.896 79.861

Table 1. Comparison of average run time (seconds per image).

the evaluation. Similar to the experiments on the MSRA-

1000 database, we also binarize saliency maps using the

threshold of twice the mean saliency to compute precision,

recall and F-measure bars. Figure 11 shows the proposed

model performs better than the other methods on this large

dataset. We note that the Gof [11] and FT [2] methods have

extremely large recall values, since their methods tend to

select large attention regions, but at the expense of low pre-

cision.

5.3. DUT-OMRON

We test the proposed model on the DUT-OMRON

dataset in which images are annotated with bounding boxes

by five users. Similar to the experiments on the MSRA

database, we also compute a rectangle of the binary saliency

map and then evaluate our model by the fixed thresholding

and the adaptive thresholding ways. Figure 12 shows that

the proposed dataset is more challenging (all the models

performs more poorly), and thus provides more room for

improvement of the future work.

5.4. Run Time

The average run time of currently top-performance

methods using matlab implementation on the MSRA-

1000 database are presented in Table 1 based on a ma-

chine with Intel Dual Core i3-2120 3.3 GHz CPU and

2GB RAM. Our run time is much faster than that of

the other saliency models. Specifically, the superpixel

generation by SLIC algorithm [3] spends 0.165 s (about

64%), and the actual saliency computation spends 0.091

s. The MATLAB implementation of the proposed al-

gorithm is available at http://ice.dlut.edu.cn/lu/

publications.html, or http://faculty.ucmerced.

edu/mhyang/pubs.html.

6. Conclusion

We propose a bottom-up method to detect salient regions

in images through manifold ranking on a graph, which in-

corporates local grouping cues and boundary priors. We

adopt a two-stage approach with the background and fore-
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Figure 11. Left: precision-recall curves of different methods.

Right: precision, recall and F-measure for adaptive threshold. All

results are computed on the MSRA dataset.
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Figure 12. Left: precision-recall curves of different methods.

Right: precision, recall and F-measure for adaptive threshold. All

results are computed on the DUT-OMRON dataset.

ground queries for ranking to generate the saliency maps.

We evaluate the proposed algorithm on large datasets and

demonstrate promising results with comparisons to fourteen

state-of-the-art methods. Furthermore, the proposed algo-

rithm is computationally efficient. Our future work will fo-

cus on integration of multiple features with applications to

other vision problems.
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